Congestion Control AODV (CC-AODV)
Software Recommended: NetSim Standard v13.0 (64 bit), Visual Studio 2019

Project Download Link:
https://github.com/NetSim-TETCOS/CC AODV Project v13.0/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and setup the Project in
NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-
up-netsim-file-exchange-projects

Reference: Y. Mai, F. M. Rodriguez and N. Wang, "CC-ADOV: An effective multiple paths
congestion control AODV," 2018 IEEE 8th Annual Computing and Communication
Workshop and Conference (CCWC), Las Vegas, NV, 2018, pp. 1000-1004.

Introduction

Ad hoc On-Demand Distance Vector (AODV) routing is one of the famous routing algorithms.
Tremendous amounts of research on this protocol have been done to improve the
performance. In this paper, a nhew control scheme, named congestion control AODV (CC-
AODV), is proposed to manage the described routing condition. With this table entry, the
package delivery rates are significantly increased while the package drop rate is decreased,
however its implementation causes package overhead.

CC-ADOQV aims to lower the performance degradation caused by the packets congestion while
the data is delivered using AODV. Furthermore, CC-AODV determines a path for the data by
using the congestion counter label. This is achieved by checking how stressed the current
node is in a table, and once the RREP package is generated and transmitted through the
nodes, the congestion counter adds one to the counter. The process of CC-AODV explains
how to establish the route. First, the source node performs a flooding broadcast RREQ
package in the entire network. When RREQ package arrives to the intermediate node, the
router checks the congestion counter whether it is less than a certain predetermined value. If
the comparison yields less than the counter, the routing table updates and forwarding to next
router; otherwise, the router drops the RREQ package. Once the RREQ arrives to the
corresponding destination, the RREP is generated by the router. In CC-AODV, the congestion
flag is added to the RREP header. There are two cases of which a RREP is generated
corresponding to a RREQ. One is from the source node to establish the route and the other is
from the neighbour nodes to maintain the route. When the destination node receives the
RREQ from the source node, it generates the RREP with the congestion flag set to true. While
the RREP unicast back to the corresponding source node, passing by the intermediate
node, the router checks the congestion flag. If it is true, the counter increases; otherwise, the
counter keeps the same. Then, the router updates the routing information.

Procedure to implement CC-AODV in NetSim:
In order to implement CC-AODV following code modification done in AODV Protocol

The RREP structure stru_NetSim_AODV_RREP is defined in AODV.h has been modified to
include a Congestion flag for implementing CC-AODV

https://github.com/NetSim-TETCOS/CC_AODV_Project_v13.0/archive/refs/heads/main.zip
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

0 Fie Edit View Project Build Debug Test Amdlyze Tools [Extensions Window Help Search Visusl Studio (Ctrl-0) p NetSim
O-9 -2 W

D - O | Debug - x64 ~ P Local Windows Debugger ~ | 57 _

£ AODV.c AODV_CheckRouteFound.c AODV_RouteError.c RouteTable.c
]
o
=
)
8
5 L .
S 179 Bl struct stru_NetSim_AODV_RREP
g 180
181 unsigned int Type:8;//2
182 & char RA[3]; /**<
183
184 R Repair flag; used for multicast.
185
186 A Acknowledgment required; see sections 5.4 and 6.7.
187
188 L % 4
189 unsigned int Reserved:9; ///< Sent as @; ignored on reception.
190 E unsigned int Prefixsz:5; /**<
191 If nonzero, the 5-bit Prefix Size specifies that the
192 indicated next hop may be used for any nodes with
193 the same routing prefix (as defined by the Prefix
194 Size) as the requested destination.
195 =/
196 E unsigned int HopCount:8; /**<
197 The number of hops from the Originator IP Address
198 to the Destination IP Address. For multicast route
199 requests this indicates the number of hops to the
200 multicast tree member sending the RREP.
201 ! 7
202 NETSIM_IPAddress DestinationIPaddress;////< The IP address of the destination for which a route is supplied.
203 unsigned int DestinationSequenceNumber;///< The destination sequence number associated to the route.
204 NETSIM_IPAddress OriginatorIPaddress;///< The IP address of the node which originated the RREQ for which the route is supplied.
205 unsigned int Lifetime;///< The time in milliseconds for which nodes receiving the RREP consider the route to be valid.
206 NETSIM IPAd LastAddress; //NetSim-specific
208 b
209
20 EH /*
211
212
100% - »

2. The DeviceVariable Structure stru_ AODV_DeviceVariable is defined in AODV.h file has
been modified to include a congestion counter for implementing CC-AODV

D Fle Edit View Project Buid Debug Tet Analyze Tools Extensions Window Help Search Visual Studio (Ctrl+Q) P | NetSim
[@2l

)~ -| Debug - x64 ~ P Local Windows Debugger ~ | 5"

£ [TEXIEIEY AoDvc AODV_CheckRouteFound.c AODV._RouteError.c RouteTable.c

; z | % stru_AODV_DeviceVariable

4 T

'gA /=

14 This is the AODV DeviceVariable Structure which contains -

oy FIFO - a packet is added in FIFO buffer if the device does not have route to the target<br\>
g routeTable - this contains the next HOP ip of the routes to the target<br\>

H RREQ_SEEN_TABLE - this contains list differnet RREQ a device encounters.

unsigned int nSequenceNumber;
AODV_FIFO* fifo;

ABLE* routeTable;
rreqSeenTable;
& rreqSentTable;
AODV_PRECURSORS_LIST* precursorsList;
double dLastBroadcastTime;
unsigned int nRerrCount;
double dFirstRerrTime;

AODV_METRICS aodvMetrics:

unsigned int ncounter;

35

3. The source codes of functions in RREP.c, RouteTable.c and AODV_RouteError.c has
been modified suitably to Increment, Decrement the congestion counter accordingly

[l AoV -] (Glabal Scope) -|® fn_NetSim_AODV_ProcessRREP(NetSim_EVENTDETAILS * pstrufventl
61 Deletes the RREQ entry from sent table and forwards the rrep if the device is not
62 the source node
63 *t
64 Eint fn_NetSim_AODV_ProcessRREP(NetSim EVENTDETATLS® ps entDetails)
65 {
66 AODV_ROUTETABLE® table = AODV_DEV_VAR(pstruEventDetails->nDeviceId)->routeTable;
67 AODV_RREP* rrep = (AODV_RREP*)pstrufventDetails->pPacket->pst a->Packet_Routing ol;
68 //Update the routing table
® &9 if (rrep->DestinationIPaddress aodv_get_curr_ip())
70 return @; °
71
72 if(rrep->congestionflag == true)
73 ADDV_DEV_VAR(pstruEventDetails->nDeviceld)->ncounter+t;
74 |
75 AODV_INSERT ROUTE TABLE(rrep->DestinationIPaddress,
76 rrep->DestinationSequencelumber,
77 rrep->HopCount,
78 rrep->LastAddress,
79 pstrutventDetails->dEventTime+A0DV_ACTIVE_ROUTE_TIMEOUT);
30 //Transmit the buffer
81 AODV_TRANSMIT_FIFO(AODV_DEV_VAR(pstruEventDetails-nDeviceld));
82 //Update the precursor list
83 AODV_INSERT_PRECURSOR(rrep->LastAddress);
84 AODV_UPDATE_ROUTE TABLE(rrep->LastAddress,rrep->Lifetime);
85 i (1IP_COMPARE (aodv_get_curr_ip(),rrep->0OriginatorIPaddress))
86 {
87 //Delete entry from sent table
88 AODV_RREQ_SENT TABLE® table = AODV_DEV_VAR(pstruEventDetails->nDewiceld)->rregSentTable;
89 while(table)
%8 {
91 E i (1IP_COMPARE(table->DestAddress,rrep->DestinationIPaddress))
92
93 IP_FREE(table->DestAddress);
94 LIST_FREE((void™*)8A0DV_DEV VAR(pstruEventDetails->nDeviceld)->rreqSentTable, table);
95 break;
96 }
97 table = (AODV_RREQ_SENT TABLE*)LIST NEXT(table);
98 T

(Global Scope) @ fn_NetSim_ACDV_ActiveRouteTimeout(NetSim_EVENTDETAILS * pstr.

163
164
165
166
167
168
169
178
171
172
173
174
175
176
177
178
179
188
181
182
183
184
185
186
187
188
189
198
191
192
193
194
195
196
197
198
199

Jex [
This function adds the timeout event of a Route Table which is equal te the table_LifeTime

*/

int fn_NetSim_AODV_ActiveRouteTimeout(NetSim |

ENTDETAILS*® pstr

EventDetails)

int flag = @;
NETSIM IPAddress dest = (NETSIM IPAddress)p
ACDV_ROUTETABLE® table = AODV_DEV_VAR(pst
while(table)

ventDetails-»szOtherDetails;
entDetails-snbeviceld)->routeTable;

1F (1 IP_COMPARE (table->DestinationIPAddress, dest))
if(table->Lifetime <= pstrufventDetails->dEventTime)
AODV_ROUTETABLE® temp = LIST_NEXT(table);

IP_FREE(table->DestinationIPAddress);
IP_FREE(table->NextHop);

continue;

else

//Add new time out event
pstrutventDetails->dEventTime = table->Lifetime;
fpAddEvent (pstrutventDetails);

flag = 1;

h
table=(A0DV_ROUTETABLE*)LIST_NEXT(table);

}

if(1flag)
IP_FREE(dest);

return 1;

AODV_RouteError.c X

4. The source codes and functions related to Route request are defined in the file RREQ.c.
The fn_NetSim_AODV_ProcessRREQ() function that is part of this file has been modified
suitably to check the value of the congestion counter in the received RREQ packet and

accordingly forward or drop the packet

ellaneous Files -l
7 77Free the rreq packet
n_NetSim_Packet_FreePacket(packet);
pstruEventDet ->pPacket=NULL;

[Mi

E else

{

(Global Scope)

int dev_counter = AODV_DEV_VAR(p
= if (dev_counter > 25)

{
fn_NetSim_Packet_FreePacket(packet);
pstrutv tails->pPacket = NULL;
return 1;

¥

->nDeviceId)->ncounter;

{
= 1f(AODV_GENERATE_RREP_BY_IN())

Fn_Netsi

tDetails->pPacket=NULL;

6. Upon rebuilding, libAodv.dIl will automatically get updated in the respective bin folder of the

current workspace.

 Packet_FreePacket(packet);

i (AODV_CHECK_ROUTE_FOUND(rreq->DestinationIPAddress) &&
S rreq->JRGDU[3] != '1' /* Destination only flag*/)

[AODV -] (Global Scope) -| @ fn_NetSim AODV_GeneratcRERR(NETSIM ID nDeviceld, NETSIM_IPAd
14 E#include "main.h”
15 #include "AODV.h™
16 #include "List.h"
17 B/
18 This function Generates a route error and sends it to the previous HOP.
19
20 int fn_NetSim_AODV_GenerateRERR(NETSIM ID nDeviceld,
21 NETSIM_IPAddress UnreachableIP,
22 a NetSim_EVENTDETAILS* pstruEventDetails)
23 {
24 | ADDY_DEV_VAR(nDeviceld)->ncounter--;
25
26 int DestCount=8;
27 NETSIM_IPAddress* DestinationList=NULL;
28 unsigned int* DestinationSequence=NULL;
29 E_VAR* pstruDeviceVar = AODV_DEV_VAR(nDeviceId);
e
31 routeTable = pstruDeviceVar->routeTable;
32 A __LIST* precursorList = pstruDeviceVar->precurserslist;
X while(routeTable)|
34
35 E if(!IP_COMPARE(routeTable->NextHop,Unreachablelr))
36 {
37 routeTable->routingFlags = AODV_RoutingFlag Invalid;
38 routeTable->Lifetime = pstruEventDetails->dEventTime+AQDV_DELETE PERIOD;
39 DestCount++;
a8 DestinationList = realloc(DestinationList,DestCount®(sizeof* DestinationList));
a1 DestinaticnSequence = realloc(DestinationSequence,DestCount*(sizeof* DestinationSequence));
a2z DestinationList[DestCount-1] = IP_COPY(routeTable->DestinationIPAddress);
a3 DestinationSequence[DestCount-1] = routeTable->DestinationSequenceNumber;
44 }
a5 routeTable = LIST_NEXT(routeTable);
46
47 E if(precursorList->count)
43
a9 int loop;
EC) bool flag=false;
51 E for (1oop=8; loop<precursorList->count; loop++)

~|® fn_NetSim_AODV_ForwardRREQ(NetSim_EVENTDETAILS * pstruEventl

0DV (Global Scope) | © fn_NetSim_AODV._ProcessRREQ(Netsim_EVENTDETAILS * pst + QE-b-5am| o p-
¥ T %
e route reply + [Seerch Solut -
g ov_ o (1) 1 Soluton NetSm: (29 o 32 projects)
3 J/Frae the rreq pa TR
28 fn_Netsin_packet_Frespacket(packet); -
Trubventoetails->pPacket=hULL; EAOD: & Buid
b vm References
£ Rebuild
5 el b 1 Extemal Dependy
22 b € AODV.c Clean
b B AODVA View
" int dev_counter = A00V_DEV_VAR(p=t-ientietat s anbeviceld) -sncounters D C AODV.CheckRoU Analyze and Code Cleanup
5 if (dev_counter > 25 N Routet g
(dev_) PSR o
i = & S PR
n_n sin packet)e:::i::»ﬁp;ik‘tf). b c FIFOBufferc RBetarget Projects
il s " . o b c GeneaPackeP ScopetoThis
} b C HeloMessagec | |51 ey Solution Explorer View
b € RouteMeinte
$(A00V_CHECK_ROUTE_FOUND rreq->DestinationIPAddress) &8 b c Rouelbiec Build Dependencies
rrea->RGU[3] T ‘1’ /* Destination only flag™/) b c RREPC v
S b € RREQc & s WA
L (ADOV_GENERATE _RREP_BY_IN()) ¥ Rl ; Class Wigard
Manage NuGet Packages...
fn_lietsim_Packet_FreePacket(packet); b B A . %
JEueniDetilz-spPacketsMULL; Solution Explorer £ Setan Sarlp Project
y Debug
i AODV Prcject ropeties | %, Cut
¢ dzans
8B Misc X Remoye
} (Name) 3 Rename
) (cject Dependencies
o) ::’" . Unjoad Project
S Load Project Dependencies
L Root Namespace
Rescen Solution
Display Browsing Database Eror:
unctlon checks 1f the RRZQ Clesr Browsing Databace Ertors
4 bool fnCheckRREQSeenTable(<00V D7V - © Open Folderin il Explorer
€ o
0 Tiste" table = devvirosereqseentible; Wame) | B g

CrteShifteX

[

AtvEnter

7. Go to NetSim home page, click on Your work, Click on 10Nodes_Example.

[NetSim Home

NetSim Standard
Network Simulation/Emulation Platform
Version 13021 (64 Bit)

New Simulation CaleN Current workspace: CC_AODV._ Workspace

Q ‘

| Your work Cl+0 Experiment name Date modified Network type Size

1DND4'ES 01-03-2021 Mobile_Adhoc_Networks 5,197 KB View Results Export
Examples Cirl-E

30Nodes 27-02-2021 Mobile_Adhac_Networks 6877 KB View Results Export

Exit Alt-F4

Import Experiment

Contact Us

Email - sales@tetcos.com
Phone - +91 767 605 4321

8. Run the simulation for 30 sec

Simulations have been carried out using a different number of nodes in a network to symbolize
different practical applications of wireless network. For example, 10 nodes symbolize a small
network that can be used in an agricultural setup. 30 nodes symbolize a medium size network
that can be used in an industrial setup.

Result:

Performance of CC-AODV has been compared with other reactive protocol AODV based on
different performance metrics such as Throughput, End to End delay etc.

Number of Nodes AODV CC_AODV
Aggregate Aggregate
Throughput (Mbps) Throughput (Mbps)

10Nodes 0.28 0.33

30Nodes 0.35 0.40

Table 1: Aggregate Throughput comparison between AODV and CC_AODV

As per the Table 1 the proposed CC-AODV has higher throughput than the AODV. In CC-
AODV, the internal nodes can be utilized much efficiently than AODV because the counter

helps to reroute the path if the internal node is busy. This can increase the network channel
utilization.

This can be further understood with the help of following graph:

Throughput (Mbps)

0.45
0.40

0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

10 Nodes 30 Nodes
Number of Nodes

Aggregate Throughput (Mbps)

u CC-AODV mAODV

Number of Nodes AODV CC_AODV
Average Average
Delay Delay
(microsecond (microsecond

10Nodes 5462760.29 2004123.19

30Nodes 6534879.47 293415.94

Table 2: End to End delay comparison between AODV and CC_AODV

Table 2 demonstrate that AODV has higher End-to-End performance than the CC-AODV, the
result is achieved by rerouting the path of the data if the router is on a busy state.

This can be further understood with the help of following graph:

Delay (ps)

7000000
6000000
5000000
4000000
3000000

2000000
0 I

10 Nodes 30 Nodes
Number of Nodes

Average Delay (us)

m CC-AODV = AODV

