© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2023

False Data Injection Attack
Two cases: Simulation and Emulation
Two Types: Payload modification and Header modification

Software: NetSim Standard v14.0 (64 bit), Visual Studio 2022
Project code download link: https://github.com/NetSim-TETCOS/False-Data-Injection-
Attack-in-Internetworks v14.0/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and setup the Project in
NetSim:
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-
up-netsim-file-exchange-projects

Introduction

FDI (False Data Injection) attack is a type of cyber-attack where an attacker injects false data
into a system or network with the intent of causing damage or disruption. FDI attacks can be
launched against various types of systems, including industrial control systems, critical
infrastructure, financial systems, and information systems.

In an FDI attack, the attacker may modify or manipulate data in transit or at rest to achieve
their objectives. For example, an attacker may alter the data in a financial transaction to
redirect funds to a different account, modify the configuration of an industrial control system to

cause physical damage, or manipulate data in a way that causes a system to crash or
malfunction.

Toy Example: FDI Attack on PING

In this example, we launch an FDI attack on ICMP ping messages between a source and
destination. The destination receives the message and processes it as if it were legitimate.

Case 1: FDI implementation within NetSim simulator. Packet payload modification.

This case is a simpler method of simulating the FDI attack requiring only one machine. Case
2 (described later) involves using 3 machines.

Virtual network within NetSim

192.168.0.46
-]

R —
WIRFSHARK . FDI Tiacker

output pap file <

- \
|

R Sso < 192.168.012

G Payoad N e

\\\ v T
~ Sinput peap file
False Data Injected into the ICMP

packet payload after FDI Attack

Original ping traffic captured using
Wireshark given as input to
NetSim

Fig 1: PING application between a real source and real destination is captured as a pcap file and given as an
input to a virtual source inside NetSim. In this example, the source IP is set to 192.168.0.12 and the destination IP
is set to 192.168.0.46. The external pcap file is available in the project download link.

Ver 14.0 Page 1 of 14

http://www.tetcos.com/
https://github.com/NetSim-TETCOS/False-Data-Injection-Attack-in-Internetworks_v14.0/archive/refs/heads/main.zip
https://github.com/NetSim-TETCOS/False-Data-Injection-Attack-in-Internetworks_v14.0/archive/refs/heads/main.zip
https://support.tetcos.com/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2023

Generating Packet capture for NetSim

We explain the steps used to capture PING data as a pcap file. This has been provided for
those readers who may wish to capture their own pcap files and use implement the FDI attack
on that.

1. Open Wireshark in the system where NetSim is installed.
2. Once the Wireshark is opened, please select the proper interface .(For Ex: Ethernet)

as show below. Double click on the interface to open live packet capture window.
A

Am ® X L

Wecome to Wireshark

Open

C:\Users\Joseph\Desktop\Raw.pcap (291 KB)

C:\Users\Joseph\Desktop\INPUT_TO_NETSIM.pcap (270 KB)

C:\Users\Joseph\AppData\ Local\ Temp\NetSim\std_13.3\DISPATCHED_TO_EMULATOR peap (7252 Bytes)
C:\Users\Joseph\Desktop\Wireshark\INPUT_TO_NETSIM.pcap (not found)

using ths fiter. ~ | Alinterfaces shown ¥

VMware Network Adapter VMnet8 A
[Ethemet]

VWiware Network Adapter VMnetT X

Adapter for loopback traffic capture —

Local Area Connection* 8
Local Area Connection® 7
Local Area Connection® 6
Learn
User's Guide - Wiki - Questions and Answers * Mailing Lists - SharkFest - Wireshark Discord

You are

running Wireshark 4.0.2 (14.0.2-0-G415456d13370). You receive automatic updates

Ready toload or capture No Packets Profie: Defaut

Fig 2: Select packet capture interface to capture packets at source.

3. In this Example we have considered areal source with 192.168.0.12 and a real
destination with IP 192.168.0.46. Open command line at source device and enter the
command

» ping 192.168.0.46 -t

BN Command Prompt - ping 192.168.0.46 -t

4

Fig 3 : Ping traffic between source IP 192.168.0.12 and destination IP 192.168.0.46

Ver 14.0 Page 2 of 14

http://www.tetcos.com/

4.

No

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2023

The pcap file will contain all incoming and outgoing packets from the system in which
the capture is being done. Once you have captured the desired ping traffic stop the
Wireshark packet capture using stop option and save the packet capture in a desired

location with desired name (*.pcap) for E.g., Raw.pcap with Save as type as
Wireshark/tcpdump.... -pcap.

A
Savein Desktop vj (€] G AN A
} No items match your search.
Quick access
Desktop
2
Libraries
This PC
Lq File name: Raw pcap ¥ Save
Network E—
Save as type: Wireshark Acpdump/ ... - nanosecond pcap ("d v Cancel

Help

This PCAP file needs to be edited before giving as input to NetSim. The editcap
application in Wireshark Installation Directory can be used to edit the any pcap file to
be provided as a input to NetSim
Go to Wireshark installation directory [C:\Program Files\Wireshark]
Open command prompt, and execute the following command:
> editcap -C 14 -L -T rawip -F pcap "<File Location where the file is
present>\Raw.pcap" "<File Location where the file needs to be
saved>\INPUT_TO_NETSIM.pcap"

Steps to simulate by providing pcap packet capture file as input to NetSim

1.

2.

Ver 14.0

Go to start search Run - Enter the command “SystemPropertiesAdvanced” and then
click on OK.

Click the Environment Variables > Add the following Environment PATH variable.
<File-Path-where-INPUT_TO_NETSIM.pcap file is
located>\INPUT_TO_NETSIM.pcap

For eg: C:\Users\Joseph\Desktop\INPUT_TO_NETSIM.pcap

Page 3 of 14

http://www.tetcos.com/

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2023

User variables for Joseph

Variable Value

OneDrive C:\Users\Joseph\OneDrive

OneDriveConsumer C:\Users\Joseph\OneDrive

Path C:\Users\Joseph\AppData\Local\Microsoft\WindowsApps;D\...

PyCharm Community Editi.. D:\Softwares\PyCharm Community Edition 2022.1.1\bin;

RLM_DIAGNOSTICS C:\Users\Joseph\AppData\Local\Temp\NetSim\riminfo

TEMP C:\Users\Joseph\AppData\Local\Temp

T™P C:\Users\Joseph\AppData\Local\Temp

®

Variable name: EMULATOR_INPUT
Variable value: C:\Users\Joseph\Desktop\INPUT_TO_NETSIM.pcap

Browse Directory... Browse File... @ Cancel
T B L e e T

PATHEXT .COM;.EXE; BAT;.CMD;.VBS;.VBE; JS; JSE; WSF,WSH,.MSC;.PY;PYW ‘

oK Cancel
Fig 4 : Environment Variable Path
For more information how to provide pcap file as input refer our knowledge base article

https://support.tetcos.com/support/solutions/articles/14000103748-how-can-i-provide-pcap-
file-as-input-to-simulation-

Implementing the FDI attack

1. Run the NetSim in Administrator Mode (Right Click on NetSim Icon > Run as
Administrator)

2. The FDI_Attack_in_Internetworks_v13.3 comes with a sample network configuration
that are already saved. To open this example, go to Your work in the home screen of
NetSim and click on the FDI_Sample_Internetwork from the list of experiments.

3. The saved network scenario consists of
o 2 Wired Node
o 1 L2 Switch
o 1 Router

ru
2
\i)

L "YppLEMuwﬂon

Wired_Node_1

Fig 5: NetSim Emulation Scenario, Wired_Node_1 device mapped for Source IP 192.168.0.12 and
Wired_Node_2 device mapped for Destination IP 192.168.0.46

4. Application Properties

o Application Type - EMULATION
o Source IP -192.168.0.12

Ver 14.0 Page 4 of 14

http://www.tetcos.com/
https://support.tetcos.com/support/solutions/articles/14000103748-how-can-i-provide-pcap-file-as-input-to-simulation-
https://support.tetcos.com/support/solutions/articles/14000103748-how-can-i-provide-pcap-file-as-input-to-simulation-

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2023

o Destination IP — 192.168.0.46
5. Run the Simulation for 100 sec.

Note: The source IP address refers to the IP address of the system from which you are initiating
the ping command.
The destination IP address to the IP address of the device or system that you are pinging.

Observations

After the simulation is completed, you can observe the results using Wireshark captured files.
In the Result Dashboard, On the left side, Packet Capture - Emulation and you can see all
Emulated Packets captured.

[ﬂ Simulation Results

L2_SWITCH_3
Application_Metrics
" Packet Capture
¥ Emulation
ALL_NETWORK_PAC
DISPATCHED_TO_EN
NOT_DISPATCHED_

REINJECTED_FROM_"—
¢ »

Fig 6: Emulation Packet Capture in Result Dashboard

We can observe original packets in the DISPATCHED _TO_EMUALTOR.pcap file.

“
Am:©® EREG QewnSFE S Qaqaql
[~T
No. Time Source Destination Protocol Length Info
77 80.159657 192.168.0.12 192.168.0.46 P 60 Echo (ping) request 1d-0x0001, s5eq~12006/58926, tt1-128 (no response found!)
78 81.175651 192.168.0.12 192.168.0.46 P 60 Echo (ping) request 1d-0x0001, seq=12007/59182, tt1=128 (no response found!)
7982.202649 192.168.0.12 192.168.0.46 P 60 Echo (ping) request id-0x0001, seq=12008/50438, tt1=128 (no response found!)
80 83.217555 192.168.0.12 192.168.0.46 P 60 Echo (ping) request 1d-0x0001, seq=12009/59694, tt1-128 (no response found!)
8184.244881 192.168.0.12 192.168.0.46 M 60 Echo (ping) request 1d=0x0001, seq=12010/59950, tt1=128 (no response found!)
8285.243692 192.168.0.12 192.168.0.46 cHP 60 Echo (ping) request 1d=0x0001, seq=12011/60206, tt1=128 (no response found!)
8386.268285 192.168.0.12 192.168.0.46 P 60 Echo (ping) request 1d-0x0001, seq=12012/60462, tt1=128 (no response found!)
8487203419 192.168.0.12 192.168.0.46 o 60 Echo (ping) request 1d-0x0001, seq~12013/60718, tt1-128 (no response found!)
8588.308933 192.168.0.12 192.168.0.46 (] 60 Echo (ping) request 1d=0x0001, seq=12014/6@974, tt1=128 (no response found!)
86 89.338343 192.168.0.12 192.168.0.46 ICHP 60 Echo (ping) request 1d-0x0001, seq-12015/61230, tt1-128 (no response found!)
8§790.354084 192.168.0.12 192.168.0.46 1P 60 Echo (ping) request 1d=0x0001, seq=12016/61486, tt1=128 (no response found!)
8891.367138 192.168.0.12 192.168.9.46 P 60 Echo (ping) request 1d-0x0001, seq-12017/61742, tt1-128 (no response found!)
8992.380788 192.168.0.12 192.168.0.46 P 60 Echo (ping) request 1d-0x0001, seq=12018/61998, tt1=128 (no response found!)
90 93.407840 192.168.0.12 192.168.0.46 P 60 Echo (ping) request 1d-0x0001, seq=12019/62254, tt1-128 (no response found!)
9194.427147 192.168.0.12 192.168.0.46 o 60 Echo (ping) request 1d-0x0001, seq=12020/62510, tt1-128 (no response found!)
92 95.455266 192.168.0.12 192.168.0.46 el 60 Echo (ping) request 1d-0x0001, seq=12021/62766, tt1=128 (no response found!)
93 96.469812 192.168.0.12 192.168.0.46 P 60 Echo (ping) request 1d=-0x0001, seq=12022/63022, tt1=128 (no response found!)
94 97.485706 192.168.0.12 192.168.0.46 P 60 Echo (ping) request 1d-0x0001, seq=12023/63278, tt1=128 (no response found!)
95 98.498798 192.168.0.12 192.168.0.46 P 60 Echo (ping) request 1d-0x0001, seq=12024/63534, tt1=128 (no response found!)
96 99.513840 192.168.0.12 192.168.0.46 P 60 Echo (ping) request id=0x0001, seq=12025/63799, tt1=128 (no response found!)
Frame 87: 60 bytes on wire (480 bits 45 00 00 3 ea 94 00 00 80 01 ce al cO a8 00 Bc E- <
Raw packet data 0010 O a8 00 2e 8 00 le 6b 00 ©1 2e 0 61 62 63 64 .k -.-abcd
Internet Protocol Version 4, Src: 19| 9920 65 66 67 68 69 6a 6b 6 6d 6e 6f 70 71 72 73 74 | efghijkl mnopqrst
« Internet Control Message Protocol || 2930 75 76 77 61 62 63 64 65 66 67 68 69 uvwabcde fghi
Type: 8 (Echo (ping) request) Original paylosd
Code: @
Checksum: @xle6b [correct]
[Checksum Status: Good]
Identifier (BE): 1 (0x001)
Identifier (LE): 256 (0x0100)
Sequence Number (BE): 12016 (@x2¢
Sequence Number (LE): 61486 (OxFé
[No response seen]
v Data (32 bytes)
Data: 6162636465666768696a6b6¢
[Length: 32]

Fig 7: Original payload captured by NetSim emulator

We can observe false data injected packets in the REINJECTED_FROM_EMUALTOR.pcap
file.

Ver 14.0 Page 5 of 14

http://www.tetcos.com/

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2023

Note: You should select the any ICMP Packet to observe the changes.

4
QensEFes_Eaaan

[; 3)+

[o. Time Source Desunaton Prowocol Length Info

| 29.827944 192.168.0.12 192.168.0.46 CHP 60 Echo (ping) request id=Bx@001, seq=11937/41262, tt1=128 (no response found!)
3110.841356 192.168.0. 192.168.0.46 e 60 Echo (ping) request id=8x0001, seq=11938/41518, tt1=128 (no response found!)
411.856379 192.168.0.12 192.168.0.46 e 60 Echo (ping) request id=0x8001, seq=11939/41778, tt1=128 (no response found!)
512.882173 192.168.0.12 192.168.0.46 cHp 60 Echo (ping) request id=x0001, seq=11940/42030, tt1=128 (no response found!)
613.807323 192.168.0.12 192.168.0.46 1P 60 Echo (ping) request id=0x0001, seq=11941/42286, tt1=128 (no response found!)
714.915305 192.168.0.12 192.168.0.46 ICHP 60 Echo (ping) request id=0x0001, seq=11942/42542, tt1=128 (no response found!)
815.046693 192.168.0.12 192.168.0.46 ICHP 60 Echo (ping) request id-0x0001, seq=11943/42798, tt1-128 (no response found!)
916.960516 192.168.0.12 192.168.0.46 ICHP 60 Echo (ping) request id-8x0001, seq-11944/43054, tt1-128 (no response found!)
1017.978660 192.168.0.12 192.168.0.46 ICHP 60 Echo (ping) request id-8x0001, seq-11945/43310, tt1-128 (no response found!)
1118.990790 192.168.0.12 192.168.0.46 ICHP 60 Echo (ping) request id-0x0001, seq-11946/43566, tt1-128 (no response foundl)
1220.008881 192.168.0.12 192.168.9.46 ICHP 60 Echo (ping) request id-0x0001, seq-11947/43822, tt1=128 (no response foundl)
1321.027967 192.168.0.12 192.168.0.46 ICHP 60 Echo (ping) request id-0x0001, seq-11948/44078, tt1=128 (no response found!)
1422.059262 192.168.0.12 192.168.0.46 ICHP 60 Echo (ping) request id=0x0001, seq=11949/44334, tt1=128 (no response found!)
1523.071322 192.168.0.12 192.168.9.46 ICHP 60 Echo (ping) request id=0x0001, seq=11950/4459, tt1=128 (no response found!)
16 24.104973 192.168.0.12 192.168.9.46 ICHP 60 Echo (ping) request id=0x0001, seq=11951/44846, tt1=128 (no response found!)
1725.109652 192.168.0.12 192.168.9.46 ICHP 60 Echo (ping) request id=0x0001, seq=11952/45102, tt1=128 (no response found!)
1826.139136 192.168.0.12 192.168.0.46 TCHP 60 Echo (ping) request 1d=0x0001, seq=11953/45358, tt1=128 (no response found!)
19 27.157122 192.168.0.12 192.168.9.46 TCMP 60 Echo (ping) request id=0xP001, seq=11954/45614, tt1=128 (no response found!)
2028.186964 192.168.0.12 192.168.0.46 TcHp 60 Echo (ping) request id=0x8001, seq=11955/45870, tt1=128 (no response found!)
2130.212202 192.168.0.12 192.168.0.46 o 60 Echo (ping) request id=0x0001, seq=11957/46382, tt1=128 (no response found!)

Frame 17: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface \\.\pipe\NETSIM_REINJECTED, id @ 45 00 00 3c ea 52 @0 00 80 01 ce €3 cO a8 00 Oc

0010 c0 a8 00 2e 03 00 b5 3a 00 01 2e bo 41 41 41 41
0020 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
0030 41 41 41 41 41 41 41 41 41 41 41 41

Raw packet data
Internet Protocol Version 4, Src: 192.168.0.12, Dst: 192.168.0.46
v Internet Control Message Protocol

Type: 8 (Echo (ping) request) Modified payload after FDI attack
Code: @
Checksum: @xb53a [
Checksum Status
Identifier (BE): 1 (@x0001)

Recalculated checksum Inserted in ICMP
Packet Checksum Field

e Number (BE): 11952 (@x2ebo)
Sequence Nusber (LE): 45102 (0xbo2e)
[No response seen]
v Data (32 bytes)
Data: 41
[Length: 32]

7 Readytoload or capture Packets: 86 - Displayed: 86 (100.0%) Profil: Default

Fig 8: Traffic with false data injected. Observe the difference in payload and checksum is recalculated and
inserted in ICMP packet checksum field.

Case 2: FDI implementation in NetSim emulator. Packet header modification.

We have 3 systems — Source, Destination, and Emulator. The PING packets from source to destination
pass through the emulator.

FDI attack on real traffic using NetSim Emulator

False Data Injected into the
packet header of ICMP Traffic
during FDI Attack

ICMP packets
generated from real
source node

header

77777 I . — |

41 L1

Real Source IP Destination IP
192.168.0.12 192.168.0.68

Fig 9 : PING application between source and destination. The source IP is set to 192.168.0.12 and the destination
IP is set to 192.168.0.46. In NetSim We are implementing FDI Attack by modifying the destination IP address to
192.168.0.68 in ICMP packet header.

Ver 14.0 Page 6 of 14

http://www.tetcos.com/

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2023

Steps to Simulate

The set-up to run emulation would be to have a minimum of three (3) PC’s. One would be the
real source, the second would run NetSim emulation server, and the third would be the real
destination.

In this Example, we have considered 3 systems as shown below.
Real Source IP: 192.168.0.12

NetSim Emulation Server IP: 192.168.0.81

Real Destination IP: 192.168.0.46

Setting up the NetSim Emulation Server
1. Run the NetSim in Administrator Mode (Right Click on NetSim Icon = Run as
Administrator)
2. Open the Existing Sample FDI_Sample_Internetwork from the list of Experiments (In
NetSim Home Screen - Your Work)
3. The saved network scenario consists of
o 2 Wired Node
o 1L2 Switch
o 1 Router

Routerd __—

/ ———Kop1_EMULATION
1 _

Fig 10: NetSim Emulation Scenario, Wired_Node_1 device mapped for Source IP 192.168.0.12 and
Wired_Node_2 device mapped for Destination IP 192.168.0.46

4. Application Properties
o Application Type - EMULATION
o Source IP-192.168.0.12
o Destination IP — 192.168.0.46
5. Run the Simulation for 100 sec.

Note: The source IP address refers to the IP address of the system from which you are initiating
the ping command.
The destination IP address to the IP address of the device or system that you are pinging.

Setting up the Real Source and Destination

The client systems which are sources of real traffic can be connected to NetSim emulator by
resetting the gateway. Once the gateway for the client system is set as the NetSim Emulator
PC then traffic from the clients will go via NetSim Emulator PC.

Configuring NetSim Emulator as a Gateway in NetSim in Windows clients

Ver 14.0 Page 7 of 14

http://www.tetcos.com/

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2023
1. Open command prompt in Administrator Mode
2. Type the command.

o route add <Network Destination> mask <Subnet Mask> <Gateway IP> metric
1

o route add 192.168.0.46 mask 255.255.255.0 192.168.0.81 metric 1
o After the Execution , you will get “OK”.
B Administrator: Command Prompt - O *

C:\WINDOWS\system32>route ADD 192.168.8.46 MASK 2
oK!

Fig 11: Adding the Static route from source to destination via gateway as NetSim emulation server-192.168.0.81

3. To check whether IP Configuration affected or not type the command as show below
o netstat -r

EX Administrater: Command Prompt — O b

. Realtek PCIe GbE Family C
b

L Routes:
etwork

92.168.8
on-link
on-link
on-link
on-11

Fig 12 : Display of routing information at source node 192.168.0.12
You can observe that for the Destination node 192.168.0.46, the gateway

address assigned is 192.168.0.81 (IP Address of the system where NetSim
Emulation server is running)

8. Open command line at Source node 192.168.0.12 and enter the command.
» ping 192.168.0.46 -t

Ver 14.0 Page 8 of 14

http://www.tetcos.com/

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2023

BN Command Prompt - ping 192.162.0.46 -t

Fig 13 : Pinging to destination IP 192.168.0.46

Results and discussion

After the simulation is completed, you can observe the results using Wireshark captured files.
In the Result Dashboard, On the left side, Packet Capture - Emulation and you can see all
Emulated Packets captured.

2

L2_SWITCH_3
Application_Metrics
" Packet Capture
¥ Emulation
ALL_NETWORK_PAC
DISPATCHED_TO_EN
NOT_DISPATCHED_

REINJECTED_FROM_"—
¢ »

Fig 14: Emulation Packet Capture in Result Dashboard

We can observe original ping traffic generated at the source 192.168.0.12

Ver 14.0 Page 9 of 14

http://www.tetcos.com/

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2023

A *Ethemet - [s] X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
"o e RE Qaes=FTas EQaQan

88, dst==192.168.0.4] e -]+
Protocol Length Info A
IcHP 74 Echo (ping) request id=0x0001, seq=5238/30228, ttl=128 (reply in 44)
ICMP 102 Redirect irect f net

74 Echo (ping) request id=0x000:
@2 Redirect t

, 56q=5239/30484, ttl=128 (reply in 52)

74 Echo (ping) request x, seqz/uo, tt1=128 (reply in 62)
61 2 27 162 Redirect Redirect for network
73 3.219358 74 Echo (ping) request id=0x0801, seqszu/sesss, tt1=128 (reply in 75)
4 95 192.168 12 e 102 Redirect Re ct fo network
91 4.234601 192.168.0.46 ICHP 74 Echo (ping) request id=0x0001, seqs5242/31252, ttl=128 (reply in 93)
92 4.2353¢ 192.168.0.12 ICHP 102 Redirect ect f net k)
107 5.256313 192.168.0.46 ICHP 74 Echo (ping) request id=0x0001, seq=5243/31508, ttl=128 (reply in 109)
108 5 4 32.168.0.12 I 102 Redirect ct for network

116 6.262952 192.168.9.46 ICHP 74 Echo (ping) request @001, seq=5244/31764, ttl=128 (reply in 118)
117 6.2¢ 19 192.168.0.81 192.168.¢€ 2 ICH 102 Redirect (ect for network
125 7.279873 192.168.0.12 192.168.0.46 ICHP 74 Echo (ping) request id=0x0001, seqs5245/32020, ttl=128 (reply in 127) v
Frame 60: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface \Device\NPF_{| 0200 18 c@ 4d be de 72 94 de 80 59 86 99 @8 00 45 00 Mor- Yo E
Ethernet II, Src: Giga-Byt 59:86:99 (94:de:80:59:86:99), Dst: Giga-Byt be:de:72 (18:c@:4d:be:d 00 3c 91 a9 00 00 80 ©1 00 00 cO a8 00 Oc 0 a8 <
v Internet Protocol Version 4, Src: 192.168.0.12, Dst: 192.168.0.46 ©0 2e 08 00 38 e3 00 01 14 78 61 62 63 64 65 66 . 8 xabcdef
v 67 68 69 6a 6b 6 6d 6e 6f 70 71 72 73 74 75 76 ghijklan opgrstuv
: 77 61 62 63 64 65 66 67 68 69 wabcdefg hi
. 0101 = Header Length: 2@ bytes (S)
Differentiated Services Field: @x80 (DSCP: CS@, ECN: Not-ECT)
Total Length: 60
Identification: 0x91a9 (37289)
©00. = Flags: exe
...0 0000 0000 0000 = Fragment Offset: @
Time to Live: 128
Protocol: ICHP (1)
Header Checksum: @x0000 [validation disabled]
d
Original packet header
Internet Control Message Protoco
< >
@ 7 wireshark_Ethemnet028021.pcapng Packets: 1727 - Displayed: 238 (13.8%) Profie: Default

Fig 15: Original ICMP traffic generated from real source 192.168.0.12, captured using Wireshark.

We can observe false data injected packets in the false destination node 192.168.0.68

Note: You should select the any ICMP Packet to observe the changes.

mZe X QeuwmEFS TS QQQT
[[icmp && ip.src==192.168.0.12
No. Time Source Destination Protocol Length Info

913 57.307933 192.168
928 62.085348 192.168
967 67.091952 192.168.
1025 72.094388 192.168.
1065 77.089713 192.168
1140 82.092135 192.168
1966 87.083133 192.168.
2434 92.096064 192.168
2929 97.094593 192.168

12 192.168.0.68 IcHP 74 Echo (ping) request 1d=0x0001, seq=2085/9480, ttl=127 (no response found!)
12 192.168.0.68 IcHP 74 Echo (ping) request 1d=0x0001, seq=2086/9736, ttl=127 (no response found!)
12 192.168.0.68 P 74 Echo (ping) request 1d=0x0001, seq=2087/9992, ttl=127 (no response found!)
12 192.168.0.68 P 74 Echo (ping) request 1id=0x0001, seq=2088/10248, ttl=127 (no response found!)
12 192.168.0.68 ICHP 74 Echo (ping) request 1id=0x0001, seq=2089/10504, ttl=127 (no response found!)
12 192.168.0.68 IcHP 74 Echo (ping) request 1id=0x0001, seq=2090/10760, ttl=127 (no response found!)
12 192.168.0.68 P 74 Echo (ping) request 1d=0x0001, seq=2091/11016, ttl=127 (no response found!)
12 192.168.0.68 IcHP 74 Echo (ping) request 1d=0x0001, seq=2092/11272, ttl=127 (no response found!)
12 192.168.0.68 ICHP 74 Echo (ping) request 1d=0x0001, seq=2093/11528, tt1=127 (no response found!)

PO OO0 OOD
=
~

3183 102.103787 192.168. 192.168.0.68 ICHP 74 Echo (ping) request 1id=0x0001, seq=2094/11784, ttl=127 (no response found!)
3346 107.095221 192.168.0.12 192.168.0.68 ICHP 74 Echo (ping) request 1d=0x0001, seq=2095/12048, ttl=127 (no response found!)
3489 112.100850 192.168.0.12 192.168.0.68 IvP 74 Echo (ping) request 1d=0x@001, seq=2096/12296, ttl=127 (no response found!)
3627 117.100473 192.168.0.12 192.168.0.68 ICHP 74 Echo (ping) request 1id=0x0001, seq=2097/12552, ttl=127 (no response found!)
3727 122.095225 192.168.0.12 192.168.0.68 ICHP 74 Echo (ping) request 1d=0x0001, seq=2098/12808, ttl=127 (no response found!)
4219 127.108133 192.168.0.12 192.168.0.68 IcHP 74 Echo (ping) request 1d=0x0001, seq=2099/13064, ttl=127 (no response found!)
4519 132.083288 192.168.0.12 192.168.0.68 ICHP 74 Echo (ping) request id=0x@001, seq=2100/13320, ttl=127 (no response found!)
4810 137.100359 192.168.0.12 192.168.0.68 P 74 Echo (ping) request 1id=0x0001, seq=2101/13576, ttl=127 (no response found!)
5129 142.083010 192.168.0.12 192.168.0.68 IcHP 74 Echo (ping) request 1d=0x0001, seq=2102/13832, ttl=127 (no response found!)
5376 147.111344 192.168.0.12 192.168.0.68 IcHP 74 Echo (ping) request 1d=0x0001, seq=2103/14088, ttl=127 (no response found!)
> Frame 3489: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface \ 18 0 4d 72 91 47 18 c@ 4d be de 72 08 00 45 00 MrG- - M- E
> Ethernet II, Src: Giga-Byt_be:de:72 (18:c@:4d:be:de:72), Dst: Giga-Byt_72:91:47 (18: 00 3c 85 48 00 00 7f @1 34 ee cO a8 00 Oc <@ a8 -<-H 4
v Internet Protocol Version 4, Src: 192.168.0.12, Dst: 192.168.0.68 9020 00 44 08 @0 45 2b 00 01 08 30 61 62 63 64 65 66 -D--E+ - -Oabcdef
0100775 &' VansionTT4 0030 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 ghijklmn opgrstuv
0040 77 61 62 63 64 65 66 67 68 69 wabcdefg hi

.... 0101 = Header Length: 20 bytes (5)
> Differentiated Services Field: @x@@ (DSCP: CS@, ECN: Not-ECT)
Total Length: 6@

Identification: ©x8548 (34120)

000. = Flags: 0x@

...0 0000 0000 000@ = Fragment Offset: @
Time to Live: 127

Protocol: ICMP (1)

Header Checksum: @x34ee [validation disabled]

Modified packet header after
FDI attack

> Internet Control Message Protocol

Fig 16: FDI Traffic captured by the destination 192.168.0.68, which is the false data Injected in the ICMP packet
header by NetSim.

We can observe that the original ping traffic generated by the source 192.168.0.12 destined to
192.168.0.46 was passed via NetSim Emulation server 192.168.0.81. At the NetSim Emulation
server we implemented the FDI attack. After the FDI attack in NetSim will reinject the modified
packet to the actual network with Destination IP modified to 192.168.0.68. You can observe
that the real destination will not receive any ICMP Packets from source 192.168.0.12, since

Ver 14.0 Page 10 of 14

http://www.tetcos.com/

© TETCOS LLP. All rights reserved.

www.tetcos.com

March 2023

the destination address in different. If there is a machine with IP 192.168.0.68 in the network,
then that machine will now receive the ICMP traffic from source 192.168.0.12.

Two Types of false data injection attacks: payload modification and header
modification

In each of the two cases described earlier, we can model two kinds of attacks:

1. Packet payload change: The PING packet by default has its payload as
abcdefghijkimnopqrstuvwabcdefghi, we modify this to
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

2. Packet header change: The destination IP address of the ping is changed from
192.168.0.46 to 192.168.0.68

Appendix: NetSim source code modifications

MS Visual Studio Development environment is required for editing and building NetSim
source codes. Please see this link on setting up Visual Studio
https://support.tetcos.com/support/solutions/articles/14000138721-what-components-of-
visual-studio-community-2022-to-install-and-configure-to-work-with-netsim-source-c

To open our project source code section, in NetSim home screen to > your work - source
code > open code.

NetSim comes with inbuilt low-level functions to capture packets. This code is not open for
user modification. The code to access the payload/header and to modify the payload/header
is open to users and can be modified. We show below the source code changes we have
made in red. Users can alter these functions to implement their own FDI attacks. Once the
code changes done rebuild the project by right click on IP project> Rebuild, Once you
rebuild is successful the project code modification will be affected in NetSim.

Case 1: Payload modification

Add a new function before fn_NetSim_IP_Run() and after ip_handle_processing_delay() in
IP.c file, in IP project.

static void ip_handle_processing_delay()

/I Function to calculate the Internet Checksum
uint16_t calculateChecksum(const uint8_t* data, size_t length) {
uint32_t sum = 0;

/I Process each 16-bit chunk of data

while (length > 1) {
sum += ((uint16_t)data[0] << 8) + data[1];
data += 2;
length -= 2;

}

/' If there's a remaining odd byte, add it to the sum
if (length == 1) {
sum += ((uint16_t)data[0] << 8);

Ver 14.0 Page 11 of 14

http://www.tetcos.com/
https://support.tetcos.com/support/solutions/articles/14000138721-what-components-of-visual-studio-community-2022-to-install-and-configure-to-work-with-netsim-source-c
https://support.tetcos.com/support/solutions/articles/14000138721-what-components-of-visual-studio-community-2022-to-install-and-configure-to-work-with-netsim-source-c

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2023

}

/l Fold the 32-bit sum to a 16-bit checksum
while (sum >> 16) {

sum = (sum & OxFFFF) + (sum >> 16);
}

/I Return the one's complement of the final sum
return (uint16_t)(~sum);

}

/ISeperate into 2 Bytes

static void separateBytes(uint16_t value, uint8_t* highByte, uint8_t* lowByte) {
*highByte = (uint8_t)(value >> 8); // Get the high byte
*lowByte = (uint8_t)(value & OxFF); // Get the low byte

}

/**

This function is called by NetworkStack.dll, whenever the event gets triggered
inside the NetworkStack.dll for IP.It includes NETWORK_OUT,NETWORK_IN and
TIMER_EVENT.

*/

_declspec(dllexport) int fn_NetSim_IP_Run()

Changes to fn_NetSim_IP_Run() in IP.c file, in IP project

_declspec(dllexport) int fn_NetSim_IP_Run()
{
/IFalse Data
char s[BUFSIZ] = "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA™,
uint8_t checkszero = 0x00;
uint8_t packet_icmp[40];

switch (pstruEventDetails->nEventType)

{
case NETWORK_OUT_EVENT:

{
ptrlP_FORWARD_ROUTE route = NULL;
NetSim_PACKET* packet = pstruEventDetails->pPacket;
NETWORK_LAYER_PROTOCOL nLocalNetworkProtcol;
//[False Data Injection in Network Layer into packet payload and
regenerate the checksum field.

if (packet)

{
//Device ID of Attacker
if (pstruEventDetails->nDeviceld == 4)
{

for (inti=28;i<60;i++)
packet->szPayload->packet[i] = s[i - 28];
/IModifying the payload by inserting False Data

Ver 14.0 Page 12 of 14

http://www.tetcos.com/

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2023

//Checksum Recalculation
if (pstruEventDetails->nDeviceld == 4)
{
/I Read the packet data into a C array.
unsigned char* packet_data = (unsigned char*)packet-
>szPayload->packet;

//[Extract the ICMP Packet Payload
for (int k = 20; k < 60; k++) {

packet_icmp[k - 20] = (uint8_t)packet_datalk];
}

//Set the Checksum Variable to 0 while calculating the
checksum

packet_icmp[2] = checkszero;

packet_icmp[3] = checkszero;

/[Calculate the new checksum value for ICMP Packet

Payload

size_t length = sizeof(packet_icmp);

uint16_t checksum = calculateChecksum(packet_icmp,
length);

/[Separate the 16-bit value to two 8-bit values
uint8_t highByte, lowByte;
separateBytes(checksum, &highByte, &lowByte);

/[Update the checksum value in checksum field
packet->szPayload->packet[22] = highByte;
packet->szPayload->packet[23] = lowByte;

}

nLocalNetworkProtcol =
fnGetLocalNetworkProtocol(pstruEventDetails);
if (nLocalNetworkProtcol)
{
fnCallProtocol(nLocalNetworkProtcol);
return O;

Case 2: Header modification

Changes to fn_NetSim_IP_Run() in IP.c file, in IP project

_declspec(dllexport) int fn_NetSim_IP_Run()

Ver 14.0 Page 13 of 14

http://www.tetcos.com/

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2023

/[False Data
char s[BUFSIZ] = "D"; //hexadecimal value for D is 68
switch (pstruEventDetails->nEventType)
{
case NETWORK_OUT_EVENT:
{
ptrlP_FORWARD_ROUTE route = NULL;
NetSim_PACKET* packet = pstruEventDetails->pPacket;
NETWORK_LAYER PROTOCOL nLocalNetworkProtcol;
/I False Data Injection in Network Layer into packet header
if (packet)

//Device ID of Attacker
if (pstruEventDetails->nDeviceld == 1){
for (inti=19;i< 20; i++)
packet->szPayload->packet[i] = s[i - 19];
}
}
nLocalNetworkProtcol =

fnGetLocalNetworkProtocol(pstruEventDetails);
if (nLocalNetworkProtcol)

fnCallProtocol(nLocalNetworkProtcol);
return O;

Ver 14.0 Page 14 of 14

http://www.tetcos.com/

