v14.0

Dynamic Clustering in WSN

Software: NetSim Standard v14.0 (64 bit), Visual Studio 2022, MATLAB R2019 or higher
Project Download Link:

https://qgithub.com/NetSim-TETCOS/Dynamic Clustering in WSN-
v14.0/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and set up the Project in NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-
netsim-file-exchange-projects

Clustering in WSN:

Clustering in Wireless Sensor Networks (WSN) involves the division of a sensor group into smaller
clusters. In environments with mobile sensors, static clusters are impractical. Cluster heads within
each cluster are dynamically elected, and members in each cluster are identified dynamically.
Consequently, the size of each cluster is not fixed and can vary based on sensor positions.

Dynamic Clustering efficiently groups sensors into clusters in real-time. There is no fixed cluster size,
and sensors are divided into the required number of clusters with member assignments calculated
dynamically.

Clustering using the k-means algorithm:

Kmeans (X,k) partitions the points in the n-by-p data matrix X into k clusters. This iterative partitioning
minimizes the sum, over all clusters, of the within-cluster sums of point-to-cluster-centroid distances.
Rows of X correspond to points, columns correspond to variables. kmeans returns an n-by-1 vector
IDX containing the cluster indices of each point. By default, kmeans uses squared Euclidean
distances. When X is a vector, kmeans treats it as an n-by-1 data matrix, regardless of its orientation.

The sensor positions and number of clusters,

X - a matrix containing the x and y coordinates of the sensors in the scenario.

k- the number of clusters. are passed to the k-means algorithm. [IDX,C] = kmeans(X,k).
IDX — Contains the cluster IDs of each sensor (i.e) the cluster to which the sensor belongs.
C - Centroids of each cluster.

Clustering using the Fuzzy C-Means Algorithm:

Fuzzy c-means (FCM) is a data clustering technique in which a dataset is grouped into n clusters with
every data point in the dataset belonging to every cluster to a certain degree. For example, a certain
data point that lies close to the centre of a cluster will have a high degree of belonging or membership
to that cluster and another data point that lies far away from the centre of a cluster will have a low
degree of belonging or membership to that cluster.

Cluster head election based on distance from Centroid:

After grouping the sensors into different clusters, the cluster heads are determined based on the
distance between the sensor and the centroid of the cluster to which it belongs.

© TETCOS LLP. All rights reserved. Page 1 of 6

https://github.com/NetSim-TETCOS/Dynamic_Clustering_in_WSN-v14.0/archive/refs/heads/main.zip
https://github.com/NetSim-TETCOS/Dynamic_Clustering_in_WSN-v14.0/archive/refs/heads/main.zip
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

v14.0

The sensor which is closer to the centroid will be elected as the cluster head. Here the position
values (i.e., the value of the x-coordinate and y-coordinate) of each sensor are passed from NetSim
to MATLAB as a sole parameter.

Cluster head election based on distance and power:

After grouping the sensors into different clusters, the cluster heads are determined based on the
distance between the sensor and the remaining power of each sensor. After that, the sensors are
assigned to the respective cluster.

The sensor which is closer to the centroid and has more power than other sensors will be elected as
the cluster head. Here the position values (i.e., the value of the x-coordinate and y-coordinate) of
each sensor and power are passed from NetSim to MATLAB as a sole parameter.

Dynamic Clustering in NetSim with MATLAB Interfacing:

Dynamic Clustering is implemented in NetSim by Interfacing with MATLAB for the purpose of
mathematical calculation. The sensor coordinates are fed as input to MATLAB and the k-means
algorithm that is implemented in MATLAB is used to dynamically perform clustering of the sensors
into n number of clusters.

In addition to clustering, we also determine the cluster head of each cluster mathematically in
MATLAB. The distance of each sensor from the centroid of the cluster to which it belongs is
calculated. Then the sensor which has the least distance is elected as the cluster head.

From MATLAB we get the cluster id of each sensor, the cluster heads of each cluster, and the size
of each cluster.

All the above steps are performed periodically which can be defined as per the implementation. Each
time the cluster members and the cluster heads are determined based on the current position and
they are not fixed.

The codes required for the mathematical calculations done in MATLAB are written to a clustering.m
file and this file is available in the MATLAB folder under bin_x64 of Dynamic_Clustering_Workspace

Implementation:

The clustering.m file can be run in four different modes of cluster head election.

A Dynamic_Clustering.c file is added to the DSR project which contains the following functions:

e fn_NetSim_dynamic_clustering_CheckDestination()//This function is used to determine
whether the current device is the destination.

o fn_NetSim_dynamic_clustering_GetNextHop()//This function statically defines the routes
within the cluster and from the cluster to the sink node. It returns the next hop based on the
static routing that is defined.

e fn_NetSim_dynamic_clustering_ldentifyCluster()//This function returns the cluster id of the
cluster to which a sensor belongs.

o fn_NetSim_dynamic_clustering_run()//This function makes a call to MATLAB interfacing
function and passes the inputs from NetSim (i.e) the sensor coordinates, number of clusters,
and the sensor count.

e fn_netsim_dynamic_form_clusters()//This function assigns each sensor to its respective

© TETCOS LLP. All rights reserved. Page 2 of 6

v14.0

clusters based on the cluster IDs obtained from MATLAB.

o fn_netsim_assign_cluster_heads()//This function assigns the cluster heads for each cluster
based on the cluster head IDs obtained from MATLAB.

o fn_NetSim_Dynamic_Clustering_Init()//This function initializes all parameter values.

Static Routing:

Static Routing is defined in such a way that the sensors in the cluster send the packets to the cluster
head. The cluster head then directly sends the packets to the destination (sink node).

If the current sensor is the source device and if it is not a cluster head, then its next hop is its cluster
head.

If the current sensor is the source device and if it is a cluster head, then its next hop is the destination
(i.e.) the sink node.

If the current sensor is not the source, then the packet is sent to the destination (i.e.) the sink node.
NOTE: To run this code 64- bit version of MATLAB must be installed in your system.
Configuring Environment for MATLAB Execution:

1.In Control panel open>System>Advanced system settings>Edit the system environment
variable>environment variables

2. Add the following MATLAB install directory path in the Environment PATH variable
<MATLAB_INSTALL_DIRECTORY>\bin\win64
For eg: C:\Program Files\MATLAB\R2023a\bin\win64

System Properties Environment Variables Edit environment varisble x
N
Computer Name Hardware Advanced System Protection Remote User variables for TEST =
p— £dit
You must be logged on as an Administrator to make most of these changes. srieble
OneDrive Browse...
Performance Path
Delets
Visual effects, processor scheduling, memory usage, and vitual memory RLM_DIAGNOSTICS e
TEMP
™P Move
Settings.. ok
Move Down
User Profiles
Desktop settings related to your signin Edit text.
System variables
Settings...
Variable
Startup and Recovery ComSpec
System startup. system fallre, and debugging inf Orverbare
ystem startup., system faiure, and debugging infermation NUMBER_OF_PROCESSORS Cancel

Settings...

C:\Program Files\Python311\Scripts\;C:\Pragram Files\Python.
PATHEX OM:EXE: BAT. CMD;.VES, VBE.J5.JSE WA WSR. MSCPYLP

AMDB4

PROCESSOR ARCHITECTURE
| Environment Variables.. i
New, Edit.. Delete

oK Cancel \pply Cancel

Figure 1: Environment variable PATH
Note: If the machine has more than one MATLAB installed, the directory for the target platform
must be ahead of any other MATLAB directory (for instance, when compiling a 64-bit application,
the directory in the MATLAB 64-bit installation must be the first one on the PATH).

Example:

1. Run NetSim in administrative mode.

© TETCOS LLP. All rights reserved. Page 3 of 6

v14.0

2. Dynamic_Clustering_Workspace comes with a sample network configuration that is already
saved. To open this example, go to Your work on the home screen of NetSim and click on the
Dynamic_Clustering_Example from the list of experiments.

3. The saved network scenario consists of 64 sensors uniformly distributed in the grid environment
along with a sink node forming a Wireless Sensor Network. Traffic is configured from each
sensor node to the Sink Node.

I CLUSTER-1 I I CLUSTER-3 |

[20 0 80,7 ol 3 W g 20 2 ® 2 v | 300
1 L = L L - 1 L L e L L L

150 g%
o
A\

| cLusTer-2 | | cLusTER4 |

Figure 2: Network Scenario in this project

4. Run the simulation and press any key to continue. NetSim simulation console will show the
following message in the console “Waiting for NetSim MATLAB Interface to connect...”. NetSim will
automatically open the Matlablnterface.exe console window.

5. It will open the MatlabInterface.exe console window. You will observe that as the simulation starts
in NetSim, MATLAB gets initialized and the graph associated with energy consumption in the
sensor network is plotted during runtime.

Results and discussion:

A total of 64 sensors are placed evenly on the grid environment and each sensor is set to have equal
initial energy.

At the end of the simulation, NetSim provides Battery Model Metrics which provide detailed

information related to energy consumption in each sensor node with respect to transmission,
reception, idle mode, sleep mode, etc. as shown below:

© TETCOS LLP. All rights reserved. Page 4 of 6

v14.0

Battery model_Table

Battery model

Device Name Initial energy(m)) Consumed energy(mJ)) Remaining Energy(m)) Transmitting energy(mJ) Receiving energy(m)) Idle energy(mJ) Sleep energy(ml)
WIRELESS_SENSOR_1 6480.000000 567.958525 5912.041475 29.672375 0.278692 538.007438 0.000000
WIRELESS_SENSOR_2 6480.000000 571.032694 5908.967306 32.755219 0378225 537.899251 0.000000
WIRELESS_SENSOR_3 6£480.000000 563.040933 5916.059047 25626142 0.165888 538.148923 0.000000
WIRELESS_SENSCOR_4 6£480.000000 564.784872 5915.215128 26.493192 0.172524 538119157 0.000000
WIRELESS_SENSCR_S 6430.000000 563.385993 5916.674007 24951770 0.265421 538.168802 0.000000
WIRELESS_SENSOR_6 6480.000000 567.175519 5912.824481 28.901664 0.233879 538.034978 0.000000
WIRELESS_SENSOR_7 6£480.000000 563.520677 5916479323 25.144448 0.212337 538.163803 0.000000
WIRELESS_SENSCOR_8 6£480.000000 564.723939 5915.276041 26.396853 0.205701 538121404 0.000000
WIRELESS_SENSOR_O 6£480.000000 568.921212 5911.078738 30.635784 0.211869 537.973578 0.000000
WIRELESS_SENSCOR_10 6480.000000 568.547617 5911.452383 27.794385 2.759270 537.993962 0.000000
WIRELESS_SENSOR_11 6480.000000 584.399637 5805.600363 34601561 12.335432 537462644 0.000000
WIRELESS_SENSOR_12 6480.000000 571.668771 5908.331229 28.999238 4779786 537.880747 0.000000
WIRELESS_SENSOR_13 6480.000000 564.897211 5915.102739 26.589531 0192420 538115251 0.000000
WIRELESS_SENSCOR_14 6£480.000000 566.915640 5913.084360 28.612647 0.258785 538.044207 0.000000
WIRELESS_SENSOR_15 £480.000000 571.976239 5908.023761 29608004 4400456 537.877779 0.000000

Figure 3: NetSim provides Battery Model Metrics

This information can also be obtained at different points of simulation time either to log or to send to
other external tools. The battery information and the position coordinates are passed to MATLAB
periodically for clustering (the number of clusters is set to 4), cluster head election and to obtain
energy consumption plots.

The clustering method can be customized as needed by modifying the “clustering.m” file located in
the MATLAB folder within the bin_x64 directory of the workspace.

[clustering.m m|
13 H e e e e e T T T T T %
14
15 Hfunction [A,B,C] = clustering(x,scount,num _cls,power,max_energy)
16 % changed clustering function. New paramter power: column vector of
17 % remaining for each device
18 % s_count i or_count
19
20
21 % Clustering Method =1 KMeans using distance
2 % =2 Fuzzy C Means ng distance
3 % =3 KMeans using c cance and power
24 % =4 Fuzzy C Means using distance and power
26 Clustering Method = 1; I The ing method lets you easily switch
T = | between four different approaches using
5 methods 1, 2, 3, and 4.
8 % save dynamic_clustering.mat
29
0 %change here for different algorithm
31 B if (Clustering Method == ! || Clustering Method == 3)

[IDX,C]= k means(x,num cls);
else
[IDX,C]= fuzzy(x,num _cls);

end

38 cl_count=zeros(l,num_cls);
39 cl_dist=zeros(l,scount);

=] if (Clustering Method > 2)
cl_max dist = zeros(!,num_cls);
cl _max_power = zeros(l,num cls);
o end

only when method involves power
max distance in each cluster
max device power left in each cluster

40 o oo

Figure 4: Clustering.m matlab file

Cluster head election using distance alone as a parameter:

Running simulations with Clustering Method set to 1 and 2 in the clustering.m file will provide energy
consumption plots for k-means and fuzzy c-means algorithms respectively as shown below:

© TETCOS LLP. All rights reserved. Page 5 of 6

4] Figure
File Edit View Insert Tools Desktop Window Help

O de 2|08 kE

K-Means
(using distance)

Energy Consumed (mJ)

200

200
100

100
; Sensor Y position 0 o Sensor X position
=

v14.0

4] Figure 1 - [m}
File Edit View Insert Tools Desktop Window Help

Neds 808|kE

Fuzzy C
(using Distance) 950

1000

800

400

200

Energy Consumed (mJ)
3
o

200
100 el
Sensor Y position 0 o Sensor X position

100

Figure 5: Energy consumption plots for k means and fuzzy c-means algorithms using methods 1 and 2

As it is seen from the plot, there are 4 peaks in the plot corresponding to higher energy consumption
in the nodes in the center of the cluster, as they always become the cluster heads. This is because
the distance is used as a parameter for electing the cluster heads.

Cluster head election using distance and remaining energy as parameters.

Running simulations with the Clustering Method set to 3 and 4 in the clustering.m file will provide
energy consumption plots for k-means and fuzzy c-means algorithms respectively as shown below:

*

File Edit View Inset Tools Desktop Window Help

Deas(a/0E R E

K-Means
(Distance & Energy)

=

100

8
=)

3
=)

Energy Consumed (mJ)
8 3
o o

=}

100
Sensor Y position 0 o Sensor X position

4 Figure 1 - o
File Edit View Inset Tools Desktop Window Help

Deds (S[0B8|KE

Fuzzy C 2,HE@VUAaQ i

(Distance & Energy)
640

620
600
580

100

800

& 8
=] =3

Energy Consumed (mJ)
8

=}
;A

100
Sensor Y position 0 o Sensor X position

Figure 6: Energy consumption plots for k means and fuzzy c-means algorithms using method 3 and 4

In the initial phase the plot resembles the previous one. However, as time passes, it can be observed
that the power is consumed by all the sensors at approximately the same rate.

There are no sharp peaks in this plot unlike the previous one because modified K-means consider the
power level of each sensor and thus sensors other than those in the center of the cluster will also get
a chance to be elected as the cluster head in their respective cluster.

© TETCOS LLP. All rights reserved.

Page 6 of 6

