Simulating DoS Attack (Internetworks)
Software: NetSim Standard v13.0 (32/64 bit), Visual Studio 2019
Project Code Download Link:

https://qgithub.com/NetSim-
TETCOS/DOS Attack in Internetworks v13.0/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and setup the Project in NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-
netsim-file-exchange-projects

Introduction

A Denial of Service (DoS) attack is an act of overwhelming a victim computer’s resources thereby
making it impossible to service intended users. Clients are denied service from the victim computer.
A successful DoS attack starts consuming system resources (memory and compute) leading to a
slowdown and eventually a shutdown. When multiple attackers coordinate a DoS attack, it is known
as a DDoS (Distributed Denial of Service) attack. The standard types of Dos attacks are:

SYN Flood

UDP Flood

ICMP Flood
HTTP GET Flood

The SYN Flood Attack

TCP SYN floods are DoS attacks that attempt to flood the server with new TCP connection requests.
Normally, a client initiates a TCP connection through a three-way handshake of messages:

¢ Client requests a connection by sending a SYN (synchronize) message to the server.

e Server acknowledges the request by sending SYN-ACK back to the client.

e Client answers with a responding ACK, establishing the connection.

This triple exchange is the foundation for every connection established using the Transmission Control
Protocol (TCP). A SYN-Flood attack occurs when an attacker sends a succession of TCP Synchronize
(SYN) requests to the target; the SYN request opens network communication between a prospective
client (the attacker) and the target server. When the server receives a SYN request, it responds with
a SYN-ACK and holds the communication open while it waits for the client to send an ACK.

In a successful SYN-Flood attack the final client ACK never arrives, thus consuming the server's
resources until the connection times out. A large number of incoming SYN requests to the target
server exhausts all available resources and paralyzes the machine.

At the malicious (attacker) node

In NetSim, a DOS attack is parameterized by specifying the SYN-FLOOD packet inter-arrival time,
which is the time between successive packets. The inter-packet arrival time is the reciprocal of the
packet rate.

This project code creates a new timer event called SYN_FLOOD in TCP for sending TCP_SYN
packets. This event is called every inter-arrival time. By default, this value is set to 1 ms or 1000 us
(we use us since this is the unit of time in NetSim). The attacker thus creates and sends a TCP_SYN

https://github.com/NetSim-TETCOS/DOS_Attack_in_Internetworks_v13.0/archive/refs/heads/main.zip
https://github.com/NetSim-TETCOS/DOS_Attack_in_Internetworks_v13.0/archive/refs/heads/main.zip
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

packet for every 1000 us. Each SYN request opens one TCP connection request between the attacker
and the target.

At the target (victim) node

When the target receives a SYN request, it responds with a SYN-ACK and holds the connection open.
It waits for the client (or attacker in this case) to complete the 3-way handshake with an ACK, in
response to its SYN-ACK.

Since NetSim is a packet level network simulator it assumes infinite compute and memory capability
at the nodes. To overcome this limitation, an abstraction is required to model the impact of each SYN
request. In this project, we use “processing time” to account for resource consumption. The idea is
that each SYN-ACK, which is sent in response to the SYN, would take some time to be created,
initialized, and transmitted into the networks. Thus, time is used in place of memory or compute
resources.

The default value of processing time 2000 us; it is user editable. This implies that when the attacked
node responds with a SYN_ACK packet, a processing time of 2000 us is added?®. It is worth noting
that SYN packets are created every 1000 us whereas each SYN-ACK takes a 2000 us processing
time. During this processing time, the server is unable to handle all other data communication; other
applications start queuing. With an increase in the number of SYN packets, the server starts
progressively slowing down. At some threshold the data traffic connections get timed out and the
server cannot handle any further communication.

C functions for the SYN_FLOOD attack

To implement this project in NetSim, we create the SYN_FLOOD.c file inside TCP project. The file
contains the following functions:

e intis_malicious_node(); // This function is used to check the node is malicious node or not

e int socket_creation(); // This function is used to create a new socket and update the socket
parameters

e static void send_syn_packet(PNETSIM_SOCKET s); // This function is used to create and
send SYN packet to the network layer

e void syn_flood(); // This function is used to check whether the socket is present or not and also
adds a timer event called SYN_FLOOD (triggers for every 1000 us)

The TCP Log file

e Users need to understand the TCP log file which will get created in the temp path of NetSim
<Windows Temp Folder>/NetSim>

e The TCP Log file is usually a large file and hence is disabled by default in NetSim.

e Go to TCP.c inside the TCP project and change the function bool isTCPlog() to return true
instead of false. This enables logging.

Steps to simulate the attack

1. Open the Source codes in Visual Studio by going to Your work-> Workspace Options and
Clicking on Open code button in NetSim Home Screen window.

2. InVisual Studio, under the TCP project in the solution explorer, a SYN_FLOOD.c file is added
as part of this project.

1 This processing time is added in the Ethernet PHY-OUT event in NetSim.

3. Right click on the solution in the solution explorer and select Rebuild. (Note: first rebuild the
TCP project and then rebuild the Ethernet project).

SVN_flood.c

Figure 1: Screen shot of NetSim project source code in Visual Studio

4. Upon successful build modified libTCP.dIl and libEthernet.dll file gets automatically updated in
the directory containing NetSim binaries.

Running Simulations. Case 1: Without an attacker (malicious nodes)

1. The DOS_Attack_Internetworks comes with a sample network configuration that are already
saved. To open this example, go to Your work in the Home screen of NetSim and click on the
DOS_Attack _Case_1 from the list of experiments.

2. The saved network scenario consists of
a. 2 Wired Nodes
b. 1 L2 Switch
c. 2 Routers
d. 1 Access Point and
e. 1 wireless node

forming a network. Regular application traffic is configured from the Wired nodes to the Wireless

node. These applications are named as User-1-DL and User-2-DL. The scenario screen shot is
shown below.

User-1

—— 3 A a8

2_Switch_3 Router_5 Router 6 Server

User-2

Figure 2: Model of regular client nodes communicating with the server in NetSim

3. Help > Open-source code

n?f Internetworks. Workspace Name: DOS_Attack_Internetwork. Experiment Name: DOS_Attack_(]

File Settings Help

_ User Manual F1
o= : -~
‘ .-'f Technology Libraries Manuals » /" Wired/Wireless G‘%‘
Node Switc Sotirce Cade Help Links Application

Individual Experiment Manuals *
Open source code

Video Tutonials (YouTube)

Answers/FAQ
Raise a Support Ticket

About NetSim

Figure 3: Open-source code in one click

4. InTCP.h set NUMBEROFMALICIOUSNODE as 1.

5. In SYN_FLOOD.c set malicious node as 0. Right click on the solution in the solution explorer
and select Rebuild. (Note: first rebuild the TCP project and then rebuild the Ethernet project)

6. Upon successful build modified libTCP.dIl and libEthernet.dll file gets automatically updated in
the directory containing NetSim binaries.

7. Run the simulation for 10 seconds.

Case 2: With one Malicious Node

1. The DOS_Attack_Internetworks comes with a sample configuration that is already saved. To
open this example, go to Your work and click on the DOS_Attack Case_2 that is present under
the list of experiments as shown below:

2. The saved network scenario consisting of 3 Wired Nodes, 1 L2 Switch, 2 router, 1 Access
Point and 1 wireless node in the grid environment forming a internetworks Network. Traffic is
configured from Wired node to the Wireless node.

Usar-2

Figure 4: A malicious node initiates a SYN-FLOOD attack

3. Help > Open-source code

4. In TCP.h set NUMBEROFMALICIOUSNODE as 1.

5. In SYN_FLOOD.c set malicious node as 8.

6. Right click on the solution in the solution explorer and select Rebuild. (Note: first rebuild the
TCP project and then rebuild the Ethernet project)

7. Upon successful build modified libTCP.dIl and libEthernet.dll file gets automatically updated in
the directory containing NetSim binaries.

8. Run the simulation for 10 seconds.

Case 3: With multiple Malicious Nodes

1. The DOS_Attack_Internetworks comes with a sample configuration that is already saved. To
open this example, go to your work and click on the DOS_Attack_Case_3 that is present under
the list of experiments.

2. The saved network scenario consisting of 4 Wired Nodes, 1 L2 Switch, 2 router, 1 Access
Point and 1 wireless node in the grid environment forming a internetworks Network. Traffic is
configured from Wired node to the Wireless node.

Figure 5: Now two malicious nodes are involved the SYN-FLOOD attack

Help > Open-Source code

In TCP.h set NUMBEROFMALICIOUSNODE as 2.

In SYN_FLOOD.c set malicious node as 8, 9.

Right click on the solution in the solution explorer and select Rebuild. (Note: first rebuild the
TCP project and then rebuild the Ethernet project)

Upon successful build modified libTCP.dll and libEthernet.dll file gets automatically updated in
the directory containing NetSim binaries.

Run the simulation for 10 seconds.

Repeat the steps for 3 and 4 attacker nodes.

o agkw

~

© ®

Results and discussion

After simulation open metrics window and observe the throughput.

[simulation Results - [a] 'Y

Link_Metrics

Applicaion_Metrics [Detailed View | TCP_Metrics [[] Detailed View
Queve Metries Application|d Application Name Packet generated Packetreceived Throughput (Mbps) Del Source Destination SegmentSent SegmentReceived AckSent Ack Receved Duplicat
TP Metrics 1 User_1_Downlosd 5000 5000 lrns-sa-m-a------lmf USER1 ANY_DEVICE 0] 0 0 0
1P_Metrics 2 User.2 Download 5000 5000 Insmm 4| USER2 ANYDEVICE © 0 0 0 0
* IP_forwardingTable | =TT SERVER ANY DEVICE 0 0 0 0 0
Switch Mac address table ROUTER.5 ANY DEVICE 0 0 0 0 0
Application Metrics ROUTER.6 ANY DEVICE 0 0 0 0 0
SERVER USER_1 5000 0 1 5000 1
SERVER USER_2 5000 0 1 4999
USER1 SERVER 0 5000 5000 1 0
USER_2 SERVER o 5000 5002 1 0
et o x IR
Link_Metrics [Detailed View | Queue_Metrics [[] Detailed View
Export Results (xIs/.csv) Packet_transmitted Packet_errored Packet_collided Device id Portid Queued packet Dequeued packet Dropped_packet
Print Results (.html) Linkd - Link throughput_plot Data Control Dats Control Data Control 5 2 10020 10020 o
Al NA 40135 40083 52 3 0 0 [} 1 10062 10062 0
1 NA so07 5003 7 0 0 0
2 NA s006 5005 4 0 0 0
Log Files 3 NA 10026 10008 13 1 0 0
4 NA 10042 1040 16 0 0 0
5 NA 10054 10007 12 2 0 0

Restore To Original View
Fig 6: NetSim results dashboard with throughput highlighted

Go to the result window open Event trace, user can find out the SYN_FLOOD packets via filtering
subevent type as SYN_FLOOD.

AutoSave (@ off) ko s Event Trace.csv ~ £ Search A sagar khetagouda

File m Insert Page Layout Formulas Data Review View Help Table Design
fﬁ] ?’ Calibri AN E=E= 2 b, Wrap Text General v @ F/ @ E @ -
Pavste & B IU- | A > === |e= F : =% 9 9 0 Fi?::lnlicrb‘r;ai F?r;r;}:tvas St:’:lzlslv Iniert Deiete Forlnat o~
Clipboard & Font [~ Alignment N Number N Styles Cells
Al Y I Event_Id
A B C D E F G H | J K
1 |Event Id| ~ |Event_Type|~]Event Time(Us)|~|Device Type|~IDevice Id|~|interface_id|~|Application_id|~|Packet Id|~|Segment Id[~]|p |_Name|~|Sub : Type ¥|
12£ 1 TIMER_EVENT 1000 NODE 8 0 0 0 0 TCP SYN_FLOOD
154: 137 TIMER_EVENT 2000 NODE 8 0 0 0 0 TCP SYN_FLOOD
194: 168 TIMER_EVENT 3000 NODE 8 0 0 0 0 TCP SYN_FLOOD
217: 208 TIMER_EVENT 4000 NODE 8 0 0 0 0 TCP SYN_FLOOD
279_‘ 231 TIMER_EVENT 5000 NODE 8 0 0 0 0 TCP SYN_FLOOD
330: 292 TIMER_EVENT 6000 NODE 8 0 0 [0 TCP SYN_FLOOD
383; 343 TIMER_EVENT 7000 NODE 8 0 0 (] 0 TCP SYN_FLOOD
44?; 400 TIMER_EVENT 8000 NODE 8 0 0 0 0 TCP SYN_FLOOD
498: 455 TIMER_EVENT 9000 NODE 8 0 0 0 0 TCP SYN_FLOOD
552: 510 TIMER_EVENT 10000 NODE 8 0 0 0 0 TCP SYN_FLOOD
599: 564 TIMER_EVENT 11000 NODE 8 0 0 0 0 TCP SYN_FLOOD
65‘1‘_ 612 TIMER_EVENT 12000 NODE 8 0 0 0 0 TCP SYN_FLOOD
702 | 664 TIMER_EVENT 13000 NODE 8 0 0 (i 0 TCP SYN_FLOOD
753 715 TIMER_EVENT 14000 NODE 8 0 0 0 0TCP SYN_FLOOD
81£ 766 TIMER_EVENT 15000 NODE 8 0 0 0 0 TCP SYN_FLOOD
86§j 827 TIMER_EVENT 16000 NODE 8 0 0 0 0 TCP SYN_FLOOD
92£ 876 TIMER_EVENT 17000 NODE 8 0 0 0 0 TCP SYN_FLOOD
972: 933 TIMER_EVENT 18000 NODE 8 0 0 0 0 TCP SYN_FLOOD
1023j 984 TIMER_EVENT 19000 NODE 8 0 0 0 0 TCP SYN_FLOOD
1068 1035 TIMER_EVENT 20000 NODE 8 0 0 0 0 TCP SYN_FLOOD
1168; 1082 TIMER_EVENT 21000 NODE 8 0 0 o 0 TCP SYN_FLOOD
.12_1&4__1_0{\ TIAnACO f\IEAIT‘ 22000 ALONDE Q n n n N.ICn [SViNE < Falalal

Figure 7: NetSim Event trace with filtered applied to SUB-EVENT-TYPE column. It shows all the SYN_FLOOD Packets
and one can notice the 1000 s inter-packet arrival times in Column C

Case 1 shows the results when there is no attack. The two user applications, User-1-DL and User-2-
DL, attain a throughput of about 0.58 Mbps. In the table we see the throughput of for these two
applications falling as we increase the number of attack nodes. This is because the server’s resources
are being used up in handling the SYN-FLOOD packets and the server is unable to sustain packet

transmissions for the regular applications. In this example, with a co-ordinated attack involving 4
systems the throughputs are down 70%.

Number of attack User-1-DL User-2-DL
systems (Mbps) (Mbps)
N/A 0.5804 0.5804
1 0.5233 0.5186
2 0.2873 0.2862
3 0.1973 0.1985
4 0.1518 0.1518

Table 1: Throughputs seen by the user applications. The first row is the throughput when there is no attack. The 2
through 5™ rows shows the fall in throughputs as the number of attacker systems are increased.

Users can similarly run DOS attack simulations on their own networks and analyse its impact on
throughput and latency.

Appendix: NetSim source code modifications

Changes to fn_NetSim_TCP_Trace(), in TCP.c file, within TCP project
/* This is used to add the SYN_FLOOD sub-events in Event Trace file */

_declspec (dllexport) char *fn_NetSim_TCP_Trace(int nSubEvent)

{
if (nSubEvent == SYN_FLOOD)
return "SYN_FLOOD";
return (GetStringTCP_Subevent(nSubEvent));
}

Changes to fn_NetSim_TCP_HandleTimer(), in TCP.c file, within TCP project
/* This is used to call the syn_flood() function periodically */

static int fn_NetSim_TCP_HandleTimer()
{
switch (pstruEventDetails->nSubEventType)
{
case SYN_FLOOD:
syn_flood();
break;
case TCP_RTO_TIMEOUT:
handle_rto_timer();
break;

Changes to fn_NetSim_TCP_lInit(), in TCP.c file, within TCP project
/* This is used to register the first SYN_FLOOD event */

_declspec (dllexport) int fn_NetSim_TCP_Init(struct stru_NetSim_Network *NETWORK_Formal,
NetSim_EVENTDETAILS *pstruEventDetails_Formal,
char *pszAppPath_Formal,
char *pszWritePath_Formal,
int nVersion_Type,
void **fnPointer)

{

fn_NetSim_TCP_Init_ F(NETWORK_Formal,

pstruEventDetails_Formal,
pszAppPath_Formal,
pszWritePath_Formal,
nVersion_Type,
fnPointer);

NetSim_EVENTDETAILS pevent;

memcpy(&pevent, pstruEventDetails, sizeof pevent);

for (inti = 0; i < NETWORK->nDeviceCount; i++)
{
if (is_malicious_node(i + 1))
{
pevent.nDeviceld =i + 1;
pevent.dEventTime += 1000;

pevent.nEventType = TIMER_EVENT;
pevent.nSubEventType = SYN_FLOOD;
pevent.nProtocolld = TX_PROTOCOL_TCP;

fnpAddEvent(&pevent);
}
}
return O;
}

Changes to add_timeout_event() in RTO.c file, within TCP project
/* This is used to avoid RTO timeouts for malicious nodes */

void add_timeout_event(PNETSIM_SOCKET s,
NetSim_PACKET* packet)

{

NetSim_PACKET* p = fn_NetSim_Packet_CopyPacket(packet);
add_packet_to_queue(&s->tch->retransmissionQueue, p, pstruEventDetails->dEventTime);
NetSim_EVENTDETAILS pevent;

memcpy(&pevent, pstruEventDetails, sizeof pevent);

pevent.dEventTime += TCP_RTO(s->tcb);

pevent.dPacketSize = packet->pstruTransportData->dPacketSize;

pevent.nEventType = TIMER_EVENT;

pevent.nPacketld = packet->nPacketld;

if (packet->pstruAppData)

{
pevent.nApplicationld = packet->pstruAppData->nApplicationld;
pevent.nSegmentld = packet->pstruAppData->nSegmentld;

}

else

pevent.nSegmentld = 0;
if (lis_malicious_node(pevent.nDeviceld))

{
pevent.nProtocolld = TX_PROTOCOL_TCP;
pevent.pPacket = fn_NetSim_Packet_CopyPacket(p);
pevent.szOtherDetails = NULL,;
pevent.nSubEventType = TCP_RTO_TIMEOUT;
fnpAddEvent(&pevent);
print_tcp_log("Adding RTO Timer at %0.1If", pevent.dEventTime);
}
}

Changes to TCP.h file, within TCP project
/* This is used to define the number of malicious nodes */

#pragma comment (lib,"NetworkStack.lib")

_declspec(dllexport) target_node;

//USEFUL MACRO
#define isTCPConfigured(d) (DEVICE_TRXLayer(d) && DEVICE_TRXLayer(d)->isTCP)
#define isTCPControl(p) (p->nControlDataType/100 == TX_PROTOCOL_TCP)

/[Constant
#define TCP_DupThresh 3
#define NUMBEROFMALICIOUSNODE 4

Addition of SYN_flood.c file, within TCP project

/* This is used to define the malicious node ID’s and the target node ID */
/* This has functions defined for SYN flood attack*/

#include "main.h"
#include "TCP.h"
#include "List.h"

#include "TCP_Header.h"
#include "TCP_Enum.h"

int malicious_node[NUMBEROFMALICIOUSNODE] = {7,8,9,10};

static void send_syn_packet(PNETSIM_SOCKET s);

/Istatic PNETSIM_SOCKET socket_creation();

int target_node = 4;

PNETSIM_SOCKET get_Remotesocket(NETSIM_ID d, PSOCKETADDRESS addr);
static PSOCKETADDRESS sockAddr = NULL;

int is_malicious_node(NETSIM_ID devid){}

void syn_flood(){}

static void send_syn_packet(PNETSIM_SOCKET s){}
int socket_creation(){}

Changes to TCP_Enum.h file, within TCP project
/* This is used to a new SYN_FLOOD subevent in TCP_Subevent */
#include "EnumString.h"
BEGIN_ENUM(TCP_Subevent)

DECL_ENUM_ELEMENT_WITH_VAL(TCP_RTO_TIMEOUT, TX_PROTOCOL_TCP * 100),
DECL_ENUM_ELEMENT(TCP_TIME_WAIT_TIMEOUT),
DECL_ENUM_ELEMENT(SYN_FLOOD),

}

Changes to Ethernet.h file, within ETHERNET project
/* This is used to define processing time for syn_flood packets */

#ifndef NETSIM_ETHERNET H_
#define NETSIM_ETHERNET H_
#ifdef __ cplusplus

extern "C" {

#endif

#pragma comment(lib,"NetworkStack.lib")

#pragma comment(lib,"Metrics.lib")

#pragma comment (lib,"libTCP.lib")

#define isETHConfigured(d,i) (DEVICE_MACLAYER(d,i)->nMacProtocolld ==
MAC_PROTOCOL_IEEE802_3)

/IGlobal variable

PNETSIM_MACADDRESS multicastSPTMAC;

#define ETH_IFG 0.960 //Micro sec
#define Processing_TIME 1000

Changes to fn_NetSim_Ethernet_HandlePhyOut() in Ethernet_Phy.c file, within ETHERNET project

/* This is used to add processing delay for TCP SYN packets */

double start;

if (pstruEventDetails->nDeviceld == target node && (packet->nControlDataType ==

>nControlDataType == 40105))

if (phy->lastPacketEndTime + phy->IFG <= pstruEventDetails->dEventTime)
start = pstruEventDetails->dEventTime + Processing_TIME;

else
start = phy->lastPacketEndTime + phy->IFG + Processing_TIME;

else

if (phy->lastPacketEndTime + phy->IFG <= pstruEventDetails->dEventTime)
start = pstruEventDetails->dEventTime;
else
start = phy->lastPacketEndTime + phy->IFG;
} function present in Ethernet_Phy.c file inside Ether

TCP Project Properties:

e Right click on TCP project and select Properties.
¢ In Linker section go to Advanced.

40102 || packet-

e The import library value has been updated for 32-bit and 64-bit source code settings.

o 32-bit as .\lib\lib$(TargetName).lib
o 64-bit as .\lib_x64\lib$(TargetName).lib

0¢) File Edit View Project Bulld Debug Test Anshze Took Extensions Window Help Search Visusl Studio (Crl-Q P Netsim
O|f-2 P

“<| Debug ~ 64 - P Local Windows Debugger = | A%

& liveshore &7

R S 1
Search Solution Explorer (Ctrls
& Solution ‘NetSim' {2 projects)
4 [®] Ethernet
b o® References
b % External Dependencies

TCP Property Pages ?

4 Configuration Properties Entry Point

General No Entry Point No
Debugging Set Checksum No
VCe s Directoies Base Address
b GG Randomized Base Address Yes (/DYNAMICBASE)
4 Linker Fixed Base Address
Sement Dats Execution Prevention (DEP) Yes (/NXCOMPAT)
ot Turn Off Assembly Generation No
Muse: Fie Unioad delay loaded DLL
Debugging

System
Optimization \lib_x64\libS(TargetName).lib
Embedded (DL o
Windows Metadata Target Machine MachineX64 (/MACHINE:X64)
Advanced Profile No
Al Options CLR Thresd Attribute
Command Line CLR Image Type Default image type
b Manifest Tool Key Fie
b XML Document Generator Key Container
v Browse Information Delay Sign
b Build Events CLR Unmanaged Code Check
b Customn Build Step Error Reporting Promptimmediately (/ERRORREPORT:PROMPT)
b Code Analysis SectionAligment

Import Library
Overnides the y name. {/IMPL

< >

Figure 8: Visual Studio project settings

b C Rhemete

Configuration: Active(Debug) | Platform: Active(x69) ~| | Configuration Manager...

- 3%

X

