SDWSN based Location Aware Routing Protocol
Software: NetSim Standard v13.0 (32-bit/ 64-bit), Visual Studio 2017/2019
Project Download Link:

https://qgithub.com/NetSim-TETCOS/SDWSN-based-Location-Aware-Routing-
Protocol v13 O/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and setup the Project in NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-
netsim-file-exchange-projects

Location Aware Routing (LAR)

Routing for an ad-hoc wireless network is challenging, many routing strategies have been proposed in
the literature. With the availability of affordable Global Position System equipped devices, Location-
Aware Routing provides a promising foundation for developing an efficient and practical solution for
routing in the ad-hoc wireless network.

Most Forward within Fixed Radius R (MFR)

MFR protocol is a geographic Location-Aware Routing protocol. MFR forwards packets to the neighbor
nodes within a set radius of the current node (not the route source) that makes the most forward progress
(or the least backward progress) along the line drawn from the current node to the destination. Progress
is calculated as the cosine of the distance from the current node to the neighbor node projected back
onto the line from the current node to the destination.

S(N1): d2>d1, Next hop = N3

d4 > d3, Next hop = N4
d6 > d5, Next hop ~ D(N6)

» Route

Projection

Current Node to Dest

Figure 1: MFR Protocol Implementation

https://github.com/NetSim-TETCOS/SDWSN-based-Location-Aware-Routing-Protocol_v13_0/archive/refs/heads/main.zip
https://github.com/NetSim-TETCOS/SDWSN-based-Location-Aware-Routing-Protocol_v13_0/archive/refs/heads/main.zip
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

Here,

e S(N1) is the source node and D(N6) is the destination node.

¢ N2 and N3 are in the transmission radius of S(N1).

e S0, according to MFR protocol, d1 and d2 are the projected distances of N2 and N3 respectively
on the line drawn from the current node i.e., S(N1) and the destination node D(NG6):

e d2 > d1, therefore the next route hop node will be N3.

e N4, N5 and S(N1) are in the transmission radius of N3. Since S (N1) is already present in the
route list, skip it.

e So, according to MFR protocol, d3 and d4 are the projected distances of N5 and N4 respectively
on the line drawn from the current node i.e., N3 and the destination node D(N6):

o d4 > d3, therefore the next route hop node will be N4.

o N5, D(N6) and N3 are in the transmission radius of N3. Since N3 is already present in the route
list, skip it.

e So, according to MFR protocol, d5 and d6 are the projected distances of N5 and D(N6)
respectively on the line drawn from the current node i.e., N4 and the destination nhode D(N6):

e d6 > d5, therefore the next route hop node will be D(N6).

e Route according to MFR: S(N1) -> N3 -> N4 -> D(NG).

Real Time Interaction in NetSim

NetSim allows users to interact with the simulation at runtime via a socket or through a file. User
Interactions make simulation more realistic by allowing command execution to view/modify certain device
parameters during runtime.

Python socket interface

Python interfacing is a method to interface custom protocols like routing-based protocols with the NetSim
engine. In this project, we input NetSimCore.exe with routes generated via our routing protocol i.e., Most
Forward within Fixed Radius R (MFR) which is a geographic location-aware routing protocol. The
interaction between the routing protocol and the NetSimCore.exe is happening via socket programming.
The Real-Time Interaction has to be turned ‘True’ before running the simulation of the scenario. This lets
the NetSimCore.exe (server) to wait for the client (Python script) to connect using the socket port. After
the connection is established, we compute the routes based on our custom MFR protocol. These routes
are passed as static routes to the NetSimCore.exe server by the python script.

Python Script

The Socket programming code and MFR protocol code has written only in one separate file
(mfrProtocol.py). The protocols are written in a separate script file like here mfrProtocol.py:

e This python script reads the device coordinate and device ip address input from a file

device_log.txt having data in the following format:
SINK76.70 76.71 11.1.1.1

e The protocol script has 4 functions to ultimately find the projected distance _projDist() on the line
drawn from the current node to the destination.

e Mention the device_log.txt file name in the python script at File I/P section:
with open(‘device_log.txt','r') as f:

e This python script reads the Application id, Source id and destination id input from a file
Appinfo_log.txt having data in the following format:

1 SENSOR_2 SENSOR_3
e Mention the Appinfo_log.txt file name in the python script at File for Appinfo section:
with open(‘Appinfo_log.txt’,'r') as f:
¢ In the Declarations of MFR, change the Transmission range (meters) accordingly:
o Tx=170
Note: The Transmission range is set to 170 based on the channel conditions and device properties for

this example. This may vary if any network other than the one discussed in this example is considered.
Steps:

Steps to simulate

1. Open the Source codes in Visual Studio by going to Your work-> Workspace Options and Clicking
on Open code button in NetSim Home Screen window.
2. Now right click on Solution explorer and select Rebuild.

B Fle Edit View Project Build Debug Test Anshze Tools Extensions Window Help Search (Cil-C) P NetSim <] = x
g [@ -2 |9 - | Debug - b Local Windows Debugger = | 5% | [&] _ & LiveShare &
Solution Explorer > ox
WE- o5 am| s-
Search Solution Explorer (Ctrl+) p-
- P

¥ Build Selution Ctrl+ Shift+B

Rebuild Salution |

Clean Solution

Analyze and Code Cleanup »
Batch Build...

Configuration Manager...

i Manage NuGet Packages for Solution...

Figure 2: Screen shot of NetSim project source code in Visual Studio

3. Upon rebuilding, libApplication.dll will automatically get replaced in the respective bin folders
of the current workspace.

Example

1. The WorkSpace_MFR_LAR comes with a sample network configuration that are already saved.

To open this example, go to Your work in the Home screen of NetSim and click on the WITH_SDN
from the list of experiments.

2. The saved network scenario consists of
a. 12 Wireless Sensor

b. 1 WSN Sink
03 wsn woee ame: WorkSpace MFR_LAR. Expenment Name: WITH SN
85 e ®
%
LR
& ey 3 T
i ! i) ,/'// i
- =l
\ /,/’
&V\J\ ‘ /r‘ e ~
et ‘ X
=N - 2
| g
- N \
5" s
=8 \\\\ 3
x —_— N
‘ TR
%s

Figure 3: WSN Network Topology

3. Application Properties

Application Properties

For Application 1

Source ID 2
Destination ID 3
For Application 2

Source ID 12
Destination ID 7
Transport Layer Protocol UDP

Table 1: Application Properties

4. Set Network layer protocol to DSR in both Wireless sensor and WSN Sink Node.
5. Channel Characteristics: Path Loss Only, Path Loss Model: Log Distance, Path Loss Exponent:
2

6. Run the Simulation for 500sec.

Results and discussion
e Upon running simulations with this configuration, Route from source to destination as shown
below:
a. Application 1: SENSOR_2(S)->SENSOR_13->SENSOR_3(D)
b. Application 2: SENSOR_12(S)->SENSOR_13->SENSOR_7(D)

Procedure to perform routing using python interface in NetSim
o For the python interface to interact with NetSim during the simulation, Interactive Simulation

parameters has to be set to 'True' under the Real-Time Interaction tab, before running the
simulation.

LYE Run Simulation x
Run time Interaction Static ARP Configuration

Interactive Simulation:

Interactive Simulation: True -

File Path

Accept

Figure 4: Interactive Simulation parameters set as TRUE

e This lets the NetSimCore.exe (server) to wait for the client (Python script) to connect using the
socket port. After the connection is established, we compute the routes based on our custom

MFR protocol. These routes are passed as static routes to the NetSimCore.exe server by the
python script.

Run simulation for 500 seconds. NetSim Simulation Console starts and “waiting for client to
connect” and press any key to Continue.

The MFR protocol and socket client code to connect to NetSimCore.exe is written in
mfrProtocol.py.

Open Command Prompt in the directory where the python codes are present and run the
command python mfrProtocol.py

B Select C:\Windows'\System32\cmd.exe — [m] b

D:\AE_Workspace\file_excahnge_vi13\WorkSpace_MFR_LAR\bin\bin_xo64:/adselslli s gegaelaqenigs

Figure 5: Run Python mfrProtocol.py using cmd prompt.

Python interface interacts with NetSim Simulation and routes the packets from source to
destination based on MFR protocol.

B C\Wind

thon mfrProtocol.py

Figure 6: Python interface interacts with NetSim Simulation

Simulation continues and packets are routed from source to destination based on MFR protocol
as shown below:

o Application 1: SENSOR_2(S)->SENSOR_13->SENSOR_3(D)

o Application 2: SENSOR_12(S)->SENSOR_13->SENSOR_7(D)

Analyzing the device route tables in NetSim Results Dashboard

NetSim Results Window contains route tables for each device from which we can identify the
routes updated by the python interface as per MFR protocol. Since the route that is formed is from
SENSOR_2(S) -> SENSOR_13 -> SENSOR_3(D), route entries for packets with destination
11.1.1.3 are added in the nodes SENSOR_2, SENSOR_13, and SENSOR_3 to forward packets
to SENSOR_13 and SENSOR_3 respectively. In the nodes SENSOR_2, SENSOR_13, and
SENSOR_3 static route entries added based on MFR protocol by the python socket program can
be found as shown below:

SENSOR_2 Table

O X

SENSOR_2 E Detailed View
MNetwork Destination Metmask/Prefix len Gateway Interface Metrics _ Type

11.1.1.3 255.255.255.255 1111132 11.1.1.2 1 STATIC

11.1.0.0 255.255.00 on-link 11.1.1.2 300 LOCAL

224.0.0.1 255.255.255.255 on-link 11.1.1.2 306 MULTICAST
224000 240.0.0.0 on-link 11.1.1.2 306 MULTICAST
255.255.255.255 255.255.255.255 on-link 11.1.1.2 0999 BROADCAST
0.0.0.0 0.0.0.0 11.1.1.1 11.1.1.2 099 DEFAULT

Figure 7: Route table for Wireless Sensor 2

The static route entry for SENSOR_ 2 specifies the next hop as SENSOR_13 which has the IP 11.1.1.13.

SENSOR_13_Table 0O X
SENSOR_13 M Detailed View
Metwork Destination Netmask/Prefix len Gateway Interface Metrics Type
11117 255.255.255.255 11117 111113 1 STATIC

II'I'I.'I.'I.3 255.255.255.255 11.1.1.3 11.1.1.13 |1 STATIC |
11.1.00 255.255.0.0 on-link 111113 300 LOCAL
224.0.0.1 255.255.255.255 on-link 11.1.1.13 | 306 MULTICAST
224.0.0.0 240.0.0.0 on-link 111113 306 MULTICAST
255.255.255.255 255.255.255.255 on-link 11.1.1.13 |999 EROADCAST
0.0.0.0 0.0.0.0 11.1.11 111113 999 DEFAULT

Figure 8: Route table for Wireless Sensor 13

The static route entry for SENSOR_13 specifies the next hop as the destination node SENSOR_3 which
has the IP 11.1.1.3.

Using NetSim Packet Trace to identify the route taken by packets from the source to the
destination.

NetSim Packet trace log file can be obtained by enabling the packet trace option in NetSim GUI before
running the simulation.

Upon running simulation with packet trace enabled, the packet trace log file can be accessed from the
NetSim Results Window using the Open Packet Trace link.

Once the packet trace log file is loaded you can filter a specific packet id in the PACKET_ID column to
view the path that the packet has taken.

Upon filtering Packet with id 4 we can observe the following in the packet trace:

Figure 9: NetSim Packet Trace

Case 1: Without SDN

Application_Metrics [] Detailed View

Application ld Application Name Packet generated Packet received Throughput (Mbps) | Delay(microsec) [litter{microsec)
1 App1_SENSOR_APP 300 508 0.000406 28775301575 18850,522288

2 App2_SENSOR_APP 500 505 0.000404 28520.851089 22156.538889

Figure 10: Application Metrics Table for Without SDN
Case 2: With SDN

Application_Metrics [] Detailed View
Application ld Application Name Packet generated Packetreceived Throughput (Mbps) | Delaylmicrosec) | Jitter{microsec)

1 Appl1_SENSOR_APP 500 511 0.000409 28247.518591 17951.142353

2 App2_SENSOR_APP 300 520 0.000416 22616.147692 18274494798

Figure 11: Application Metrics Table for with SDN

You can see from the Application_Metric table that in case 2, for creating route path the delay is less as
compared in case 1.

Appendix: NetSim source code modifications

Changes to fn_NetSim_Application_Init(), in Application.c file, within Application project

[*This function is used to initialize the parameter for all the application based on
the traffic type*/

_declspec(dllexport) int fn_NetSim_Application_Init(struct stru_NetSim_Network *NETWORK_Formal,
NetSim_EVENTDETAILS *pstruEventDetails_Formal,

char *pszAppPath_Formal,

char *pszWritePath_Formal,

int nVersion_Type,

void **fnPointer)

{

FILE* fp;

inti=0;

char f_name[BUFSIZ];

sprintf(f_name, "%s\\%s", pszAppPath, "device_log.txt");

fp = fopen(f_name, "w+");

if (fp)

{

for (i = 0; i < NETWORK->nDeviceCount; i++)

fprintf(fp, "%s\t%.21f\t%.2If\t%s\n", DEVICE_NAME(i + 1), DEVICE_POSITION(+ 1)->X,
DEVICE_POSITION(i + 1)->Y, DEVICE_NWADDRESS(i + 1, 1)->str_ip);
fclose(fp);

}

fprintf(stderr, "\nApppath: %s", pszAppPath);

sprintf(f_name, "%s\\%s", pszAppPath, "Appinfo_log.txt");

fp = fopen(f_name, "w+");

if (fp)

{

