Primary User Emulation (PUE) Attack in Cognitive Radio Networks

Software Recommended: NetSim Standard v13.3, Visual Studio 2022

Project Download Link:

https://github.com/NetSim-TETCOS/Primary-User Emulation-v13.3/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and setup the Project in NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-upnetsim-file-exchange-projects

Introduction

Cognitive Radio (CR) is a promising technology that can alleviate the spectrum shortage problem by enabling unlicensed users equipped with CRs to coexist with incumbent users in licensed spectrum bands while causing no interference to incumbent communications. Spectrum sensing is one of the essential mechanisms of CRs and its operational aspects are being investigated actively. In a hostile environment, an attacker may modify the air interface of a CR to mimic a primary user signal's characteristic, thereby causing legitimate secondary users to erroneously identify the attacker as a primary user. We coin the term primary user emulation (PUE) attack to refer to this attack. There is a realistic possibility of PUE attacks since CRs are highly reconfigurable due to their software-based air interface.

We create a PUE attack by adding two incumbents in the scenario in NetSim.One of the incumbents represents a "real" primary user while the second represents a "Malicious" primary user.

Our next goal is to detect the PUE attack by the secondary users. For example, Purposes we have set the detection time as proportional to the distance of the secondary users from the malicious primary user.

Example

- 1. The **PUE_Attack_Workspace** comes with a sample network configuration that are already saved. To open this example, go to Your work in the Home screen of NetSim and click on the **PUE_Attack_Example** from the list of experiments.
- 2. The network scenario loads as shown below:

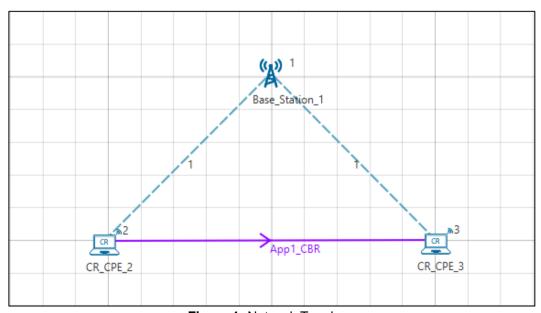


Figure 1: Network Topology

Settings done in example config file

3. Set the following property for CR-Base_Station_1 → INTERFACE_1 (COGNITIVE_RADIO) as shown in below given table.

Datalink_Layer_Properties Base_Station_1		
Incumbent count	2	
Incumbent1(malicious)		
ON_Duration(s)	4	
OFF_Duration(s)	10	
Keep Distance(m)	500	
Incumbent2 (Incumbent)		
ON_Duration(s)	9	
OFF_Duration(s)	9	
Keep Distance(m)	500	
Physical_Layer_ Properties Datalink Base_Station_1		
IFQP_Bitmap	100000000000000	

Table 1: CR Base Station 1 Properties

The timing diagram is as follows for Incumbent1(malicious) and Incumbent2(Incumbent):

Malicious --- 0s to 10s (OFF), 10s to 14s (ON), 14s to 24s (OFF), 24s to 28s (ON) ... and so on **Incumbent** --- 0s to 9 s (OFF), 9s to 18s (ON), 18s to 27s (OFF), 27s to 36s (ON) ... and so on

- 4. Distance between the CR-CPE and Incumbent is < 500. This ensures that the incumbent is detected. If the incumbent is beyond the keep out distance, then it is not detected.
- 5. Now run the simulation 50 Sec.

Results and discussion

You can see the delay in the **CR_Incumbent_log** file from the log files in the result dashboard Window.

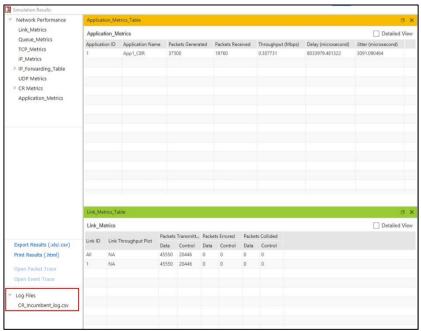


Figure 2: Network Topology

A file "CR_Incumbent_log" will be created in the log folder with the following contents: In the "CR_ Incumbent_log.csv" file we can see secondary users CR-CPE 2 and CR-CPE 3 will detect the PUE attack by Incumbent1 which is the malicious user

CR-CPE ID ▼	Time(Sec) ▼	Incumbent Device Type
2	9.129741	2 Legitimate PU
3	9.129751	2 Legitimate PU
2	24.049742	1 Malicious PU
3	24.049751	1 Malicious PU
2	38.129742	1 Malicious PU
3	38.129753	1 Malicious PU
2	45.009739	2 Legitimate PU
3	45.00975	2 Legitimate PU

Figure 3: CR_ Incumbent_log.csv file created in Log Folder

This additional delay has been set by the following code, User modifications can be made in the **fn_NetSim_CR_CPE_SSF()** function of **SpectrumManager.c** as mentioned below.

Additional_delay = dDistance / 10;

(You can also change the values as 10/100/1000 and analyze different variation in delay)

```
A. □ · · · □ □ · · / =
                                                                           for(nLoop=0;nLoop<input->nIncumbentCount;nLoop++)
            if(input->pstruIncumbent[nLoop]->nIncumbentStatus == IncumbentStatus_OPERATIOA
               dDistance = fn_NetSim_Utilities_CalculateDistance(DEVICE_POSITION(nDevId),
                if(dDistance <= input->pstruIncumbent[nLoop]->dKeepOutDistance)
                  308
309
310
311
312
313
314
                       \begin{array}{lll} & & \text{fprintf(fp, "$d,$f,$d,$", nDevId, Detection\_time / 1000000, nLoop if (nLoop == 0)} \end{array} 
315
316
                         fprintf(fp, "Malicious PU\n");
317
                         fprintf(fp, "Legitimate PU\n");
```

Figure 4: NetSim Project Source Code

This is a simple implementation of creating and detecting a PUE Attack by making modifications to primary user detection in CR.