False Data Injection Attack using RPL in IOT

Software: NetSim Standard v13.0 (64 bit), Visual Studio 2017/2019 and Node-RED
Project Download Link:

https://qgithub.com/NetSim-TETCOS/False-Data-Injection-Attack-in-10OT-with-Node-Red-
Interfacing v13.0/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and setup the Project in NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-
netsim-file-exchange-projects

In FDI Attack, a compromised node or malicious node advertises fake rank information to form the
fake routes. After receiving the message packet, it modifies the packet information.

Implementation in RPL (for 1 sink)

¢ In RPL the transmitter broadcasts the DIO during DODAG formation.

e The receiver on receiving the DIO from the transmitter updates its parent list, sibling list, rank
and sends a DAO message with route information.

e Malicious node upon receiving the DIO message it does not update the rank instead it always
advertises a fake rank.

e The other node on listening to the malicious node DIO message, update their rank according
to the fake rank.

o After the formation of DODAG, if the node that is transmitting the packet has malicious node
as the preferred parent, transmits the packet to it but the malicious node instead of
transmitting the packet to its parent, it modifies the packet payload and send it to its parent.

loT False Data Injection Attack

Original Traffic

FDIA Traffic

;_»m___~_____

Smart Meter Sensor Server

NetSim Emulation Server

loT Emulation with False

1
mluT Emulation without False
Data Injection Attack

Data Injection Attack
1

2 ¥ | T
False Data Sensor Traffic 1 i | Original Sensor Traffic
. | —
1

| —3—-- ek =il LdL.-e‘»m —————— Ll@ 3

Sensor Client

SensorClient

Figure 1: IOT False Data Injection Attack


https://github.com/NetSim-TETCOS/False-Data-Injection-Attack-in-IOT-with-Node-Red-Interfacing_v13.0/archive/refs/heads/main.zip
https://github.com/NetSim-TETCOS/False-Data-Injection-Attack-in-IOT-with-Node-Red-Interfacing_v13.0/archive/refs/heads/main.zip
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

How are the payloads modified by interfacing with NetSim?

Usually, the senor traffic sent from sensor server is sent directly to IBM cloud and then the client

connects the cloud to receive the sensor traffic.

But to perform FDIA we are sending the sensor traffic through NetSim Emulator before it reaches to

IBM cloud.

NetSim emulator then access the payload and modify it and re-inject to the network. The cloud

receives the data which is injected by Emulator.

Node-Red Installation and its working

¢ Installation of Node Red on Windows: Follow the steps on how to install Node-red in windows,

at https://nodered.org/docs/getting-started/windows
Running Node-Red and configuring Sensor server:
Run Node-red through cmd window.

i. Open Node-red.js command prompt

ii. Install the following packages by following commands one by one.

a) npm install node-red-dashboard.

b) npm install node-red-contrib-scx-ibmiotapp

iii.  Now run node-red by following command
a) Node-red
Open browser http://127.0.0.1:1880/?#flow/

1. Import the Sensor_Flow.json sample into Node-RED from the Node-RED-Samples folder that
is part of the Project directory.

B B - || False-Data-Injection-Attack-in-I0T-with-Mode-Red-Interfacing_v13.0 X
File Home Share View e
[] ° Cut x - \i—l open - HH select all
w-| Copy path —TJ' Edit Select none
Pin to Quick Copy Paste Move Copy Delete Rename MNew Properties ) .
3ccess |#| Paste shortcut ta ta - folder - &) History DD Invert selection
Clipboard Organize New COpen Select
« A <« False.. » False-Data-Injection-Attack-in-10T-with-MNode-R... v O Search False-Data-Injection-...
~
2 Mame Date modified Type Size
#*
i Documentation 3/30/2021 4:35 PM File folder
Node-RED-5amples 2011:18 PM File folder
\ || WorkSpace_FDI_Attack_RPL.netsim_wsp 3/30/2021 431 PM METSIM_WSP File 67,323 KB
£
5
W
3 items =

Figure 2: Project directory Contains documents, Samples and workspace etc

2. Upon importing the flow appears as shown below, in Node-RED:


https://nodered.org/docs/getting-started/windows
https://nodered.org/docs/getting-started/windows
https://nodered.org/docs/getting-started/windows
https://nodered.org/docs/getting-started/windows
https://nodered.org/docs/getting-started/windows
https://nodered.org/docs/getting-started/windows
https://nodered.org/docs/getting-started/windows
https://nodered.org/docs/getting-started/windows
http://127.0.0.1:1880/?#flow/
http://127.0.0.1:1880/?#flow/
http://127.0.0.1:1880/?#flow/
http://127.0.0.1:1880/?#flow/

& Node-RED X

C @

Flow 1 sensor_Flow

i info i) 8 ||

~ >
v common ~ Information

Flow 9017013a.312af

Name.

Status Enabled

complete ~ Description

catch

e e
| i) SendData ) — Device Paylosd

link in

0 link out

comment

v function

function
switch
change
range

template
delay |

tigger O v <

Figure 3: Node-RED flow

3. Click on the deploy button on the top left to start the flow.

4. Double click on the Blue NetSim Sensor icon and click on the link next to the Quickstart Id text
box as shown below:

& Node-RED X

€ C o © ® 127.00.1:188

Sensor_Flow Edit Watson loT node

i info i ||| v
A i ¥ ~
+ common ca + Information

Node ‘eacSb24f.6344b
ot & Properties i B

Name NetSim Sensor

debug Type wiotp out
Connect as Device v -

complete

@ Quickstart (O Registered v Description

Quickstartld | ff2fb85b.abSfas
status Send Data Device Payload - % cModo ot

ko J|| Eventtype event Send device events to the [BM Watson

Internet of Things Platform
fink out Format ~ json

comment ® Name NetSim Sensor
v function
function

switch

then be v

The type of the event sent can be configured
change
< >
range. 2iix

template
delay

frigger v <

Figure 4: Quickstart Id set in Blue NetSim Sensor icon

5. This opens IBM Watson Quickstart interface where the live readings received from the Node-
RED flow is plotted as shown below:



*2 Node-RED RSl [BM Watson loT Platform P+ -

c o © & hitps;//quickstartinternetofthings.ibmdoud.com/#/device/ff2fb85b.ab5a8/sensor, nd vyino e =

ff2fbg5b.ab5fas event.Actual_data T've seen my data, what next? A

A  Use your device in an application created
] (‘)‘ with IBM Bluemix.

P Click here for more details.

g Go't6 your Blerii a6couRt
1504 .l SIGN UP LOGIN
185 i Note: When you sign up for a trial you may have to wait up

o G to 24 hours to receive your log-in information

175 e Create an app using the Internet of Things Starter
from the Catalog

CREATE APP

Note: You will have to name your app and wait for a few
Event Datapoint Value Time Received minutes for it to start running

Jun 8, 2020

5:43:21 PM When your app is running, select the app URL or
type it into the browser to open the Node-RED flow
editor

event Actual_data 204

http://<appname>.mybluemix.net

Import the flow for your device into the Node-RED
flow editor

For further reference see: https://www.tetcos.com/pdf/v13/Interfacing-NetSim-with-NodeRed-and-
IBM-Watson v13.0.pdf

Malicious.c file contains the following functions added to the RPL project.

1. fn_NetSim_RPL_MaliciousNode(); //This function is used to identify whether a current device
is malicious or not in-order to establish malicious behaviour.

2. fn_NetSim_RPL_MaliciousRank(); //This function is used to give a fake rank to the malicious
node.

3. rpl_false_data_emulation_injection(); //This function is used to drop the packet by the
malicious node if it enters into its network layer.

Sink Hole attack — The malicious node advertises the fake rank.
1. fn_NetSim_RPL_MaliciousRank (); //is the sink hole attack function.

False data injection attack — The malicious node changes the payload of the packet.
2. rpl_false_data_emulation_injection (); // is the False data injection.

You can set any device as malicious, and you can have more than one malicious node in a scenario.
Device id’s of malicious nodes can be set inside the fn_NetSim_RPL_MaliciousNode() function.

Steps to simulate
1. Open the Source codes in Visual Studio by going to Your work-> Workspace Options and

Clicking on Open code button in NetSim Home Screen window.
2. Now right click on Solution explorer and select Rebuild.


https://www.tetcos.com/pdf/v13/Interfacing-NetSim-with-NodeRed-and-IBM-Watson_v13.0.pdf
https://www.tetcos.com/pdf/v13/Interfacing-NetSim-with-NodeRed-and-IBM-Watson_v13.0.pdf

b Fle Edit View Project Buld Debug Test Anslyze Tool Extensions Window Help  Search (Cul-Q) P Netsim (s} - X

{0-0 | 8- WD - F | Debug - xe ~ B Local Windows Debugger = | 5 | [ _ | LiveShare &
Solution Explorer -ax
WeE-leo-c ol L=
Search Solution Explorer (Ctrl+:) P~
% Build Solution Ctrl+ Shift+B

Rebuild Solution
Clean Solution

Analyze and Code Cleanup »
Batch Build..

Configuration Manager.

B Manage NuGet Packages for Solution...

[® Restore NuGet Packages

Figure 5: Screen shot of NetSim project source code in Visual Studio

3. Upon rebuilding, libRPL.dII, libIP.dll, SupportFunction.dll and Firewall.dll will automatically get
replaced in the respective bin folders of the current workspace.

Settings that were done to create the network scenario for SinkHole Attack

1. Create a network scenario in 10T (Internet of Things) with UDP running in the
Transport Layer and RPL in Network Layer.

2. For example, you can create a scenario as shown in the following screenshot:

S N
Adhoc BRI~ ~
LR

W 2. ~ =

\\\\\\\\ \\\\ ~~~~~ 1
Ne PN fONL 7 S AN N I I O s ——— S /y\z 3
N ™ e <L & p X 3
S <
\\ N~ =T 6_LOWPAN_Gateway_1 Router 2 Wired_Node_3
x Bl
N I X, i
& <
\ N Pl =
\, a S e e
Y ™ Sy 4 N
N\ ~ 1 e
N ~ e Is
N . Wireless Segsor.4 E-3
.-
b (Y N Wireless_Sensor. 5
N N ~
\ N B TIoN
\ N < ULATION
\ % Nd
\ S NE 7
\ & )
» \\
N N Wirdless_ Sensor.7
¥ |6 N

Wireless_Sensor_6 N

Wireless_Sensor_8

Figure 6: Sensor communicating with the server in NetSim

3. Right click on the Adhoc link icon and select Properties.
e Channel Characteristics — PATHLOSS_ONLY.
e Pathloss Model — LOG_DISTANCE.
e Pathloss Exponent — 2.

Results and discussion

Open rpllog.txt file from simulation results window, then you will find the information about DODAG
formation.

e For every DODAG, 6LOWPAN Gateway is the root of the DODAG.

Root is 1 with rank = 1 (Since the Node Id_1 is 6LOWPAN Gateway)
Wireless_Sensor_Node_7(Malicious Node)



Packet is transmitted by node 8(Sensor_8) is received by node 7(Sensor_7) since the node 7 is
malicious node changes the payload of the packet and forwards the packet to the destination which
can be analysed using Wireshark capture files after emulation or during emulation on IBM platform.

¥ Quickstart

No sign-up required to see how easy it is to connect your device to Watson IoT Platiorm and view live sensor data

® | ast message received at 12:19:32 AM

ff2fbg5b.ab5fa8 event.Actual_data
800
0] ey
\
a0 \ |
500+ \ |
] \
\
2004 “\ ‘
oo \ 1
R e e e e T T SRR RS
001838 00140 00:18:23
Event Datapoint Value Time Received
event Actual_data 100 May 15, 2020 12:19:32 AM
Figure 7: Web console of IBM Platform
(e *Ethemet4 = O X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
mae 1REQRe2=ZF I EQQAQAH
(W [mqtt [X] ~| Expression...  +
No. Time Source Destination Protocol  Length Info
1171.. 6285.467728 192.168.1.33 169.48.234.211 MQTT 111 Connect Command
1174.. 6290.179212 192.168.1.33 169.48.234.211 MOTT 111 Connect Command
1175.. 6292.130317  169.48.234.211 192.168.1.33 MQTT 6@ Connect Ack
1175.. 6292.270181  192.168.1.33 169.48.234.211 MQTT 319 Publish Message [iot-2/evt/event/fmt/json], Publish M.
1175.. 6292.733476  192.168.1.33 169.48.234.211 MQTT 107 Publish Message [iot-2/evt/event/fmt/json]
1175.. 6293.262911 192.168.1.33 169.48.234.211 MQTT 107 Publish Message [iot-2/evt/event/fmt/json]
1175.. 6294.256919  192.168.1.33 169.48.234.211 MQTT 107 Publish Message [iot-2/evt/event/fmt/json]
1175.. 6295.264272  192.168.1.33 169.48.234.211 MQTT 107 Publish Message [iot-2/evt/event/fmt/json]
| 1175.. 6295.726544  169.48.234.211 192.168.1.33 MQTT 6@ Connect Ack
1176.. 6296.269654 192.168.1.33 169.48.234.211 MQTT 107 Publish Message [iot-2/evt/event/fmt/json]
1176.. 6297.263808 192.168.1.33 169.48.234.211 MQTT 107 Publish Message [iot-2/evt/event/fmt/json]
1176.. 6298.267754 192.168.1.33 169.48.234.211 MQTT 107 Publish Message [iot-2/evt/event/fmt/json] %
222 12 ann aca a aa acn a 4 nna s PPNSPNUIC O : teeit P AP

Frame 117566: 107 bytes on wire (856 bits), 107 bytes captured (856 bits) on interface @

Ethernet II, Src: TaiwanFi_81:59:8c (@0:30:91:81:59:@c), Dst: ZyxelCom 3d:9c:2f (bc:cf:4f:3d:9c:2f)
Internet Protocol Version 4, Src: 192.168.1.33, Dst: 169.48.234.211

Transmission Control Protocol, Src Port: 57094, Dst Port: 1883, Seq: 376, Ack: 5, Len: 53

MQ Telemetry Transport Protocol, Publish Message

bc cf 4F 3d 9c 2f 00 30 91 81 59 Oc @8 @0 45 00 - 0=-/-@ - Y- E

) 00 5d le 49 40 00 80 06 00 00 O a8 01 21 a9 30 ]I le
0020 ea d3 df @6 c6 c4 ff 2a 5f 8 4e 72 50 18 ﬁi *_NrP
04 05 92 d7 00 00 30 33 00 18 69 6f 74 2d 32 2f 03 - -iot-2/

65 76 74 2f 65 76 65 6e 74 2f 66 6d 74 2f 6a 73  evt/even t/fmt/js

6f 6e 7b 22 64 22 3a 7b 22 41 63 74 75 61 6¢c 5 "Actual_

64 61 74 61 22 3a 31 30 30 7d 7d

() 7 wireshark_Ethernet 4_20200514222948_a10520.pcapng Packets: 119509 * Displayed: 6603 (5.5%) | Profile: Default

Figure 8: Wireshark

We see that the malicious node attracts network traffic by advertising false rank information.
Subsequently it injects false data into the payload of the packet and the impact can be seen on the
plots shown in IBM Watson user interface.



Appendix: NetSim source code modifications

Set malicious node id and the fake Rank in Malicious.c file.

#include "main.h"

#include "RPL.h"

#include "RPL_enum.h"
#define MALICIOUS NODE1 7
#define MALICIOUS RANK1 3

#define MALICIOUS_NODE?2 4
#define MALICIOUS_RANK2 4

/**

Function prototypes

*/

int fn_NetSim_RPL_MaliciousNode(NetSim_EVENTDETAILS*);
void fn_NetSim_RPL_MaliciousRank(NetSim_EVENTDETAILS*);
void rpl_false_data_emulation_injection();

int fn_NetSim_RPL_FreePacket(NetSim_PACKET?);

Changes to fn_NetSim_RPL_Run(). in RPL.c file, within RPL project

_declspec (dllexport) int fn_NetSim_RPL_Run()
{

switch (pstruEventDetails->nEventType)

{
case NETWORK_OUT_EVENT:

{
}

break;
case NETWORK_IN_EVENT:

rpl_add_to_neighbor_list();
if (is_rpl_control_packet(pstruEventDetails->pPacket))

if (fn_NetSim_RPL_MaliciousNode(pstruEventDetails))
fn_NetSim_RPL_MaliciousRank(pstruEventDetails);

else

rpl_process_ctrl_msg();

fn_NetSim_Packet_FreePacket(pstruEventDetails->pPacket);

pstruEventDetails->pPacket = NULL;

else if (pstruEventDetails->nPacketld && fn_NetSim_RPL_MaliciousNode(pstruEventDetails))
{

}

rpl_false_data_emulation_injection();



