
Ver 13.3 Page 1 of 9

SDWSN based Location Aware Routing Protocol

Software: NetSim Standard v13.3, Visual Studio 2022, Python 3.10 and later

Project Download Link:
https://github.com/NetSim-TETCOS/SDWSN-based-Location-Aware-Routing-
Protocol_v13.3/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and setup the Project in NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-
netsim-file-exchange-projects

Location Aware Routing (LAR)

Routing for an ad-hoc wireless network is challenging, many routing strategies have been proposed in
the literature. With the availability of affordable Global Position System equipped devices, Location-
Aware Routing provides a promising foundation for developing an efficient and practical solution for
routing in the ad-hoc wireless network.

Most Forward within Fixed Radius R (MFR)

MFR protocol is a geographic Location-Aware Routing protocol. MFR forwards packets to the neighbor
nodes within a set radius of the current node (not the route source) that makes the most forward progress
(or the least backward progress) along the line drawn from the current node to the destination. Progress
is calculated as the cosine of the distance from the current node to the neighbor node projected back
onto the line from the current node to the destination.

Figure 1: MFR Protocol Implementation

https://github.com/NetSim-TETCOS/SDWSN-based-Location-Aware-Routing-Protocol_v13.3/archive/refs/heads/main.zip
https://github.com/NetSim-TETCOS/SDWSN-based-Location-Aware-Routing-Protocol_v13.3/archive/refs/heads/main.zip
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

Ver 13.2 Page 2 of 9

Here,

• S(N1) is the source node and D(N6) is the destination node.

• N2 and N3 are in the transmission radius of S(N1).

• So, according to MFR protocol, d1 and d2 are the projected distances of N2 and N3 respectively
on the line drawn from the current node i.e., S(N1) and the destination node D(N6):

• d2 > d1, therefore the next route hop node will be N3.

• N4, N5 and S(N1) are in the transmission radius of N3. Since S (N1) is already present in the
route list, skip it.

• So, according to MFR protocol, d3 and d4 are the projected distances of N5 and N4 respectively
on the line drawn from the current node i.e., N3 and the destination node D(N6):

• d4 > d3, therefore the next route hop node will be N4.

• N5, D(N6) and N3 are in the transmission radius of N4. Since N3 is already present in the route
list, skip it.

• So, according to MFR protocol, d5 and d6 are the projected distances of N5 and D(N6)
respectively on the line drawn from the current node i.e., N4 and the destination node D(N6):

• d6 > d5, therefore the next route hop node will be D(N6).

• Route according to MFR: S(N1) -> N3 -> N4 -> D(N6).

Real Time Interaction in NetSim

NetSim allows users to interact with the simulation at runtime via a socket or through a file. User
Interactions make simulation more realistic by allowing command execution to view/modify certain device
parameters during runtime.

Python socket interface

• Python interfacing is a method to interface custom protocols like routing-based protocols with the
NetSim engine.

• In this project, we input NetSimCore.exe with routes generated via our routing protocol i.e., Most
Forward within Fixed Radius R (MFR) which is a geographic location-aware routing protocol. The
interaction between the routing protocol and the NetSimCore.exe is happening via socket
programming.

• The Real-Time Interaction has to be turned ‘True’ before running the simulation of the scenario.
This lets the NetSimCore.exe (server) to wait for the client (Python script) to connect using the
socket port.

• After the connection is established, we compute the routes based on our custom MFR protocol.
These routes are passed as static routes to the NetSimCore.exe server by the python script.

Python Script

The Socket programming code and MFR protocol code has written only in one separate file
(mfrProtocol.py). The protocols are written in a separate script file like here mfrProtocol.py:

• This python script reads the device coordinate and device ip address input from a file
device_log.txt having data in the following format:

 SINK 76.70 76.71 11.1.1.1

Ver 13.3 Page 3 of 9

• The protocol script has 4 functions to ultimately find the projected distance _projDist() on the line
drawn from the current node to the destination.

• Mention the Device_log.txt file name in the python script at File I/P section:
with open('Device_log.txt','r') as f:

• This python script reads the Application ID, Source ID and Destination ID input from a file
Appinfo_log.txt having data in the following format:
1 SENSOR_2 SENSOR_3

• Mention the Appinfo_log.txt file name in the python script at File for Appinfo section:
with open(‘Appinfo_log.txt’,'r') as f:

• In the Declarations of MFR, change the Transmission range (meters) accordingly:
o Tx = 170

Note: The Transmission range is set to 170 based on the channel conditions and device properties for
this example. This may vary if any network other than the one discussed in this example is considered.
Steps:

Example:

1. The SDWSN_MFR_LAR_Workspace_v13.3 comes with a sample network configuration that are

already saved. To open this example, go to Your work in the home screen of NetSim and click on
the WITH_SDN from the list of experiments.

2. The saved network scenario consists of
a. 12 Wireless Sensor
b. 1 WSN Sink

Figure 2: WSN Network Topology

3. Application Properties

Application Properties

For Application 1

Source ID
Destination ID

2
3

For Application 2

Source ID
Destination ID

12
7

Ver 13.2 Page 4 of 9

Transport Layer Protocol UDP

Table 1: Application Properties

4. Set Network layer protocol to DSR in both Wireless sensor and WSN Sink Node.
5. Channel Characteristics: Path Loss Only, Path Loss Model: Log Distance, Path Loss Exponent: 2
6. Run the Simulation for 500sec.

Results and discussion

• Upon running simulations with this configuration, Route from source to destination is as shown
below:

a. Application 1: SENSOR_2(S)->SENSOR_13->SENSOR_3(D)

b. Application 2: SENSOR_12(S)->SENSOR_13->SENSOR_7(D)

Figure 3: Application packet flow in the Network Topology

Procedure to perform routing using python interface in NetSim

• For the python interface to interact with NetSim during the simulation, Interactive Simulation
parameters must be set to 'True' under the Real-Time Interaction tab, before running the
simulation.

Ver 13.3 Page 5 of 9

Figure 4: Interactive Simulation parameters set as TRUE

• This lets the NetSimCore.exe (server) to wait for the client (Python script) to connect using the
socket port. After the connection is established, we compute the routes based on our custom
MFR protocol. These routes are passed as static routes to the NetSimCore.exe server by the
python script.

• Run simulation for 500 seconds. NetSim Simulation Console starts and “waiting for client to
connect” and press any key to Continue.

• The MFR protocol and socket client code to connect to NetSimCore.exe is written in
mfrProtocol.py.

• Open Command Prompt in the directory (Ex: <Workspace Path>\bin_x64\Python) where the
python codes are present and run the command python mfrProtocol.py

Figure 5: Run Python mfrProtocol.py using cmd prompt.

• Python interface interacts with NetSim Simulation and routes the packets from source to
destination based on MFR protocols.

Ver 13.2 Page 6 of 9

Figure 6: Python interface interacts with NetSim Simulation

• Simulation continues and packets are routed from source to destination based on MFR protocol
as shown below:

o Application 1: SENSOR_2(S)->SENSOR_13->SENSOR_3(D)
o Application 2: SENSOR_12(S)->SENSOR_13->SENSOR_7(D)

Analyzing the device route tables in NetSim Results Dashboard

• NetSim Results Window contains route tables for each device from which we can identify the
routes updated by the python interface as per MFR protocol. Since the route that is formed is from
SENSOR_2(S) -> SENSOR_13 -> SENSOR_3(D), route entries for packets with destination
11.1.1.3 are added in the nodes SENSOR_2, SENSOR_13, and SENSOR_3 to forward packets
to SENSOR_13 and SENSOR_3 respectively. In the nodes SENSOR_2, SENSOR_13, and
SENSOR_3 static route entries added based on MFR protocol by the python socket program can
be found as shown below:

Ver 13.3 Page 7 of 9

Figure 7: Route table for Wireless Sensor 2

The static route entry for SENSOR_2 specifies the next hop as SENSOR_13 which has the IP 11.1.1.13.

Figure 8: Route table for Wireless Sensor 13

The static route entry for SENSOR_13 specifies the next hop as the destination node SENSOR_3 which
has the IP 11.1.1.3.

Using NetSim Packet Trace to identify the route taken by packets from the source to the

destination.

NetSim Packet trace log file can be obtained by enabling the packet trace option in NetSim GUI before
running the simulation.
Upon running simulation with packet trace enabled, the packet trace log file can be accessed from the
NetSim Results Window using the Open Packet Trace link.
Once the packet trace log file is loaded you can filter a specific packet id in the PACKET_ID column to
view the path that the packet has taken.
Upon filtering Packet with id 4 we can observe the following in the packet trace:

Figure 9: NetSim Packet Trace

Ver 13.2 Page 8 of 9

Case 1: Without SDN

Figure 10: Application Metrics Table for Without SDN

Case 2: With SDN

Figure 11: Application Metrics Table for with SDN

You can see from the Application Metrics table that in case 2, for creating route path the delay is less as
compared in case 1.

Ver 13.3 Page 9 of 9

ss

Note: Code Modifications are highlighted in red color.

Changes to fn_NetSim_Application_Init(), in Application.c file, within Application project

/**
This function is used to initialize the parameter for all the application based on
the traffic type
*/
_declspec(dllexport) int fn_NetSim_Application_Init(struct stru_NetSim_Network
*NETWORK_Formal,NetSim_EVENTDETAILS *pstruEventDetails_Formal,char *pszAppPath_Formal,char
*pszWritePath_Formal,int nVersion_Type,void **fnPointer)
{

FILE* fp;
 int i = 0;
 char f_name[BUFSIZ];
 sprintf(f_name, "%s\\%s\\%s", pszAppPath,"Python", "Device_log.txt");
 fp = fopen(f_name, "w+");
 if (fp)
 {
 for (i = 0; i < NETWORK->nDeviceCount; i++)
 fprintf(fp, "%s\t%.2lf\t%.2lf\t%s\n", DEVICE_NAME(i + 1), DEVICE_POSITION(i + 1)->X,
 DEVICE_POSITION(i + 1)->Y, DEVICE_NWADDRESS(i + 1, 1)->str_ip);
 fclose(fp);
 }
 fprintf(stderr, "\nApppath: %s", pszAppPath);
 sprintf(f_name, "%s\\%s\\%s", pszAppPath,"Python", "Appinfo_log.txt");
 fp = fopen(f_name, "w+");
 if (fp)
 {
 //APP_CALL_INFO* info = appInfo[packet->pstruAppData->nApplicationId - 1]->appData;
 ptrAPPLICATION_INFO* appInfo = (ptrAPPLICATION_INFO*)NETWORK->appInfo;
 for (i = 0; i < NETWORK->nApplicationCount; i++)
 fprintf(fp, "%d\tSENSOR_%d\tSENSOR_%d\n", appInfo[i]->id, appInfo[i]->sourceList[0],
appInfo[i]->destList[0]);
 fclose(fp);
 }
 return fn_NetSim_Application_Init_F();
}

