NetSim v14.4 Help

Contents:

  • Introduction
    • Earth fixed spot beams and cells
    • Bands
    • Band Frequency Information
    • Simulation GUI
      • Configure Non-Terrestrial Networks
      • Set device properties
      • Configure reports
      • GUI Parameters
  • Link budget
    • Link Budget Calculations: Example 1 LEO 600
    • Link Budget Calculations: Example 2 LEO 1200
  • Satellite Antenna Pattern
    • Link Budget Calculations: Example 3 LEO 600 and LEO 1200
  • Interference Models
    • CIR based Interference
    • Link Budget Calculations: Example 4 LEO 600 and LEO 1200
  • Radio Measurements Log
  • Frequency Reuse
  • Link Budget with Interference
    • Calculations for FRF 1
    • Calculations for FRF 3
  • Beam Radius Calculations
    • Hexagonal tessellation based on beam radius
  • Featured Examples
    • Impact of LEO Altitude Variation on SNR and Path Loss
    • SNR Variation Across Outdoor Scenarios with Varying Transmit Power
    • SNR and Pathloss variation with varying elevation angles
    • 3GPP 38.821 Set 1 system level simulation
      • Introduction
      • Objective
      • Part1: Network Scenario
      • Simulation Setup
      • Parameter configuration
      • Results and Discussion
      • Part-2: Peak Throughput and Spectral Efficiency Evaluation
  • Limitations and assumptions
NetSim v14.4 Help
  • Link budget

Link budget

The carrier-to-noise radio, CNR in dB, is calculated per the equation described in TR 38.821 Section 6.1.3.1, given by

\[CNR = EIRP + Rx\frac{G}{T} - k - PL_{FS} - PL_{A} - PL_{SM} - PL_{SL} - PL_{AD} - B\]

where:

\(CNR\) is the carrier to noise ratio (also sometimes termed as SNR or signal to noise ratio) in dB

\(EIRP\) is the effective isotropic radiated power in dBW

\(Rx\frac{G}{T}\) is the antenna-gain-to-noise temperature in dB/K of the receiver

\(k\) is the Boltzmann constant with the value of -228.6 dBW/K/Hz

\(PL_{FS}\ \)is the free space path loss (FSPL) in dB

\(PL_{A}\) is the atmospheric path loss due to gases

\(PL_{SM}\ \)is the shadowing margin in dB

\(PL_{SL}\) is the scintillation loss in dB

\(PL_{AD}\) is the additional loss in dB

\(B\) is the channel bandwidth in dBHz (i.e., \(10\log_{10}{BW},\) where \(BW\ \)is bandwidth in Hz)

\(Rx\frac{G}{T}\) is obtained using the expression

\[Rx\frac{G}{T} = G_{rx} - N_{f} - 10\log_{10}\left( T_{0} + \left( T_{a} - T_{0} \right) \times 10^{- 0.1 \times N_{f}} \right)\]

where:

\(G_{rx}\) is the receive antenna gain in dBi.

\(N_{f}\ \)is the noise figure in dB

\(T_{0}\) is the ambient temperature in degrees Kelvin, set to \(290\) by default

\(T_{a}\) is the antenna temperature in degrees Kelvin.

The \(CNR\) expression is used in both directions i.e., terrestrial to satellite and satellite to terrestrial. The expressions below provide the formula for \(EIRP\) if the input is provided as \(EIRPDensity\ \lbrack dBW/MHz\rbrack\)

\[EIRP\lbrack dBW\rbrack = \ EIRPDensity\ \lbrack dBW/MHz\rbrack + 10\log_{10}{(BW\ \lbrack MHz\rbrack)}\]

Example 1: Link budget for UE at Nadir Point; No interference; 2GHz S Band.

Simulation Parameters

LEO 600km

LEO 1200km

Satellite coordinates (x, y, z)

(User Input)

0, 0, 600

0, 0, 1200

UE coordinates (x, y, z)

(User Input)

0, 0, 0

0, 0, 0

Frequency

(User Input)

S-Band, n256

S-Band, n256

Terrestrial environment

(User Input. Default based on sec 6.1.1.3 of 38.821)

Rural

Rural

LOS probability

(User Input. Per LOS probability in 3GPP TR 38.811 sec 6.6.1)

1

1

Antenna Aperture Radius(m)

(User Input. Default based on Table 6.1.1.1-2 of 38.821)

1

1

EIRP density (dBW/MHz)

(User Input. Default based on Table 6.1.1.1-1 of 38.821)

34

40

Bandwidth B

(User Input. Default based on Table 6.1.3.2-1 of 38.821)

30

30

EIRP (dBW)

\(= EIRP\lbrack dBW/MHz\rbrack + \ 10\log_{10}{B\lbrack MHz\rbrack}\). Per TR 38.821 section 6.1.3.1-5

48.77

54.77

Elevation angle

(Per Elevation angle formulas provided in 3GPP TR 38.811 sec 6.6.2)

90

90

Angular Antenna Gain \(G(\theta),\) (dB)

(Per Bessel function formulas provided in 3GPP TR 38.811 sec 6.4.1)

0

0

Slant range \(d\) (Km)

(Per slant height formulas provided in 3GPP T1 38.811 sec 6.6.2)

600

1200

Free space pathloss (dB), \(PL_{FS}\)

(Per Free space pathloss formulas provided in 3GPP TR 38.811 sec 6.6.2)

154.8

160.82

Shadow loss (dB), \(PL_{SM}\)

(Per Shadow loss formulas provided in 3GPP TR 38.811 sec 6.6.2)

0.39

0.39

Additional Loss(dB), \(PL_{AD}\)

(User Input. Default based on Table 6.1.3.2-1 of 38.821)

0

0

Total Pathloss, L (dB)

\[L\ = PL_{FS} + PL_{SM} + PL_{AD}\]

155.19

161.21

Rx Antenna Gain

(User Input. Default based on Table 6.1.1.1-3 of 38.821)

0

0

Noise figure \(N_{f}\)

(User Input. Default based on Table 6.1.1.1-3 of 38.821)

7

7

Rx Antenna Temp Ta (K)

(User Input. Default based on Table 6.1.1.1-3 of 38.821)

290

290

RX equivalent antenna Temp, \(T\ \lbrack dBK\rbrack\)

(Per TR 38.821 section 6.1.3.1)

31.62

31.62

Receiver G/T (\(dB/K)\)

(Per RX G/T formulas provided in 3GPP TR 38.821 sec 6.1.3.1)

-31.62

-31.62

Boltzmann constant \(k\ \lbrack dBW/K/Hz\rbrack\)

-228.6

-228.6

Carrier to Noise Ratio, CNR (dB)

(Per CNR formulas provided in 3GPP TR 38.821 sec 6.1.3.1)

15.78

15.76

Table-1: Simulation Parameters and Link Budget Calculation for LEO Satellite Communication at 600 km and 1200 km Altitudes. UE at Nadir Point; No interference. Calculations are explained in section 2.1

Example 2: Link budget for UE at Off Nadir Point; No interference; 2GHz S Band.

Simulation Parameters

LEO 600km

LEO 1200km

Satellite coordinates (x, y, z)

(User Input)

0, 0, 600

0, 0, 1200

UE coordinates (x, y, z)

(User Input)

17,18, 0

64,34, 0

Frequency

(User Input)

S-Band, n256

S-Band, n256

Terrestrial environment

(User Input. Default based on sec 6.1.1.3 of 38.821)

Rural

Rural

LOS probability

(User Input. Per LOS probability in 3GPP TR 38.811 sec 6.6.1)

1

1

Antenna Aperture Radius(m)

(User Input. Default based on Table 6.1.1.1-2 of 38.821)

1

1

EIRP density (dBW/MHz)

(User Input. Default based on Table 6.1.1.1-1 of 38.821)

34

40

Bandwidth B

(User Input. Default based on Table 6.1.3.2-1 of 38.821)

30

30

EIRP (dBW)

\[= EIRP\lbrack dBW/MHz\rbrack + \ 10\log_{10}{B\lbrack MHz\rbrack}\]

per TR 38.821 section 6.1.3.1-5

48.77

54.77

Elevation angle

(Per Elevation angle formulas provided in 3GPP TR 38.811 sec 6.6.2)

87.64

86.54

Angular Antenna Gain \(G(\theta),\) (dB)

(Per Bessel function formulas provided in 3GPP TR 38.811 sec 6.4.1)

-4.2

-10.26

Slant range \(d\) (Km)

(Per slant height formulas provided in 3GPP T1 38.811 sec 6.6.2)

600.51

1202.19

Free space pathloss (dB), \(PL_{FS}\)

(Per Free space pathloss formulas provided in 3GPP TR 38.811 sec 6.6.2)

154.81

160.84

Shadow loss (dB), \(PL_{SM}\)

(Per shadow loss formulas provided in 3GPP TR 38.811 sec 6.6.2)

0.39

0.39

Additional Loss(dB), \(PL_{AD}\)

(User Input. Default based on Table 6.1.3.2-1 of 38.821)

0

0

Total Pathloss, L (dB)

\[L = PL_{FS} + PL_{SM} + PL_{AD}\]

155.20

161.23

Rx Antenna Gain

(User Input. Default based on Table 6.1.1.1-3 of 38.821)

0

0

Noise figure \(N_{f}\)

(User Input. Default based on Table 6.1.1.1-3 of 38.821)

7

7

Rx Antenna Temp Ta (K)

(User Input. Default based on Table 6.1.1.1-3 of 38.821)

290

290

RX equivalent antenna Temp, \(T\ \lbrack dBK\rbrack\)

(Per TR 38.821 section 6.1.3.1)

31.62

31.62

Receiver G/T (\(dB/K)\)

(Per RX G/T formulas provided in 3GPP TR 38.821 sec 6.1.3.1)

-31.62

-31.62

Boltzmann constant \(k\ \lbrack dBW/K/Hz\rbrack\)

-228.6

-228.6

Carrier to Noise Ratio, CNR (dB)

(Per CNR formulas provided in 3GPP TR 38.821 sec 6.1.3.1)

11.58

5.49

Table-2:Simulation Parameters and Link Budget Calculation for LEO Satellite Communication at 600 km and 1200 km Altitudes. UE at Off Nadir Point; No interference. Calculations are explained in section 3.1

Example 3: Link budget with UE at Off Nadir Point with Interference; ;2GHz S Band.

The calculations proceed exactly per Example 2 up to CNR. Once CNR is computed, interference is added and to obtain CNIR.

Simulation Parameters

LEO 600km

LEO 1200km

Satellite coordinates (x, y, z)

(User Input)

0, 0, 600

0, 0, 1200

UE coordinates (x, y, z)

(User Input)

17,18, 0

64,34, 0

Frequency

(User Input)

S-Band, n256

S-Band, n256

Terrestrial environment

(User Input. Default based on sec 6.1.1.3 of 38.821)

Rural

Rural

LOS probability

(User Input. Per LOS probability provided in 3GPP TR 38.811 sec 6.6.1)

1

1

Antenna Aperture Radius(m)

(User Input. Default based on Table 6.1.1.1-2 of 38.821)

1

1

EIRP density (dBW/MHz)

(User Input. Default based on Table 6.1.1.1-1 of 38.821)

34

40

Bandwidth B

(User Input. Default based on Table 6.1.3.2-1 of 38.821)

30

30

EIRP (dBW)

\[= EIRP\lbrack dBW/MHz\rbrack + \ 10\log_{10}{B\lbrack MHz\rbrack}\]

per TR 38.821 section 6.1.3.1-5

48.77

54.77

Elevation angle

(Per Elevation angle formulas provided in 3GPP TR 38.811 sec 6.6.2)

87.64

86.54

Angular Antenna Gain \(G(\theta),\) (dB)

(Per Bessel function formulas provided in 3GPP TR 38.811 sec 6.4.1)

-4.2

-10.26

Slant range \(d\) (Km)

(Per slant height formulas provided in 3GPP T1 38.811 sec 6.6.2)

600.51

1202.19

Free space pathloss (dB), \(PL_{FS}\)

(Per Free space pathloss formulas provided in 3GPP TR 38.811 sec 6.6.2)

154.81

160.84

Shadow loss (dB), \(PL_{SM}\)

(Per shadow loss formulas provided in 3GPP TR 38.811 sec 6.6.2)

0.39

0.39

Additional Loss(dB), \(PL_{AD}\)

(User Input. Default based on Table 6.1.3.2-1 of 38.821)

0

0

Total Pathloss, L (dB)

\[L = PL_{FS} + PL_{SM} + PL_{AD}\]

155.20

161.23

Rx Antenna Gain

(User Input. Default based on Table 6.1.1.1-3 of 38.821)

0

0

Noise figure \(N_{f}\)

(User Input. Default based on Table 6.1.1.1-3 of 38.821)

7

7

Rx Antenna Temp Ta (K)

(User Input. Default based on Table 6.1.1.1-3 of 38.821)

290

290

RX equivalent antenna Temp, \(T\ \lbrack dBK\rbrack\)

(Per TR 38.821 section 6.1.3.1)

31.62

31.62

Receiver G/T (\(dB/K)\)

(Per RX G/T formulas provided in 3GPP TR 38.821 sec 6.1.3.1)

-31.62

-31.62

Boltzmann constant \(k\ \lbrack dBW/K/Hz\rbrack\)

-228.6

-228.6

Carrier to Noise Ratio, CNR (dB)

(Per CNR formulas provided in 3GPP TR 38.821 sec 6.1.3.1)

11.58

5.49

Carrier to Interference Ratio, CIR (dB) (User Input. Per TR 38.821 section 6.1.3.1)

5

5

Carrier to Noise plus Interference Ratio, CNIR (dB)

(Per CNIR formulas provided in 3GPP TR 38.821 sec 6.1.3.1)

4.14

2.23

Table-3: Simulation Parameters and Link Budget Calculation for LEO Satellite Communication at 600 km and 1200 km Altitudes. UE at Off Nadir Point with Interference. Interference calculations are provided in section 4.2

Link Budget Calculations: Example 1 LEO 600

We consider the satellite co-ordinates as \((0,\ 0,\ 600)\) km, and the UE co-ordinates as \((0,\ 0,\ 0)\ \)km. The elevation angle is calculated as arctan of the ratio of the satellite altitude to the distance between the satellite and the UE in the XY place.

\[\theta = \tan^{- 1}\left( \frac{Z_{sat}}{\sqrt{\left( X_{UE} - X_{sat} \right)^{2} + \left( Y_{UE} - Y_{Sat} \right)^{2}}} \right)\ = \tan^{- 1}\left( \frac{600}{0} \right) = 90{^\circ}\]

The slant height used in NetSim is per 38.811, equation 6.6-3, i.e.

\[d = \sqrt{R_{E}^{2}\sin^{2}(\alpha) + h_{o}^{2} + 2h_{o}R_{E}} - R_{E}\sin(\alpha)\]

For a link between a ground station and a LEO satellite operating at 600km with elevation angle \(\alpha = 90{^\circ}\).

\[d = \sqrt{\left( 6.371 \cdot 10^{6} \right)^{2} \cdot \sin^{2}(90{^\circ}) + \left( 6 \cdot 10^{5} \right)^{2} + 2 \cdot \left( 6 \cdot 10^{5} \right)\left( 6.371 \cdot 10^{6} \right)} - 6.371 \cdot 10^{6}\sin(90{^\circ})\]
\[d = 600\ km\]

The free space pathloss \(PL_{FS}\ \)for a channel with \(d = 600\ km\) is

\(F_{Low} = 2170,{\ \ \ F}_{High} = 2200,\ {\ f}_{c} = \frac{2170 + 2200}{2}\)=\(\ 2.185\ GHz\)

\[PL_{FS} = 32.45 + 20\log_{10}{\left( f_{c} \right) + 20\log_{10}(d)}\]
\[32.45 + 20\log_{10}{(2.185) + 20\log_{10}(600*1000)} = 154.8\ dB\]

The receiver antenna \(G/T\ \)is given by the expression

\[Rx\frac{G}{T} = G_{rx} - N_{f} - 10\log_{10}{\left( T_{0} + \left( T_{a} - T_{0} \right) \times 10^{- 0.1 \times N_{f}} \right),}\]

We know \(T_{0} = 290\), and when we apply \(T_{a} = 290\), we obtain

\[Rx\frac{G_{rx}}{T} = 0 - 7\ - \ 10\log_{10}(290) = \ - 31.62\ dB/K\]

We know that bandwidth \(B\ \lbrack dBHz\rbrack = 10 \times \log_{10}\left( B\lbrack Hz\rbrack \right) = 10 \times \log_{10}{\left( 30 \times 10^{6} \right) = 74.77\ dBHz}\)

The shadow margin \(PL_{SM}\) is calculated per the tables available in section 6.6.2 of 38.811. The given example is based on the Rural scenario, with a LOS probability of 1 and an elevation angle of 90°. The standard deviation chosen from the table is 0.72. We then generate a zero-mean Gaussian random variable with input standard deviation of 0.72. In this case, the random shadow loss drawn is 0.54 dB

Angular antenna gain,\(G(\theta) = 0\)

And finally we obtain \(CNR\) as

\[CNR = EIRP + G(\theta) + Rx\frac{G}{T} - k - PL_{FS} - PL_{SM} - PL_{AD} - B\]

Substituting we get

\[CNR = 48.77 + 0 + ( - 31.62) - ( - 228.6) - 154.8 - (0.39) - 0 - 74.77 = 15.78dB\]

Link Budget Calculations: Example 2 LEO 1200

We consider the satellite co-ordinates as \((0,\ 0,\ 1200)\) Km, and the UE co-ordinates as \((64,\ 34,\ 0)\ \)Km. The elevation angle is calculated in NetSim as follows

\[\theta = \tan^{- 1}\left( \frac{Z_{sat}}{\sqrt{\left( X_{UE} - X_{sat} \right)^{2} + \left( Y_{UE} - Y_{Sat} \right)^{2}}} \right)\ = \tan^{- 1}\left( \frac{1200}{72.47} \right) = 86.54{^\circ}\]

The slant height used in NetSim is per 38.811, equation 6.6-3, i.e.

\[d = \sqrt{R_{E}^{2}\sin^{2}(\alpha) + h_{o}^{2} + 2h_{o}R_{E}} - R_{E}\sin(\alpha)\]

For a link between a ground station and a LEO satellite operating at 1200 km with elevation angle \(\alpha = 86.54{^\circ}\).

\[d = \sqrt{\left( 6.371 \cdot 10^{6} \right)^{2} \cdot \sin^{2}(86.51\ {^\circ}) + \left( 12 \cdot 10^{5} \right)^{2} + 2 \cdot \left( 12 \cdot 10^{5} \right)\left( 6.371 \cdot 10^{6} \right)} - 6.371 \cdot 10^{6}\sin(86.51\ {^\circ})\]
\[d = 1202.19\ km\]

The free space pathloss \(PL_{FS\ }\ \)channel with \(d = 1202.19\ km\) is

\(F_{Low} = 2170,{\ \ \ F}_{High} = 2200,\ {\ f}_{c} = \frac{2170 + 2200}{2}\)=\(\ 2.185\ GHz\)

\[PL_{FS} = 32.45 + 20\log_{10}{\left( f_{c} \right) + 20\log_{10}(d)}\]
\[32.45 + 20\log_{10}{(2.185) + 20\log_{10}(1202.19\ *1000)} = 160.84dB\]

The receiver antenna \(G/T\ \)is given by the expression

\[Rx\frac{G}{T} = G_{rx} - N_{f} - 10\log_{10}{\left( T_{0} + \left( T_{a} - T_{0} \right) \times 10^{- 0.1 \times N_{f}} \right),}\]

We know \(T_{0} = 290\), and when we apply \(T_{a} = 290\), we obtain

\[Rx\frac{G_{rx}}{T} = 0 - 7\ - \ 10\log_{10}(290) = \ - 31.62\ dB/K\]

We know that bandwidth \(B\ \lbrack dBHz\rbrack = 10 \times \log_{10}\left( B\lbrack Hz\rbrack \right) = 10 \times \log_{10}{\left( 30 \times 10^{6} \right) = 74.77\ dBHz}\)

The shadow margin \(PL_{SM}\) is calculated per the tables available in section 6.6.2 of 38.811. The given example is based on the Rural scenario, with a LOS probability of 1 and an elevation angle of \(86.54\)°. The standard deviation chosen from the table is 0.72. We then generate a zero-mean Gaussian random variable with input standard deviation of 0.72. In this case, the random shadow loss that we draw is 0.54 dB.

Angular antenna gain, \(G(\theta) = \ - 10.26\)

And finally we obtain \(CNR\) as

\[CNR = EIRP + G(\theta) + Rx\frac{G}{T} - k - PL_{FS} - PL_{SM} - PL_{AD} - B\]

Substituting we get

\[CNR = 54.77 - 10.26 + ( - 31.62\ ) - ( - 228.6) - 160.84 - (0.39) - 0 - 74.77 = 5.49\ dB\]
Previous Next

© Copyright 2025, TETCOS LLP.

Built with Sphinx using a theme provided by Read the Docs.