
© TETCOS LLP. All rights reserved

Ver 13.3 Page 1 of 11

Secure AODV in MANET

Software: NetSim Standard v13.3, Microsoft Visual Studio 2022

Project Download Link:

https://github.com/NetSim-TETCOS/Secure-AODV-v13.3/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and set up the Project in NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-

netsim-file-exchange-projects

Introduction:

SAODV is an extension of the AODV routing protocol that can be used to protect the route discovery

mechanism by providing security features like integrity and authentication. The reason only route

discovery is secured by AODV is that data messages can be protected using a point-to-point security

protocol like IPSec. SAODV uses a key management system, and each node maintains public keys,

encryption keys, and decryption keys.

To implement SAODV, we have added Secure AODV.c, RSA.c, and Malicious.c files in the AODV

project. RSA.c file is used to generate keys, encrypt, and decrypt the data. Users can implement their

own encryption algorithms by changing the RSA.c file. malicious.c file is used to identify malicious

nodes present in the network.

Example:

1. The Secure_AODV_Workspace comes with a sample network configuration that is already

saved. To open this example, go to Your work in the home screen of NetSim and click on the

Secure_AODV_Example from the list of experiments.

2. After running the simulation, a Secure_AODV.log file gets created in the temp path inside the

log folder.

Secure AODV implementation:

https://github.com/NetSim-TETCOS/Secure-AODV-v13.3/archive/refs/heads/main.zip
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

© TETCOS LLP. All rights reserved

Ver 13.3 Page 2 of 11

Figure 1: Network setup for Secure AODV

• Open the Source code in Visual Studio by going to Your work -> Source Code and Open code

in the NetSim Home Screen window.

• Expand the AODV project.

• Here users can enable Secure AODV (Open AODV.h file).

Uncomment the line #define SAODV_ENABLE,

Comment the line //#define MALICIOUS_ENABLE present in AODV.h file.

 Rebuild the solution and run the simulation.

Figure 2: Screenshot Solution Explorer of AODV project

© TETCOS LLP. All rights reserved

Ver 13.3 Page 3 of 11

Figure 3: Screenshot of NetSim project Source Code in Visual Studio

A Secure_AODV.c file is added to the AODV project which contains the following important functions:

• saodv_encrypt_packet(); //This function is used to encrypt the control packet data

• saodv_decrypt_packet(); //This function is used to decrypt the control packet data

• get_rrep_str_data(); //This function is used to get the route reply data from AODV_RREP

control packet

• get_rreq_str_data(); //This function is used to get the route request data from AODV_RREQ

control packet

• get_saodv_ctrl_packet_type(); //This function is used to change the control packet type from

AODV (AODV_RREQ, AODV_RREP) to SAODV (SAODV_RREQ, SAODV_RREP)

• get_saodv_ctrl_packet(); //This function is called whenever a new control packet is generated

• get_aodv_ctrl_packet(); //This function is called while processing the control packets

Results and discussion:

After the simulation of the given Configuration file, open packet animation. In the packet animation,

users can notice SAODV_RREQ and SAODV_RREP control packets.

© TETCOS LLP. All rights reserved

Ver 13.3 Page 4 of 11

Figure 4: NetSim Animation Window

The SAODV codes also logs certain details in SAODV.log (i.e. present in the temp path inside the

log folder).

Figure 5: Secure_AODV log file path.

The format of the log file is such that each control packet is logged. The first line represents the

packet type and the numbering used in a NetSim internal numbering system where 30701 is RREQ

and 30702 is RREP. The second line is the message which is encrypted. The third line contains the

encrypted message after running the RSA encryption algorithm. The fourth line is after decryption

and if everything is OK, the 2nd and 4th lines must match.

...

Packet Type = 30701

Org Data = 1,0,1,11.1.1.6,0,11.1.1.1,1

© TETCOS LLP. All rights reserved

Ver 13.3 Page 5 of 11

Encrypted Data = *-Ÿ-*-**¡*¡*¡-Ÿ-**¡*¡*¡**

Decrypted Data = 1,0,1,11.1.1.6,0,11.1.1.1,1

..

Malicious node implementation:

Here users can enable code to malicious node problems. Enable #define MALICIOUS_ENABLE and

comment //#define SAODV_ENABLE that are present inside AODV.h file and Rebuild the Solution.

Figure 6: Commit and Uncommit for SAODV and Malicious code

A malicious node advertises wrong routing information to produce itself as a specific node and

receives whole network traffic.

After receiving the whole network traffic, it can either modify the packet information or drop them to

make the network complicated.

In packet animation, users can notice that malicious nodes will take all the packets and drops without

forwarding them to the destination.

A file malicious.c is added to the AODV project which contains the following functions:

• IsMaliciousNode(); //This function is used to identify whether a current device is malicious or

not in-order to establish malicious behavior.

• fn_NetSim_AODV_MaliciousRouteAddToTable(); //This function is used to add a fake route

entry into the route table of the malicious device with its next hop as the destination.

• fn_NetSim_AODV_MaliciousProcessSourceRouteOption(); //This function is used to drop

the received packets if the device is malicious, instead of forwarding the packet to the next hop

Rebuild the solution and Run the simulation.

© TETCOS LLP. All rights reserved

Ver 13.3 Page 6 of 11

• Results and discussion:

• You can set any device as a malicious node, and you can have more than one malicious node

in a scenario.

• Device IDs of malicious nodes can be set using the malicious_node [] array present in

malicious.c file. Comment the line #define SAODV_ENABLE present in AODV.h file.

• Rebuild the solution and run the simulation.

• If we run the simulation without SAODV, we will get zero throughputs because the malicious

node gets all the packets and drops without forwarding them to the destination. You can notice

this in the NetSim packet animation.

Figure 7: NetSim Animation Window

Both Secure AODV and Malicious node implementation:

Enable (Uncomment) the below mentioned lines of code present in AODV.h file.

#define SAODV_ENABLE

#define MALICIOUS_ENABLE

Rebuild the solution and run the simulation.

Results and discussion

Packets will be transmitted to the destination since SAODV helps in overcoming the Malicious Node

problem. Route reply RREP from malicious node 4 will not be accepted by Node 1. It takes the Route

reply from node 2 and forms the route. Users can observe the packet flow in the packet animation

window.

© TETCOS LLP. All rights reserved

Ver 13.3 Page 7 of 11

The SAODV logs certain details in Secure_AODV.log.

Figure 8: Secure AODV log file

The first line represents the packet type 30701 = RREQ. The second line is the message logged by

SAODV when malicious node tries to decrypt the message.

...

Packet Type = 30702

Encryption and decryption fail. This could be a malicious node.

...

Packet Type = 30702

Encryption and decryption fail. This could be a malicious node.

...

Appendix: NetSim source code modifications

We have added Secure_AODV.c, RSA.c and Malicious.c files, we have added the following

macros code in AODV.h file within AODV project.

#define SAODV_ENABLE

#define MALICIOUS_ENABLE

Then we have added the following lines of code in enum_AODV_Ctrl_Packet in AODV.h file

© TETCOS LLP. All rights reserved

Ver 13.3 Page 8 of 11

//#ifdef SAODV_ENABLE

 SAODV_RREQ,

 SAODV_RREP,

 SAODV_RERR,

//#endif

We have added the following function prototypes in AODV.h file, within AODV project.

#ifdef SAODV_ENABLE

 void get_saodv_ctrl_packet(NetSim_PACKET* packet);

 void get_aodv_ctrl_packet(NetSim_PACKET* packet);

 void saodv_copy_packet(NetSim_PACKET* dest, NetSim_PACKET* src);

 void saodv_free_packet(NetSim_PACKET* packet);

 void remove_from_mapper(void* ptr, bool isfree);

#endif // SAODV_ENABLE

 bool IsMaliciousNode(NETSIM_ID devId);

We have added the following function prototypes in AODV.c file

int fn_NetSim_AODV_MaliciousRouteAddToTable(NetSim_EVENTDETAILS*);

int fn_NetSim_AODV_MaliciousProcessSourceRouteOption(NetSim_EVENTDETAILS*);

Changes to NETWORK_IN event in fn_NetSim_AODV_Run() function in AODV.c file, within

AODV project

 #ifdef SAODV_ENABLE

 switch (pstruEventDetails->pPacket->nControlDataType)

 {

 case SAODV_RREQ:

© TETCOS LLP. All rights reserved

Ver 13.3 Page 9 of 11

 case SAODV_RREP:

 case SAODV_RERR:

 get_aodv_ctrl_packet(pstruEventDetails->pPacket);

 break;

 }

 if (pstruEventDetails->pPacket == NULL)

 {

 return -1; //Decryption fail.

 }

#endif // SAODV_ENABLE

We have added the following lines of code in AODVctrlPacket_RREQ and default cases in

NETWORK_IN event to check the current node is malicious or not.

if (IsMaliciousNode(pstruEventDetails->nDeviceId))

 fn_NetSim_AODV_MaliciousRouteAddToTable(pstruEventDetails);

Changes code in fn_NetSim_AODV_CopyPacket () function, in AODV.c file, within AODV

project

#ifdef SAODV_ENABLE

switch(srcPacket->nControlDataType)

{

case SAODV_RERR:

case SAODV_RREQ:

case SAODV_RREP:

saodv_copy_packet(destPacket,srcPacket);

return 0;

break;

© TETCOS LLP. All rights reserved

Ver 13.3 Page 10 of 11

default:

#endif

return fn_NetSim_AODV_CopyPacket_F(destPacket,srcPacket);

#ifdef SAODV_ENABLE

break;

}

#endif

Changes code in int fn_NetSim_AODV_FreePacket () present in the AODV.c file, within AODV

project

#ifdef SAODV_ENABLE

 switch (packet->nControlDataType)

 {

 case SAODV_RERR:

 case SAODV_RREQ:

 case SAODV_RREP:

 saodv_free_packet(packet);

 return 0;

 break;

 default:

 remove_from_mapper(packet->pstruNetworkData->Packet_RoutingProtocol, true);

 return 0;

 break;

 }

#endif // SAODV_ENABLE

Changes code in fn_NetSim_AODV_GenerateRREQ (), fn_NetSim_AODV_RetryRREQ () and

fn_NetSim_AODV_ForwardRREQ () functions present in RREQ.c file, within AODV project

© TETCOS LLP. All rights reserved

Ver 13.3 Page 11 of 11

#ifdef SAODV_ENABLE

get_saodv_ctrl_packet(packet);

#endif

Changes code in fn_NetSim_AODV_GenerateRREP(), fn_NetSim_AODV_ForwardRREP () and

fn_NetSim_AODV_GenerateRREPByIntermediate () functions present in RREP.c file, within

AODV project

#ifdef SAODV_ENABLE

get_saodv_ctrl_packet(packet);

#endif

