Dos Attack in 5G NR

Software: NetSim Standard v13.0 (32/64 bit), Visual Studio 2019

Project Download Link:
https://github.com/NetSim-TETCOS/DOS Attack in 5G v13.0/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and setup the Project in NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-
netsim-file-exchange-projects

A Denial of Service (DoS) attack is an attempt to make a system unavailable to the intended user(s),
such as preventing access to a website. A successful DoS attack consumes all available network or
system resources, usually resulting in a slowdown or server crash. Whenever multiple sources are
coordinating in the DoS attack, it becomes known as a DDoS (Distributed Denial of Service) attack.

Standard DDoS Attack types

SYN Flood

UDP Flood
SMBLoris

ICMP Flood
HTTP GET Flood

SYN Flood

TCP SYN floods are DoS attacks that attempt to flood the DNS server with new TCP connection
requests. Normally, a client initiates a TCP connection through a three-way handshake of messages:

e The client requests a connection by sending a SYN (synchronize) message to the server.
e The server acknowledges the request by sending SYN-ACK back to the client.
e The client answers with a responding ACK, establishing the connection.

This triple exchange is the foundation for every connection established using the Transmission
Control Protocol (TCP). A SYN Flood is one of the most common forms of DDoS attacks. It occurs
when an attacker sends a succession of TCP Synchronize (SYN) requests to the target in an attempt
to consume enough resources to make the server unavailable for legitimate users. This works
because a SYN request opens network communication between a prospective client and the target
server. When the server receives a SYN request, it responds acknowledging the request and holds
the communication open while it waits for the client to acknowledge the open connection. However,
in a successful SYN

Flood, the client acknowledgment never arrives, thus consuming the server’s resources until the
connection times out. A large number of incoming SYN requests to the target server exhausts all
available server resources and results in a successful DoS attack. Before implementing this project
in NetSim, users have to understand the steps given below:

TCP Log file

e Users need to understand the TCP log file which will get created in the temp path of NetSim
<Windows Temp Folder>/NetSim>

e The TCP Log file is usually a very large file and hence is disabled by default in NetSim.

https://github.com/NetSim-TETCOS/DOS_Attack_in_5G_v13.0/archive/refs/heads/main.zip
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

e To enable logging, go to TCP.c inside the TCP project and change the function bool
iIsTCPlog() to return true instead of false.

At malicious node

Create a new timer event called SYN_FLOOD in TCP for sending TCP_SYN packets that should be
triggered for every 1000 microseconds. This will create and send the TCP_SYN packet for every
1000 microseconds. SYN request opens network communication between a client and the target 3.

At Target node

When the target receives a SYN request, it responds acknowledging the request and holds the
communication open while it waits for the client to acknowledge the open connection. If a SYN packet
arrives at Receiver, it should reply with a SYN_ACK packet. For this SYN_ACK packet, add a
processing time of 2000 microseconds in Ethernet Physical Out. This delays the arrival of SYN_ACK
at source node. During this delay, another SYN packet will get created at the malicious node. A large
number of incoming SYN requests to the target exhausts all available server resources and results
in a successful DoS attack SYN_FLOOD in NetSim:

C functions for the SYN_FLOOD attack

To implement this project in NetSim, we have created SYN_FLOOD.c file inside TCP project. The
file contains the following functions:
e intis_malicious_node(); //This function is used to check the node is malicious node or not.
e int socket_creation(); //This function is used to create a new socket and update the socket
parameters.
e static void send_syn_packet(PNETSIM_SOCKET s); //This function is used to create and send
SYN packet to the network layer.
¢ void syn_flood(); //This function is used to check whether the socket is present or not and also
adds a timer event called SYN_FLOOD (triggers for every 1000us)

Steps to simulate the attack

1. Open the Source codes in Visual Studio by going to Your work -> Workspace Options and
Clicking on Open code button in NetSim Home Screen window.

2. Under the TCP project in the solution explorer, you will be able to see that
SYN_FLOOD.c file.

3. Based on whether you are using NetSim 32-bit or 64-bit setup you can configure
Visual studio to build 32 bit or 64-bit DIl files respectively as shown below:

4. Right click on the solution in the solution explorer and select Rebuild. (Note: first

rebuild the TCP project and then rebuild the Ethernet project)

oq i Build Debug o NetSim

Figure 1: Screen shot of NetSim project source code in Visual Studio

5. Upon successful build modified libTCP.dIl and libEthernet.dll file gets automatically
updated in the directory containing NetSim binaries.

Running Simulations. Case 1: Without an attacker (malicious nodes)

1.

w

1. Then DOS_Attack_5G_Workspace comes with a sample configuration that is already saved.

To open this example, go to Your work and click on the DOS_Attack_Case_1 from the list of
experiments.

The saved network scenario consisting of 5G Core, 2 UEs, 1 gNB, 1 Router and 1 wired node
in the grid environment forming a 5G NR Network. Traffic is configured from UE to Wired

node.

EE*
A

SMF_2
2 2 - 3 .
KG/\‘ \{CE\J
‘_I,}EJPI)
UPF1
1
%

1
3
b
<3

4

L2_Switch_4

\
e/

Router_8

10

Wired_Mode_4

Figure 2: Model of regular client nodes communicating with the server in NetSim

Help [0 Open-Source code

File Settings Help
___ User Manual F1
[£ S
| +— Technology Libraries Manuals ~ » |

J Source Code Help

Node Swit Links

Wired/W

reless

x?f Internetworks, Workspace Name: DOS_Attack_Internetwork. Experiment Name: DOS_Attack_(|

&
o

Application

- Individual Experiment Manuals » -
Open source code

Video Tutonals (YouTube)

Answers/FAQ
Raise a Support Ticket

About NetSim

Figure 3: Open-source code in one click

In TCP.h set NUMBEROFMALICIOUSNODE as 1.

In SYN_FLOOD.c set malicious node as 0.

Based on whether you are using NetSim 32 bit or 64-bit setup you can configure Visual studio
to build 32 bit or 64 bit DIl files respectively as shown below:

Right click on the solution in the solution explorer and select Rebuild. (Note: first rebuild the
TCP project and then rebuild the Ethernet project)

Upon successful build modified libTCP.dIl and libEthernet.dll file gets automatically updated in
the directory containing NetSim binaries.

Run the simulation for 5 seconds.

Case-2: With one Malicious Node

1. Then DOS_Attack 5G_Workspace comes with a sample configuration that is already saved. To
open this example, go to Your work and click on the DOS_Attack Case 2 from the list of
experiments.

2. The saved network scenario consisting of 5G Core, 3 UEs, 1 gNB, 1 Router and 1 wired node
in the grid environment forming a 5G NR Network. Traffic is configured from UE to Wired node.

L2_Switch 5 L2 Switch_6 L2 _Switch &

Figure 4: A malicious node initiates a SYN-FLOOD attack

Help O Open-Source code

In TCP.h set NUMBEROFMALICIOUSNODE as 1.

In SYN_FLOOD.c set malicious node as 11.

Right click on the solution in the solution explorer and select Rebuild. (Note: first rebuild the TCP

project and then rebuild the Ethernet project)

7. Upon successful build modified libTCP.dIl and libEthernet.dll file gets automatically updated in
the directory containing NetSim binaries.

8. Run the simulation for 5 seconds.

o gk w

Case-3; With two Malicious Node

1. Then DOS_Attack_5G_Workspace comes with a sample configuration that is already saved. To
open this example, go to Your work and click on the DOS_Attack Case_ 3 from the list of
experiments.

2. The saved network scenario consisting of 5G Core, 4 UEs, 1 gNB, 1 Router and 1 wired node in
the grid environment forming a 5G NR Network. Traffic is configured from UE to Wired node.

"-r.‘ ° -
= ~=) ==
LZ_Swntch_ 5 L2_Swerteh G L2_Swatch_4

Figure 5: A malicious node initiates a SYN-FLOOD attack

Help [Open-Source code.

In TCP.h set NUMBEROFMALICIOUSNODE as 2.

In SYN_FLOOD.c set malicious node as 11, 13.

Right click on the solution in the solution explorer and select Rebuild. (Note: first rebuild the TCP
project and then rebuild the Ethernet project)

Upon successful build modified libTCP.dIl and libEthernet.dll file gets automatically updated in the
directory containing NetSim binaries.

Run the simulation for 5 seconds.

o0~ w

8.
Results and discussion

After simulation open metrics window and observe the throughput.

x

Pxjmmwens . ax

[Simulation Results

V' Network Performance Application_Metrics_Table

Link_Metrics
Applcaon Vet

[] Detailed View | TCP_Metrics [Detailed View

Queue_Metrics
Application |4 Application Name Packet generated Packet received | Throughput (Mbps) _ [Pelay(microsec)) Jitter{| Source Destination SegmentSent Segment Received AckSent Ack Received Duplicate ack received
TCP_Metrics
- 1 App1_CBR 10289 4973 203138.947380 856.8 | UPF_1 ANY _DEVICE 0 [0o 0 0
1P_Meti
-Metries 2 Bpp2 CBR 10289 4507 219835500102 8614 SMF_2 ANYDEVICE 0 0 0 0 0
> IP_Forwarding_Table AME3 ANYDEVICE 0 0 o 0 0
UDP Metrics U ANY_DEVICE 0 0 0 0 0
> Switch Mac address table R — Prpr— o N o o
Application Metrics WIRED_NODE 4 ANY_DEVKE 0 0 o 0 0
LTENR SDAP UET ANY DEVICE 0 0 0 Q 0
3|« >
Link_Metrics [] Detailed View | Queus_Metrics [] Detailed View
Export Results (xis/.csv) Packet transmitted Packet_errored Packet_collded Deviced Port.id Queued pa.. Dequeued_.. Dropped_p..
Linkid Link throughput_plot
Print Resuts (.htmi) Data Control Data Control Data Control
Al NA 54334 12008 47 3 [0
1 NA 9903 2393 8 1 [0
Open Event Trace 5 " T s o e o
3 NA 0 4 0 0 [0
> Log Files
4 NA 9915 2303 12 0 [0
5 NA 0 6 0 0 0 0 No content in table
6 NA o 25 13 2 0 o0
7 NA 0 6 0 0 [0
8 NA 0 0 0 0 [0
9 NA 4694 2415 0 0 o 0
10 NA o4 2 w0 0 o0

Restore To Original View

Figure 6: NetSim results dashboard with throughput highlighted

Go to the result window open Event trace, user can find out the SYN_FLOOD packets via filtering

subevent type as SYN_FLOOD.

AutoSave (@ off) = Event Trace.csv ~

A sagar khetagoudal

File Home Insert Page Layout Formulas Data Review

ﬁj [-?é] [calibri a5 Wrap Text

~
Easte == || =R Merge&Cﬁnter v
Clipboard & Font [Alignment

View

B By SERE

Conditional Formatas Cell Insert Delete Format
Formatting v Tablev Styles v ~ v ~ o 28
Styles Cells

A1 i x «v & | Eventud

4N &

« Pivot Table(Custom) | @

: [

Figure 7: NetSim Event trace with filtered applied to SUB-EVENT-TYPE column. It shows all the SYN_FLOOD Packets
and one can notice the 1000 s inter-packet arrival times in Column C

Case 1 shows the results when there is no attack. The two user applications, User-1-UL and User-2-
UL, attain a throughput of about 11.63 Mbps. In the table we see the throughput of for these two
applications falling as we increase the number of attack nodes. This is because the server’'s resources
are being used up in handling the SYN-FLOOD packets and the server is unable to sustain packet
transmissions for the regular applications. In this example, with a co-ordinated attack involving 4
systems the throughputs are down 70%.

0 DD ougnp APP DP
Case-1: Malicious Node =0 11.63 11.62
Case-2: Malicious Node =1 11.45 11.45
Case-3: Malicious Node =2 11.29 11.31

Table 1: Throughputs seen by the user applications. The first row is the throughput when there is no attack. In other
samples show the fall in throughputs as the number of attacker systems are increased

Users can similarly run DOS attack simulations on their own networks and analyse its impact on

throughput and latency.

Appendix: NetSim source code modifications

Changes to fn_NetSim_TCP_Trace(), in TCP.c file, within TCP project
/* This is used to add the SYN_FLOOD sub-events in Event Trace file */

_declspec (dllexport) char *fn_NetSim_TCP_Trace(int nSubEvent)

{
if (NSubEvent == SYN_FLOOD)
return "SYN_FLOOD";
return (GetStringTCP_Subevent(nSubEvent));
}

Changes to fn_NetSim_TCP_HandleTimer(), in TCP.c file, within TCP project
/* This is used to call the syn_flood() function periodically */

static int fn_NetSim_TCP_HandleTimer()

{
switch (pstruEventDetails->nSubEventType)

{

case SYN_FLOOD:
syn_flood();
break;

case TCP_RTO_TIMEOUT:
handle_rto_timer();
break;

Changes to fn_NetSim_TCP_Init(), in TCP.c file, within TCP project
/* This is used to register the first SYN_FLOOD event */

_declspec (dllexport) int fn_NetSim_TCP_Init(struct stru_NetSim_Network *NETWORK_Formal,
NetSim_EVENTDETAILS *pstruEventDetails_Formal,
char *pszAppPath_Formal,
char *pszWritePath_Formal,
int nVersion_Type,
void **fnPointer)

{

fn_NetSim_TCP_Init_ F(NETWORK_Formal,

pstruEventDetails_Formal,
pszAppPath_Formal,
pszWritePath_Formal,
nVersion_Type,
fnPointer);

NetSim_EVENTDETAILS pevent;

memcpy(&pevent, pstruEventDetails, sizeof pevent);

for (int i = 0; i < NETWORK->nDeviceCount; i++)
{
if (is_malicious_node(i + 1))
{
pevent.nDeviceld =i + 1;
pevent.dEventTime += 1000;
pevent.nEventType = TIMER_EVENT,
pevent.nSubEventType = SYN_FLOOD;
pevent.nProtocolld = TX_PROTOCOL_TCP;

fnpAddEvent(&pevent);

}
}
return O;
}

Changes to add_timeout_event() in RTO.c file, within TCP project
/* This is used to avoid RTO timeouts for malicious nodes */

void add_timeout_event(PNETSIM_SOCKET s,
NetSim_PACKET* packet)

{

NetSim_PACKET* p = fn_NetSim_Packet_CopyPacket(packet);
add_packet_to_queue(&s->tcb->retransmissionQueue, p, pstruEventDetails->dEventTime);
NetSim_EVENTDETAILS pevent;

memcpy(&pevent, pstruEventDetails, sizeof pevent);

pevent.dEventTime += TCP_RTO(s->tcb);

pevent.dPacketSize = packet->pstruTransportData->dPacketSize;

pevent.nEventType = TIMER_EVENT;

pevent.nPacketld = packet->nPacketld;

if (packet->pstruAppData)

{
pevent.nApplicationld = packet->pstruAppData->nApplicationld;
pevent.nSegmentld = packet->pstruAppData->nSegmentld;

}

else

pevent.nSegmentld = 0;
if (lis_malicious_node(pevent.nDeviceld))

{
pevent.nProtocolld = TX_PROTOCOL_TCP;
pevent.pPacket = fn_NetSim_Packet CopyPacket(p);
pevent.szOtherDetails = NULL,;
pevent.nSubEventType = TCP_RTO_TIMEOUT;
fnpAddEvent(&pevent);
print_tcp_log("Adding RTO Timer at %0.1If", pevent.dEventTime);
}
}

Changes to TCP.h file, within TCP project
/* This is used to define the number of malicious nodes */

#pragma comment (lib,"NetworkStack.lib™)

_declspec(dllexport) target_node;

//USEFUL MACRO

#define isTCPConfigured(d) (DEVICE_TRXLayer(d) && DEVICE_TRXLayer(d)->isTCP)
#define isTCPControl(p) (p->nControlDataType/100 == TX_PROTOCOL_TCP)

/[Constant
#define TCP_DupThresh 3
#define NUMBEROFMALICIOUSNODE 2

Addition of SYN_flood.c file, within TCP project

/* This is used to define the malicious node ID’s and the target node ID */
/* This has functions defined for SYN flood attack*/

#include "main.h"
#include "TCP.h"
#include "List.h"

#include "TCP_Header.h"
#include "TCP_Enum.h"

int malicious_node[NUMBEROFMALICIOUSNODE] = {10,11};

static void send_syn_packet(PNETSIM_SOCKET s);

/Istatic PNETSIM_SOCKET socket_creation();

int target_node =10;

PNETSIM_SOCKET get_Remotesocket(NETSIM_ID d, PSOCKETADDRESS addr);
static PSOCKETADDRESS sockAddr = NULL;

int is_malicious_node(NETSIM_ID devid)

{
for (inti=0;i < NUMBEROFMALICIOUSNODE; i++)

if (devid == malicious_node[i]) return 1;

return O;

}

Changes to TCP_Enum.h file, within TCP project
/* This is used to a new SYN_FLOOD subevent in TCP_Subevent */
#include "EnumString.h"
BEGIN_ENUM(TCP_Subevent)

DECL_ENUM_ELEMENT_WITH_VAL(TCP_RTO_TIMEOUT, TX_PROTOCOL_TCP * 100),
DECL_ENUM_ELEMENT(TCP_TIME_WAIT_TIMEOUT),
DECL_ENUM_ELEMENT(SYN_FLOOD),

}

Changes to Ethernet.h file, within ETHERNET project
/* This is used to define processing time for syn_flood packets */

#ifndef NETSIM_ETHERNET H_
#define NETSIM_ETHERNET H_
#ifdef _ cplusplus

extern "C" {

#endif

#pragma comment(lib,"NetworkStack.lib")

#pragma comment(lib,"Metrics.lib")

#pragma comment (lib,"libTCP.lib")

#define iIsETHConfigured(d,i) (DEVICE_MACLAYER(d,i)->nMacProtocolld ==
MAC_PROTOCOL_IEEE802_3)

/IGlobal variable

PNETSIM_MACADDRESS multicastSPTMAC,;

#define ETH_IFG 0.960 //Micro sec

#define Processing_TIME 1000

Changes to fn_NetSim_Ethernet_HandlePhyOut() in Ethernet_Phy.c file, within ETHERNET project
/* This is used to add processing delay for TCP SYN packets */
double start;

if (pstruEventDetails->nDeviceld == target_node && (packet->nControlDataType == 40102 || packet-
>nControlDataType == 40105))

{
if (phy->lastPacketEndTime + phy->IFG <= pstruEventDetails->dEventTime)
start = pstruEventDetails->dEventTime + Processing_TIME;
else
start = phy->lastPacketEndTime + phy->IFG + Processing_TIME;
}
else
{
if (phy->lastPacketEndTime + phy->IFG <= pstruEventDetails->dEventTime)
start = pstruEventDetails->dEventTime;
else
start = phy->lastPacketEndTime + phy->IFG;
}

TCP Project Properties:

e Right click on TCP project and select Propertie.

e In Linker section go to Advanced

e The import library value has been updated for 32-bit and 64-bit source code settings
o 32-bit as .\lib\lib$(TargetName).lib
o 64-bit as .\lib_x64\lib$(TargetName).lib

0 Fie Edt View Project Buld Debug Test Anslyze Took Edtensions Window Help SeschVisusiStudio (Ctl-Q P NetSim ® - 5 =
Olf- R =| Debug ~ 364 « B Local Windows Debugger + | 4% & LiveShare &7

Yes (/DYNAMICBASE)

Yes (/NXCOMPAT)
No

Turn Off Assembly Generation
Unioad delsy loaded DLL
Nobind delay loaded DLL

<Vlib_x64\ibS(TargetName).lib

s
Target Machine. MachineX64 (/MACHINE:X64)
Profile. No

CLR Thread Attribute

CLR Image Type Defaultimage type

CLR Unmanaged Code Check
b Custorn Buid Step Ermor Reporting Promptimmediately (ERRORREPORTPROMPT)
b Code Analysis SeionAlianiian

Import Library

Fig 8: Visual Studio project settings

