Dos Attack in Internet of Things
Software: NetSim Standard v13.0 (32/64 bit), Visual Studio 2019

Project Download Link:
https://qgithub.com/NetSim-TETCOS/DOS Attack in loT v13.0/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and setup the Project in NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-
netsim-file-exchange-projects

Introduction

A Denial of Service (DoS) attack is an attempt to make a system unavailable to the intended user(s),
such as preventing access to a website. A successful DoS attack consumes all available network or
system resources, usually resulting in a slowdown or server crash. Whenever multiple sources are
coordinating in the DoS attack, it becomes known as a DDoS (Distributed Denial of Service) attack.
Standard DDoS Attack types:

SYN Flood

UDP Flood
SMBLoris

ICMP Flood
HTTP GET Flood

SYN Flood

TCP SYN floods are DoS attacks that attempt to flood the DNS server with new TCP connection
requests. Normally, a client initiates a TCP connection through a three-way handshake of messages:
e The client requests a connection by sending a SYN (synchronize) message to the server.
e The server acknowledges the request by sending SYN-ACK back to the client.
e The client answers with a responding ACK, establishing the connection.

This triple exchange is the foundation for every connection established using the Transmission Control
Protocol (TCP). A SYN Flood is one of the most common forms of DDoS attacks. It occurs when an
attacker sends a succession of TCP Synchronize (SYN) requests to the target in an attempt to
consume enough resources to make the server unavailable for legitimate users. This works because
a SYN request opens network communication between a prospective client and the target server.
When the server receives a SYN request, it responds acknowledging the request and holds the
communication open while it waits for the client to acknowledge the open connection. However, in a
successful SYN Flood, the client acknowledgment never arrives, thus consuming the server’s
resources until the connection times out. A large number of incoming SYN requests to the target
server exhausts all available server resources and results in a successful DoS attack. Before
implementing this project in NetSim, users have to understand the steps given below:

TCP Log file

e Users need to understand the TCP log file which will get created in the temp path of NetSim
<Windows Temp Folder>/NetSim>

e The TCP Log file is usually a very large file and hence is disabled by default in NetSim.

e To enable logging, go to TCP.c inside the TCP project and change the function bool
isSTCPlog() to return true instead of false.

https://github.com/NetSim-TETCOS/DOS_Attack_in_IoT_v13.0/archive/refs/heads/main.zip
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

At malicious node

Create a new timer event called SYN_FLOOD in TCP for sending TCP_SYN packets that should be
triggered for every 1000 microseconds. This will create and send the TCP_SYN packet for every 1000
microseconds. SYN request opens network communication between a client and the target.

At Target node

When the target receives a SYN request, it responds acknowledging the request and holds the
communication open while it waits for the client to acknowledge the open connection. If a SYN packet
arrives at Receiver, it should reply with a SYN_ACK packet. For this SYN_ACK packet, add a
processing time of 2000 microseconds in Ethernet Physical Out. This delays the arrival of SYN_ACK
at source node. During this delay, another SYN packet will get created at the malicious node. A large
number of incoming SYN requests to the target exhausts all available server resources and results in
a successful DoS attack SYN_FLOOD in NetSim:

C functions for the SYN_FLOOD attack

To implement this project in NetSim, we have created SYN_FLOOD.c file inside TCP project. The
file contains the following functions:
e intis_malicious_node(); //This function is used to check the node is malicious node or not.
e int socket_creation(); //This function is used to create a new socket and update the socket
parameters.
e static void send_syn_packet(PNETSIM_SOCKET s); //This function is used to create and
send SYN packet to the network layer.
e void syn_flood(); //This function is used to check whether the socket is present or not and also
adds a timer event called SYN_FLOOQOD (triggers for every 1000ps)

Steps to simulate the attack

1. Open the Source codes in Visual Studio by going to Your work-> Workspace Options and
Clicking on Open code button in NetSim Home Screen window.

2. InVisual Studio, under the TCP project in the solution explorer, a SYN_FLOOD.c file is added
as part of this project.

3. Right click on the solution in the solution explorer and select Rebuild. (Note: first rebuild the
TCP project and then rebuild the Ethernet project).

Figure 1: Screen shot of NetSim project source code in Visual Studio

4. Upon successful build modified libTCP.dll and libEthernet.dll file gets automatically updated in
the directory containing NetSim binaries.

Running Simulations. Case 1: Without an attacker (malicious nodes)

1.

3.

8.

The DOS_Attack loT_Workspace comes with a sample configuration that is already saved.
To open this example, go to Your work and click on the DOS_Attack_Example_Case_1 from
the list of experiments.

The saved network scenario consisting of 2 sensors, 1 6LOWPAN Gateway, 1 router, and 1
wired node in the grid environment forming a loT Network. Traffic is configured from sensor
node to the Wired Node.

Wireless_Sensor_7

Figure 2: Scenario showing wireless sensor nodes communicating with the server in NetSim

Help [0 Open-Source code

W Intemet_of_Things. Workspace Name: DOS_Attack_loT_Workspace. Experiment Name: DOS_Attack_Example_Case |

File Settings Help
o UserManual F1 a3 Adnoclin =
[g 1= Technology Libraries Manuals ~ * 3 / Wired/Wireless ;j(}i'

Links Applicati

Raise a Support Ticket

About NetSim

Figure 3: Open-source code in one click

In TCP.h set NUMBEROFMALICIOUSNODE as 1.

In SYN_FLOOD.c set malicious node as 0.

Right click on the solution in the solution explorer and select Rebuild. (Note: first rebuild the
TCP project and then rebuild the Ethernet project).

Upon successful build modified libTCP.dIl and libEthernet.dll file gets automatically updated in
the directory containing NetSim binaries.

Run the simulation for 100 seconds.

Case-2: With one Malicious Node

1.

The DOS_Attack _loT_Workspace comes with a sample configuration that is already saved.
To open this example, go to Your work and click on the DOS_Attack_Example_Case_2 from
the list of experiments.

The saved network scenario consisting of 3 sensors, 1 6LOWPAN Gateway, 1 router, and 1
wired node in the grid environment forming a IoT Network. Traffic is configured from sensor
node to the Wired Node.

ogkw

™~

8.

Wired_Node_4

Wireless_Sensor_7

Figure 4: A malicious node initiates a SYN-FLOOD attack

Help O Open-Source code

In TCP.h set NUMBEROFMALICIOUSNODE as 1.

In SYN_FLOOD.c set malicious node as 2.

Right click on the solution in the solution explorer and select Rebuild. (Note: first rebuild the
TCP project and then rebuild the Ethernet project).

Upon successful build modified libTCP.dll and libEthernet.dll file gets automatically updated in
the directory containing NetSim binaries.

Run the simulation for 100 seconds.

Case-3: With two Malicious Node

1.

The DOS_Attack loT_Workspace comes with a sample configuration that is already saved.
To open this example, go to Your work and click on the DOS_Attack_Example_Case_3 from
the list of experiments.

The saved network scenario consisting of 4 sensors, 1 6LOWPAN Gateway, 1 router, and 1
wired node in the grid environment forming a loT Network. Traffic is configured from sensor
node to the Wired Node.

Wired_Node_4

. S
> g

Wireless_Sensor_7

Figure 5: Now two malicious nodes are involved the SYN-FLOOD attack

Help [0 Open-Source code.

In TCP.h set NUMBEROFMALICIOUSNODE as 2.

In SYN_FLOOD.c set malicious node as 2, 6.

Right click on the solution in the solution explorer and select Rebuild. (Note: first rebuild the
TCP project and then rebuild the Ethernet project).

Upon successful build modified libTCP.dIl and libEthernet.dll file gets automatically updated in
the directory containing NetSim binaries.

8. Run the simulation for 100 seconds.

o agkw

~

Results and discussion

After simulation open metrics window and observe the throughput.

Simulation Results - X
v NetworkPerformance | Application_Metrcs_Teble x —
Link.Metrics Application Metrics [Detailed View | TCP_Metrics [] Detailed View
Applicstion |l Application Name Packet generated Packet received | Troughpot (Mbps) | Delay(microses) Jitter| Source Destinstion SegmentSent SegmentReceived AckSent AckReceived Duplicate ack re
TCP'ME_(”“ 1 App1_CER 75000 7563 0058907 4397200751907 127€| WIRELESS SENSOR_1 ANY_DEVICE 0 0 0 0 0
P Metrics 2 App2_CER 75000 7933 0061774 4331512505143 1213| 6LOWPAN_GATEWAY.3 ANY_DEVICE 0 0 0 0 0
» IP_Forwarding Table WIRED_NODE 4 ANY DEVICE 0 0 0 0 0
UDP Metrics ROUTER_S ANY DEVICE 0 0 0 0 0
AODV Metrics WIRELESS SENSOR 7~ ANY.DEVICE 0 0 0 0 0
> IEEEB02.15.4_Metrics
Battery model)
¢ 5| s
Link_Metrics [] Detailed View | Queue_Metrics [] Detailed View
Export Results (:xs/.csv) o e | o e i Deviceid Portid Queued packet Dequeved packet Dropped_packet
Print Results (-html) Data Control Dats Control Dats Control 2 2 15518 15518 0
Al NA a1 259 5 0 " » 4 1 16 16 0
1 NA 6623 26 0 0 12 2
2 NA 15501 33 4 0 00
3 NA 15497 0 10 00

Figure 6: NetSim results dashboard with throughput highlighted

Go to the result window open Event trace, user can find out the SYN_FLOOD packets via filtering
subevent type as SYN_FLOOD.

Event Trace.csv - Excel namrata saraswat

Inset Pagelayout Formulas Data Review View Help Design Q Tell me what you want to do

= B = ——— =)
% cut Calibri vt VA A 2 Wrap Text General v [F% Normal Bad & %(> Auto
Pasie BB ; = ottt 0od 3 i M | B
e .. A 3= | B Merge & Center ~ | B2~ <o 09 onditional Formatas G Neutra = | Insert Delete Form:
S @ Formatpainter | B 1M [H | QA B Merge & Center Bl (B o M| " T T | @ Clear
Clipboard S Font 5] Alignment] Number] Styles Cells
Al o fe | Event_id

SBTMEREVENT M0SNSOR 2 0 o o o ___ swRod o
2TMER EVENT | swosewoR | 2 o o o ____ ore ____IsWFooD
MGTMEREVENT swoseNoR | 2 o o o owe ____swRoo o
GTMEREVENT Mo0SeNSR 2 0 0 0 0fp S FooD
UGTMEREVENT mw0sewoR 2 o o o owe ____swAo |0

MEREVENT uososeNsoR 2 0 0 0 ofe _____SiFooD
OETMEREVENT M0SNSOR 2 o o o o ____swroo ¢

Figure 7: NetSim Event trace with filtered applied to SUB-EVENT-TYPE column. It shows all the SYN_FLOOD Packets
and one can notice the 1000 us inter-packet arrival times in Column C

Case 1 shows the results when there is no attack. The two user applications, attain a throughput of
about 0.06 Mbps. In the table we see the throughput of for these two applications falling as we increase
the number of attack nodes. This is because the server’s resources are being used up in handling the
SYN-FLOOD packets and the server is unable to sustain packet transmissions for the regular
applications. In this example, with a co-ordinated attack involving 4 systems the throughputs are down
70%.

Throughput_APP1 Throughput_APP2(Mbps)
(Mbps)

Case-1: Malicious Node =0 0.06 0.06

Case-2: Malicious Node =1 0.05 0.05

Case-3: Malicious Node =2 0.04 0.04

Table 1: Throughputs seen by the user applications. The first row is the throughput when there is no attack. In other
samples show the fall in throughputs as the number of attacker systems are increased

Users can similarly run DOS attack simulations on their own networks and analyse its impact on
throughput and latency.

Appendix: NetSim source code modifications

Changes to fn_NetSim_TCP_Trace(), in TCP.c file, within TCP project
/* This is used to add the SYN_FLOOD sub-events in Event Trace file */
_declspec (dllexport) char *fn_NetSim_TCP_Trace(int nSubEvent)

{
if (NSubEvent == SYN_FLOOD)
return "SYN_FLOOD";
return (GetStringTCP_Subevent(nSubEvent));

}

Changes to fn_NetSim_TCP_HandleTimer(), in TCP.c file, within TCP project
/* This is used to call the syn_flood() function periodically */

static int fn_NetSim_TCP_HandleTimer()
{
switch (pstruEventDetails->nSubEventType)
{
case SYN_FLOOD:
syn_flood();
break;
case TCP_RTO_TIMEOUT:
handle_rto_timer();
break;

Changes to fn_NetSim_TCP_Init(), in TCP.c file, within TCP project
/* This is used to register the first SYN_FLOOD event */

_declspec (dllexport) int fn_NetSim_TCP_Init(struct stru_NetSim_Network *NETWORK_Formal,
NetSim_EVENTDETAILS *pstruEventDetails_Formal,
char *pszAppPath_Formal,
char *pszWritePath_Formal,
int nVersion_Type,
void **fnPointer)

{

fn_NetSim_TCP_Init. F(NETWORK_Formal,

pstruEventDetails_Formal,
pszAppPath_Formal,
pszWritePath_Formal,
nVersion_Type,
fnPointer);

NetSim_EVENTDETAILS pevent;

memcpy(&pevent, pstruEventDetails, sizeof pevent);

for (int i = 0; i < NETWORK->nDeviceCount; i++)
{
if (is_malicious_node(i + 1))
{
pevent.nDeviceld =i + 1;
pevent.dEventTime += 1000;
pevent.nEventType = TIMER_EVENT,;
pevent.nSubEventType = SYN_FLOOD;
pevent.nProtocolld = TX_PROTOCOL_TCP;

fnpAddEvent(&pevent);

}
}
return O;
}

Changes to add_timeout_event() in RTO.c file, within TCP project
/* This is used to avoid RTO timeouts for malicious nodes */

void add_timeout_event(PNETSIM_SOCKET s,
NetSim_PACKET* packet)

{

NetSim_PACKET* p = fn_NetSim_Packet_CopyPacket(packet);
add_packet_to_queue(&s->tcb->retransmissionQueue, p, pstruEventDetails->dEventTime);
NetSim_EVENTDETAILS pevent;

memcpy(&pevent, pstruEventDetails, sizeof pevent);

pevent.dEventTime += TCP_RTO(s->tcb);

pevent.dPacketSize = packet->pstruTransportData->dPacketSize;

pevent.nEventType = TIMER_EVENT;

pevent.nPacketld = packet->nPacketld;

if (packet->pstruAppData)

{
pevent.nApplicationld = packet->pstruAppData->nApplicationld;
pevent.nSegmentld = packet->pstruAppData->nSegmentld;

}

else

pevent.nSegmentld = 0;
if (lis_malicious_node(pevent.nDeviceld))

{
pevent.nProtocolld = TX_PROTOCOL_TCP;
pevent.pPacket = fn_NetSim_Packet CopyPacket(p);
pevent.szOtherDetails = NULL,;
pevent.nSubEventType = TCP_RTO_TIMEOUT;
fnpAddEvent(&pevent);
print_tcp_log("Adding RTO Timer at %0.1If", pevent.dEventTime);
}
}

Changes to TCP.h file, within TCP project
/* This is used to define the number of malicious nodes */

#pragma comment (lib,"NetworkStack.lib")

_declspec(dllexport) target_node;

//USEFUL MACRO
#define isTCPConfigured(d) (DEVICE_TRXLayer(d) && DEVICE_TRXLayer(d)->isTCP)
#define isTCPControl(p) (p->nControlDataType/100 == TX_PROTOCOL_TCP)

/IConstant

#define TCP_DupThresh 3
#define NUMBEROFMALICIOUSNODE 2

Addition of SYN_flood.c file, within TCP project

/* This is used to define the malicious node ID’s and the target node ID */
/* This has functions defined for SYN flood attack*/

#include "main.h"
#include "TCP.h"
#include "List.h"

#include "TCP_Header.h"
#include "TCP_Enum.h"

int malicious_node[NUMBEROFMALICIOUSNODE] = {2,6};

static void send_syn_packet(PNETSIM_SOCKET s);

/Istatic PNETSIM_SOCKET socket_creation();

int target_node = 4;

PNETSIM_SOCKET get_Remotesocket(NETSIM_ID d, PSOCKETADDRESS addr);
static PSOCKETADDRESS sockAddr = NULL;

int is_malicious_node(NETSIM_ID devid){}

void syn_flood(){}

static void send_syn_packet(PNETSIM_SOCKET s){}
int socket_creation(){}

Changes to TCP_Enum.h file, within TCP project
/* This is used to a new SYN_FLOOD subevent in TCP_Subevent */
#include "EnumString.h"

BEGIN_ENUM(TCP_Subevent)

{

DECL_ENUM_ELEMENT_WITH_VAL(TCP_RTO_TIMEOUT, TX_PROTOCOL_TCP * 100),
DECL_ENUM_ELEMENT(TCP_TIME_WAIT_TIMEOUT),
DECL_ENUM_ELEMENT(SYN_FLOOD),

}

Changes to Ethernet.h file, within ETHERNET project
/* This is used to define processing time for syn_flood packets */

#ifndef _NETSIM_ETHERNET_H_
#define _NETSIM_ETHERNET_H_
#ifdef __ cplusplus

extern "C" {

#endif

#pragma comment(lib,"NetworkStack.lib")

#pragma comment(lib,"Metrics.lib")

#pragma comment (lib,"libTCP.lib")

#define isETHConfigured(d,i) (DEVICE_MACLAYER(d,i)->nMacProtocolld ==
MAC_PROTOCOL_IEEE802_3)

//Global variable

PNETSIM_MACADDRESS multicastSPTMAC,;

#define ETH_IFG 0.960 //Micro sec
#define Processing_TIME 1000

Changes to fn_NetSim_Ethernet_HandlePhyOut() in Ethernet_Phy.c file, within ETHERNET project
/* This is used to add processing delay for TCP SYN packets */
/* This is used to add processing delay for TCP SYN packets */
double start;
if (pstruEventDetails->nDeviceld == target_node && (packet->nControlDataType == 40102 || packet-
>nControlDataType == 40105))

if (phy->lastPacketEndTime + phy->IFG <= pstruEventDetails->dEventTime)
start = pstruEventDetails->dEventTime + Processing_TIME;

else
start = phy->lastPacketEndTime + phy->IFG + Processing_TIME;
}
else
if (phy->lastPacketEndTime + phy->IFG <= pstruEventDetails->dEventTime)
start = pstruEventDetails->dEventTime;
else
start = phy->lastPacketEndTime + phy->IFG;
}

TCP Project Properties:

e Right click on TCP project and select Properties.

e In Linker section go to Advanced

e The import library value has been updated for 32-bit and 64-bit source code settings.
o 32-bit as . \lib\lib$(TargetName).lib
o 64-bit as .\lib_x64\lib$(TargetName).lib

D Fie Edk View Project Buld Debug Test Anshze Took Extensions Window Help | Sesrch Visusl Studio (Cul-Q P | NeSim ® - o5 «x
Het M -| Debug - x84 - b Local Windows Debugger = | 4" & lieshwe &

P Property Pages

Configuration: Active(Debug) v Platform: Active(x64) v Configuration Manager...

4 Configuration Properties Entry Point

Genesal No Entry Point No
Debugging Set Checksum No
VCe + Directories Base Address
b CiCes Randomized Base Address Yes (/DYNAMICBASE)
Linker Fixed Base Address
Sument Data Execution Prevention (DEP) Yes (/NXCOMPAT)
o Turn Off Assembly Generation No
larinehion Unioad delay loaded DLL
Debugging

Geley loaded DLL
System
Obmation y <ib_x64\ibS (TargetName).ib
Embedded DL =
Wbt Nckadata Trget Machine MachineX64 (/MACHINEX64)
Ady 4 Profile No
Al Options CLR Thresd Attribute
Command Line CLRImage Type Defautt image type
b Mandest Tool Key Fie
b XML Document Generstor Key Container
b Browse Information Delay Sign
b Build Events CLR Unmanaged Code Check
b Custon Build Step Eror Regorting Promptimmediately /ERRORREPORTPROMPT)
® Code Analysis. SectionAlignment

Import Library
Overrides the default import library name. (/IMPLIBfilename)

Fig 8: Visual Studio project settings

