

 V14.0

© TETCOS LLP. All rights reserved Page 1 of 11

Secure AODV in MANET

Software: NetSim Standard v14.0, Microsoft Visual Studio 2022

Project Download Link:

https://github.com/NetSim-TETCOS/Secure-AODV-v14.0/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and set up the Project in NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-

netsim-file-exchange-projects

Introduction:

SAODV is an extension of the AODV routing protocol that can be used to protect the route discovery
mechanism by providing security features like integrity and authentication. The reason only route
discovery is secured by AODV is that data messages can be protected using a point-to-point security
protocol like IPSec. SAODV uses a key management system, and each node maintains public keys,
encryption keys, and decryption keys.
To implement SAODV, we have added Secure AODV.c, RSA.c, and Malicious.c files in the AODV
project. RSA.c file is used to generate keys, encrypt, and decrypt the data. Users can implement their
own encryption algorithms by changing the RSA.c file. malicious.c file is used to identify malicious
nodes present in the network.

Real-World Context:

In the context of military communication, the secure AODV protocol ensures the secure transmission

of data from higher-level commands to lower-level commands. This protocol utilizes encryption and

decryption keys to ensure that all devices can securely access and read the data. If a malicious device

is present in the middle level, the data will not be accessible or readable to the malicious device.

Figure 1:Secure AODV in Military communication using Manet

Secure AODV Overview:

1. To discover a route to Device 6, Device 1 sends an RREQ encrypted with Device 6's public
key.

2. When Device 6 receives the RREQ, it decrypts it with its private key.
3. Device 6 then sends an RREP back to Device 1, encrypted with Device-1's public key.
4. Device 1 decrypts the RREP with its private key.

https://github.com/NetSim-TETCOS/Secure-AODV-v14.0/archive/refs/heads/main.zip
about:blank
about:blank

 V14.0

© TETCOS LLP. All rights reserved Page 2 of 11

If a malicious device tries to intercept the RREQ or RREP, it will not be able to decrypt it because it
does not have the private keys of Device 1 or Device 6. Additionally, if a malicious device tries to
modify the RREQ or RREP, the other nodes in the network will be able to detect the modification and
discard the packet.

Case 1:

Secure AODV implementation:

1. The Secure-AODV-Workspace comes with a sample network configuration that is already
saved. To open this example, go to Your work in the home screen of NetSim and click on the
Secure-AODV-Example from the list of experiments.

2. After running the simulation, a Secure_AODV.log file gets created in the Result Dashboard
Window.

Figure 2: Network setup for Secure AODV in Manet

• Open the Source code in Visual Studio by going to Your work -> Source Code and Open code
in the NetSim Home Screen window.

• Expand the AODV project.

 V14.0

© TETCOS LLP. All rights reserved Page 3 of 11

Figure 3: Screenshot of Solution Explorer of AODV project

• Here users can enable Secure AODV (Open AODV.h file).

Uncomment the line #define SAODV_ENABLE,

Comment the line //#define MALICIOUS_ENABLE present in AODV.h file.

 Rebuild the AODV Project by right-clicking and Run the simulation for 100 sec in the Netsim GUI.

Figure 4: Screenshot of NetSim project Source Code in Visual Studio

A Secure_AODV.c file is added to the AODV project which contains the following important functions:

• saodv_encrypt_packet(); //This function is used to encrypt the control packet data

• saodv_decrypt_packet(); //This function is used to decrypt the control packet data

• get_rrep_str_data(); //This function is used to get the route reply data from AODV_RREP

control packet

• get_rreq_str_data(); //This function is used to get the route request data from AODV_RREQ

control packet

 V14.0

© TETCOS LLP. All rights reserved Page 4 of 11

• get_saodv_ctrl_packet_type(); //This function is used to change the control packet type from

AODV (AODV_RREQ, AODV_RREP) to SAODV (SAODV_RREQ, SAODV_RREP)

• get_saodv_ctrl_packet(); //This function is called whenever a new control packet is generated

• get_aodv_ctrl_packet(); //This function is called while processing the control packets

Results and discussion:

After Running the simulation of the given Configuration file, open the packet trace in the Result
Dashboard Window. In the packet trace, filter the control packets to SAODV_RREQ and
SAODV_RREP)

Figure 5: Network Packet trace results for Secure AODV implementation

The SAODV logs certain details in Secure_AODV.log. The Log File can be observed in the Result
Dashboard Window.

 Figure 6: Secure AODV log file

 V14.0

© TETCOS LLP. All rights reserved Page 5 of 11

The format of the log file is such that each control packet is logged. The first line represents the packet
type and the numbering used in a NetSim internal numbering system where 30701 is RREQ and
30702 is RREP. The second line is the message which is encrypted. The third line contains the
encrypted message after running the RSA encryption algorithm. The fourth line is after decryption
and if everything is OK, the 2nd and 4th lines must match.

...

Packet Type = 30701

Org Data = 1,0,1,192.168.0.7,0,192.168.0.2,1

Encrypted Data = š ššJÒÜšÀÐÜ Ü× šJÒÜšÀÐÜ ÜÒš

Decrypted Data = 1,0,1,192.168.0.7,0,192.168.0.2,1

..

Case 2 :

Malicious node implementation:

Here users can enable the code to implement malicious node

Uncomment #define MALICIOUS_ENABLE and

comment //#define SAODV_ENABLE that are present inside AODV.h file and Rebuild the Project.

Figure 7: Comment and Uncomment the code of SAODV and Malicious

A malicious node advertises wrong routing information to produce itself as a specific node and
receives whole network traffic.

After receiving the whole network traffic, it can either modify the packet information or drop them to
make the network complicated.

A file malicious.c is added to the AODV project which contains the following functions:

• IsMaliciousNode(); //This function is used to identify whether a current device is malicious or

not in-order to establish malicious behaviour.

 V14.0

© TETCOS LLP. All rights reserved Page 6 of 11

• fn_NetSim_AODV_MaliciousRouteAddToTable(); //This function is used to add a fake route

entry into the route table of the malicious device with its next hop as the destination.

• fn_NetSim_AODV_MaliciousProcessSourceRouteOption(); //This function is used to drop

the received packets if the device is malicious, instead of forwarding the packet to the next hop

Rebuild the Project and Run the simulation for 100 seconds in Netsim GUI.

Results and discussion:

• You can set any device as a malicious node, and you can have more than one malicious node
in a scenario.

• Device IDs of malicious nodes can be set using the malicious_node [] array present in
malicious.c file. Comment the line #define SAODV_ENABLE present in AODV.h file.

• Rebuild the project and run the simulation.

• If we run the simulation without SAODV, we will get zero throughputs because the malicious
node gets all the packets and drops without forwarding them to the destination. You can notice
this in the NetSim packet trace by filtering the PACKET_TYPE to CBR.

Figure 8: NetSim Packet trace results for Malicious node implementation

Case 3:

Both Secure AODV and Malicious node implementation:

Enable (Uncomment) the below mentioned lines of code present in AODV.h file.

#define SAODV_ENABLE

#define MALICIOUS_ENABLE

Rebuild the Project and run the simulation for 100 sec in Netsim GUI.

Results and discussion:

Packets will be transmitted to the destination since SAODV helps in overcoming the Malicious Node
problem. Route reply RREP from malicious node 4 will not be accepted by Node 1. It takes the Route

 V14.0

© TETCOS LLP. All rights reserved Page 7 of 11

reply from node 2 and forms the route. This can be observed in Packet Trace by filtering the
CONTROL_PACKET_TYPE to SAODV_RREP. Malicious node 4 is transmitting the Route Reply
(RREP) to node 3, but node 3 is not forwarding to any nodes .On the other hand, when it comes to
node 6, it is sending the RREP to node 5, then from 5 to 3, from 3 to 2 and finally from 2 to 1.

Figure 9: NetSim Packet trace results for Secure AODV and Malicious node implementation

The SAODV logs certain details in Secure_AODV.log. The Log File can be observed in the Result
Dashboard Window.

Figure 9: Secure AODV log file

The Packet type 30701 = RREQ is the request packet and the Packet type 30702=RREP is the reply
packet, when the malicious node tries to decrypt the message.

 V14.0

© TETCOS LLP. All rights reserved Page 8 of 11

...

Packet Type = 30702

Encryption and decryption fail. This could be a malicious node.

...

Appendix: NetSim source code modifications

We have added Secure_AODV.c, RSA.c and Malicious.c files, we have added the following

macros code in AODV.h file within AODV project.

#define SAODV_ENABLE

#define MALICIOUS_ENABLE

Then we have added the following lines of code in enum_AODV_Ctrl_Packet in AODV.h file

//#ifdef SAODV_ENABLE

 SAODV_RREQ,

 SAODV_RREP,

 SAODV_RERR,

//#endif

We have added the following function prototypes in AODV.h file, within AODV project.

#ifdef SAODV_ENABLE void get_saodv_ctrl_packet(NetSim_PACKET*

packet); void get_aodv_ctrl_packet(NetSim_PACKET* packet); void

saodv_copy_packet(NetSim_PACKET* dest, NetSim_PACKET* src); void

saodv_free_packet(NetSim_PACKET* packet); void

remove_from_mapper(void* ptr, bool isfree);

 V14.0

© TETCOS LLP. All rights reserved Page 9 of 11

#endif // SAODV_ENABLE bool

IsMaliciousNode(NETSIM_ID devId);

We have added the following function prototypes in AODV.c file int

fn_NetSim_AODV_MaliciousRouteAddToTable(NetSim_EVENTDETAILS*); int

fn_NetSim_AODV_MaliciousProcessSourceRouteOption(NetSim_EVENTDETAILS*);

Changes to NETWORK_IN event in fn_NetSim_AODV_Run() function in AODV.c file, within

AODV project

 #ifdef SAODV_ENABLE switch (pstruEventDetails-

>pPacket->nControlDataType)

 {

 case SAODV_RREQ:

 case SAODV_RREP:

 case SAODV_RERR:

 get_aodv_ctrl_packet(pstruEventDetails->pPacket);

 break;

 }

 if (pstruEventDetails->pPacket == NULL)

 {

 return -1; //Decryption fail.

 }

#endif // SAODV_ENABLE

We have added the following lines of code in AODVctrlPacket_RREQ and default cases in

NETWORK_IN event to check the current node is malicious or not.

if (IsMaliciousNode(pstruEventDetails->nDeviceId))

 fn_NetSim_AODV_MaliciousRouteAddToTable(pstruEventDetails);

 V14.0

© TETCOS LLP. All rights reserved Page 10 of 11

Changes code in fn_NetSim_AODV_CopyPacket () function, in AODV.c file, within AODV

project

#ifdef SAODV_ENABLE switch(srcPacket->nControlDataType)

{

case SAODV_RERR: case

SAODV_RREQ: case

SAODV_RREP:

saodv_copy_packet(destPacket,srcPacket);

return 0; break;

default:

#endif

return fn_NetSim_AODV_CopyPacket_F(destPacket,srcPacket);

#ifdef SAODV_ENABLE

break;

}

#endif

Changes code in int fn_NetSim_AODV_FreePacket () present in the AODV.c file, within AODV

project

#ifdef SAODV_ENABLE switch

(packet->nControlDataType)

 {

 case SAODV_RERR:

 case SAODV_RREQ: case

SAODV_RREP:

 V14.0

© TETCOS LLP. All rights reserved Page 11 of 11

 saodv_free_packet(packet);

 return 0; break;

 default:

 remove_from_mapper(packet->pstruNetworkData->Packet_RoutingProtocol, true);

 return 0;

 break;

 }

#endif // SAODV_ENABLE

Changes code in fn_NetSim_AODV_GenerateRREQ (), fn_NetSim_AODV_RetryRREQ () and

fn_NetSim_AODV_ForwardRREQ () functions present in RREQ.c file, within AODV project

#ifdef SAODV_ENABLE

get_saodv_ctrl_packet(packet);

#endif

Changes code in fn_NetSim_AODV_GenerateRREP(), fn_NetSim_AODV_ForwardRREP () and

fn_NetSim_AODV_GenerateRREPByIntermediate () functions present in RREP.c file, within

AODV project

#ifdef SAODV_ENABLE

get_saodv_ctrl_packet(packet);

#endif

