© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2023

False Data Injection Attack
Two cases: Simulation and Emulation
Two Types: Payload modification and Header modification

Software: NetSim Standard v13.3 (64 bit), Visual Studio 2022
Project code download link: https://github.com/NetSim-TETCOS/False-Data-Injection-
Attack-in-Internetworks v13.3/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and setup the Project in
NetSim:
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-
up-netsim-file-exchange-projects

Introduction

FDI (False Data Injection) attack is a type of cyber-attack where an attacker injects false data
into a system or network with the intent of causing damage or disruption. FDI attacks can be
launched against various types of systems, including industrial control systems, critical
infrastructure, financial systems, and information systems.

FDI attacks can take various forms, such as modifying data in transit or at rest, manipulating
data to cause system malfunctions, and altering system configurations. Attackers can use
these methods to achieve different objectives, such as stealing sensitive data, causing
financial losses, or disrupting critical infrastructure.

Simulating an FDI Attack using NetSim

In this toy example, we launch an FDI attack on ICMP ping messages between a source and
destination. We show two types of false data injection attacks:

1. Packet payload change: The PING packet by default has its payload as
abcdefghijkimnopqrstuvwabcdefghi, we modify this to
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.

2. Packet header change. The destination IP address of the ping is changed from
192.168.0.46 to 192.168.0.68

The first attack is carried out within NetSim Simulator while the second attack is executed
using NetSim Emulator.

Case 1: FDI implementation within NetSim simulator. Packet payload modification.

This case is a simpler method of simulating the FDI attack requiring only one machine. Case
2 (described later) involves using 3 machines.

Ver 13.3 Page 1 of 11

http://www.tetcos.com/
https://github.com/NetSim-TETCOS/False-Data-Injection-Attack-in-Internetworks_v13.3/archive/refs/heads/main.zip
https://github.com/NetSim-TETCOS/False-Data-Injection-Attack-in-Internetworks_v13.3/archive/refs/heads/main.zip
https://support.tetcos.com/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2023

Virtual network within NetSim

/ -
WIRFSHARK FDI Attacker SRS
ey i 7 192.168.0.46 L == —_— -

Zzn- BT i Sl qmp;., ap file < -t ERE A

: EHELEHE :] 1021680412 . = T
Grign Payoad N -
= *lnp |pcaplle
False Data Injected into the ICMP

packet payload after FDI Attack

Original ping traffic captured using
Wireshark given as input to
NetSim

Fig 1: PING application between a real source and real destination is captured as a pcap file and given as an
input to a virtual source inside NetSim. In this example, the source IP is set to 192.168.0.12 and the destination IP
is set to 192.168.0.46. The external pcap file is available in the project download link.

Generating Packet capture for NetSim

We explain the steps used to capture PING data as a pcap file. This has been provided for
those readers who may wish to capture their own pcap files and use implement the FDI attack
on that.

1. Open Wireshark in the system where NetSim is installed.
2. Once the Wireshark is opened, please select the proper interface .(For Ex: Ethernet)
as show below. Double click on the interface to open live packet capture window.

A
4 n ® \ = LR
+
Weleoms to Wrsshark
Open
C:\Users\Joseph\Desktop\Raw.pcap (291 KB)
C:\Users\Joseph\ Desktop\INPUT_TO_NETSIM.pcap (270 KB)
C:\Users\Joseph\AppData\Local Temp\NetSim\std_13.3\DISPATCHED_TO_EMULATOR.peap (7252 Bytes)
C:\Users\oseph\Desktop\ WiresharkINPUT_TO_NETSIM.pcap (nt found)
Capture
using ths fer: (11| v | Abinterfaces shown ™
VMuware Network Adapter VMnet8
re Networ e
Adapter for \oopbackuﬁc capture —_—h
Local Area Connection” 8
Local Area Connection” 7
Local Area Connection” &
Learn
User'sGuide - Wiki - Questions and Answers - Mailing Lists - SharkFest - Wireshark Discord
You are running Wireshark 4.0.2 (14.0.1:0-g415456d13370). You receive automatic updates.
Ready to load or capture Mo Packets Profle: Defaut

Fig 2: Select packet capture interface to capture packets at source.

3. In this Example we have considered areal source with 192.168.0.12 and a real
destination with IP 192.168.0.46. Open command line at source device and enter the
command

» ping 192.168.0.46 -t

Ver 13.3 Page 2 of 11

http://www.tetcos.com/

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2023

BN Command Prompt - ping 192.162.0.46 -t

from
from
from

from
from

from
from

from
from
from

ot ot ot

from

Fig 3 : Ping traffic between source IP 192.168.0.12 and destination IP 192.168.0.46

4. The pcap file will contain all incoming and outgoing packets from the system in which
the capture is being done. Once the ping traffic capture is finished stop the Wireshark
packet capture and save the packet capture in a desired location with desired name
(*.pcap) for E.g., Raw.pcap with Save as type as Wireshark/tcpdump.... -pcap.

5. This PCAP file needs to be edited before giving as input to NetSim. The editcap

application in Wireshark Installation Directory can be used to edit the any pcap file to

be provided as a input to NetSim

Go to Wireshark installation directory [C:\Program Files\Wireshark]

Open command prompt, and execute the following command:

» editcap -C 14 -L -T rawip -F pcap "<File Location where the file is
present>/Raw.pcap" "<File Location where the file needs to be
saved>/INPUT_TO_NETSIM.pcap"

N o

Steps to simulate by providing pcap packet capture file as input to NetSim

1. Go to start search Run > Enter the command “SystemPropertiesAdvanced” and then

click on OK.
2. Click the Environment Variables - Add the following Environment PATH variable.
<File-Path-where-INPUT_TO_NETSIM.pcap file is

located>\INPUT_TO_NETSIM.pcap
For eg: C:\Users\Joseph\Desktop\INPUT_TO_NETSIM.pcap

Ver 13.3 Page 3 of 11

http://www.tetcos.com/

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2023

User variables for Joseph

Variable Value
OneDrive C\Users\Joseph\OneDrive
OneDriveConsumer C\Users\Joseph\OneDrive
Path C\Users\Joseph\AppData\Local\Microsoft\WindowsApps;D:\...
PyCharm Community Editi.. D:\Softwares\PyCharm Community Edition 2022.1.1\bin;
RLM_DIAGNOSTICS C\Users\Joseph\AppData\Local\Temp\NetSim\riminfo
TEMP C\Users\Joseph\AppData\Local\Temp
T™P C\Users\Joseph\AppData\Local\Temp
®
arial
Variable name: EMULATOR_INPUT
Variable value: C\Users\Joseph\Desktop\INPUT_TO_NETSIM.pcap
Browse Directory... Browse File. @ Cancel
PATHEXT .COM;.EXE; BAT,.CMD;.VBS; VBE; JS;JSE, WSF.WSH,.MSC;.PY,PYW ‘
New... Edit... Delete
OK Cancel

Fig 4 : Environment Variable Path

For more information how to provide pcap file as input refer our knowledge base article
https://support.tetcos.com/support/solutions/articles/14000103748-how-can-i-provide-pcap-
file-as-input-to-simulation-

Implementing the FDI attack

1. The FDI_Attack_in_Internetworks_v13.3 comes with a sample network configuration
that are already saved. To open this example, go to Your work in the home screen of
NetSim and click on the FDI_Sample_Internetwork from the list of experiments.

2. The saved network scenario consists of
o 2 Wired Node
o 1 L2 Switch
o 1 Router

3 a4
=) 2 WeRS
L2_Switch 3 Router 4

Wired_Node 2

App1_EMULATION

Wired_Node_1

Fig 5: NetSim Emulation Scenario, Wired_Node_1 device mapped for Source IP 192.168.0.12 and
Wired_Node_2 device mapped for Destination IP 192.168.0.46

3. Application Properties
o Application Type - EMUALTION
o Source IP -192.168.0.12
o Destination IP — 192.168.0.46
4. Run the Simulation for 100 sec.

Results and Discussions

Ver 13.3 Page 4 of 11

http://www.tetcos.com/
https://support.tetcos.com/support/solutions/articles/14000103748-how-can-i-provide-pcap-file-as-input-to-simulation-
https://support.tetcos.com/support/solutions/articles/14000103748-how-can-i-provide-pcap-file-as-input-to-simulation-

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2023

After the simulation is completed, we can check the results using Wireshark captured files. In
the Result Dashboard, On the left side, Packet Capture - Emulation and we can see all
Emulated Packets captured.

@ Simulation Results

L2_SWITCH_3
Application_Metrics
" Packet Capture
¥ Emulation
ALL_NETWORK_PAC
DISPATCHED_TO_EN
NOT_DISPATCHED_

REINJECTED_FROM_"—
¢ »

Fig 6: Emulation Packet Capture in Result Dashboard

We can observe original packets in the DISPATCHED_TO_EMUALTOR.pcap file.

A
Am 2@ =R QewnEFE | Eaqar
LIE lay filter S
No. Time Source Destination Protocol Length Info
77 80.159657 192.168.0.12 192.168.0.46 P 60 Echo (ping) request 1d-0x0001, 5eq-12006/58926, ttl-128 (no response found!)
78 81.175651 192.168.0.12 192.168.0.46 P 60 Echo (ping) request id=0x0001, seq=12007/50182, tt1=128 (no response found!)
7982202649 192.168.0.12 192.168.9.46 peld 60 Echo (ping) request id-0x0801, seq-12008/59438, tt1=128 (no response found!)
80 83.217555 192.168.0.12 192.168.0.46 M 60 Echo (ping) request 1d=0x0001, seq=12009/50694, ttl=128 (no response found!)
8184.244881 192.168.0.12 192.168.0.46 ICHP 60 Echo (ping) request 1d-0x00@1, seq=12018/50958, tt1-128 (no response found!)
8285243692 192.168.0.12 192.168.0.46 prel] 60 Echo (ping) request id-8x001, seq-12011/60206, ttl=128 (no response found!)
83 86.268285 192.168.0.12 192.168.0.46 P 60 Echo (ping) request 1d=8xP001, seq=12012/68462, tt1=128 (no response found!)
8487.293419 192.168.0.12 192.168.0.46 bel] 60 Echo (ping) request 1d-8xP9A1, seq~12013/68718, tt1-128 (no response found!)
85 88.308933 192.168.0.12 192.168.0.46 IHP 60 Echo (ping) request 1d=0x001, seq=12014/60974, tt1=128 (no response found!)
86 §9.338343 192.168.0.12 192.168.0.46 P 60 Echo (ping) request 1d-0x0001, 5eq-12015/61230, tt1-128 (no response found!)
87 90.354884 192.168.0.12 192. HP 60 Echo (ping) request 1d-0xB001, seq=12616/61436, tt1=128 (no response found!)
88 91.367138 192.168.0.12 192. . IcHP 60 Echo (ping) request id-0x0001, 5eq~12017/61742, tt1-128 (no response found!)
8992.380788 192.168.0.12 192.168.6.46 M 60 Echo (ping) request 1d=0xPAA1, seq=12618/61998, ttl=128 (no response found!)
90 93.407840 192.168.0.12 192.168.0.46 ICHP 60 Echo (ping) request 1d-0x0001, seq~12019/62254, tt1-128 (no response found!)
9194.427147 192.168.0.12 192.168.0.46 M 60 Echo (ping) request 1d-0x001, seq=12020/62510, ttl=128 (no response found!)
9295.455266 192.168.0.12 192.168.0.46 M 60 Echo (ping) request 1d-0x0001, seq=12021/62766, tt1=128 (no response found!)
93 96.469812 192.168.0.12 192.168.0.46 IHP 60 Echo (ping) request 1d-8x0001, seq=12022/63922, tt1-128 (no response found!)
94 97.485706 192.168.0.12 192.168.0.46 P 60 Echo (ping) request 1d-0x0001, seq-12023/63278, ttl-128 (no response found!)
95 98.498798 192.168.0.12 192.168.0.46 cHp 60 Echo (ping) request 1d-0x0001, seq=12024/63534, tt1-128 (no response found!)
96 99.513840 192.168.0.12 192.168.0.46 IHP 60 Echo (ping) request 1d-x0001, seq=12025/63798, tt1=128 (no response found!)
> Frame 87: 60 bytes on wire (488 bits 45 00 0 3c ea 94 00 0@ 50 81 ce al cd ad 6@ BC
Raw packet data 0010 cO aB 00 2e 6 00 le 6b 0@ 01 2e 0 61 62 63 64
3 Internet Protocol Version 4, Src: 19| 9920 65 66 67 65 69 6a 6b 6c 6d 6e 6F 70 71 72 73 74
v Internet Control Message Protocol || 2230 75 76 77 61 62 63 64 65 66 67 68 69
Type: 8 (Echo (ping) request) Original payload
Code: ©
Chacksum: @xle6b [correct]
[Checksum Status: Good]
Identifier (BE): 1 (0x0001)
Tdentifier (LE): 256 (0x9160)
Sequence Number (BE): 12016 (@x2e
Sequence Number (LE): 61486 (@xfE
> [No response seen]
~ Data (32 bytes)
Data: 6162636465666768696a6b6¢
[Length: 32]

Fig 7: Original payload captured by NetSim emulator

We can see false data injected packets in the REINJECTED_FROM_EMUALTOR:.pcap file

Ver 13.3 Page 5 of 11

http://www.tetcos.com/

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2023

Am:® ERE QeEF& T Faqaar

No. Time Source Destination Protocol Length Info
76 80.159784 192.168.8.12 192.168.0.46 M 60 Echo (ping) request 1d=0x0601, seq=12006/58926, ttl=128 (no response found!)
7781.175735 192.168.8.12 192.168.9.46 ICHP 60 Echo (ping) request id-0x0001, seq-12807/59182, ttl-128 (no response found!)
78 82.202710 192.168.9.12 192.168.9.46 TcHP 60 Echo (ping) request 1d=0x091, seq=12008/59438, ttl=128 (no response found!)
7983.217612 192.168.8.12 192.168.0.46 cHp 60 Echo (ping) request id=0x0081, seq=12669/50694, ttl=128 (no response found!)
80 84.244950 192.168.8.12 192.168.0.46 1o 60 Echo (ping) request 1d-@x091, seq-12018/59958, ttl=128 (no response found!)
81 85.243761 192.168.9.12 192.168.0.46 TP 68 Echo (ping) request 1d=0xP091, seq=12011/60286, ttl=128 (no response found!)
82 86.268335 192.168.8.12 192.168.0.46 ICHP 6 Echo (ping) request id-8x0001, seq-12812/68462, ttl1=128 (no response found!)
83 87.293518 192.168.8.12 192.168.0.46 IcHp 60 Echo (ping) request 1d=-8x0691, seq=12813/60718, tt1=128 (no response found!)
84 88.309869 192.168.8.12 192.168.9.46 o 60 Echio (ping) request 1d-0x0001, seq=12814/60974, ttl=128 (no response found!)
85 89.333406 192.168.8.12 192.168.0.46 TCHP 60 Echo (ping) request id-8x0881, seq-12615/61239, tt1-128 (no response found!)
86 90.354159 192.168.8.12 192.168.9.46 I 60 Echio (ping) request 1d-0x0001, seq-12816/61486, ttl=128 (no response found!)
87 91.367218 192.168.0.46 0P 60 Echo (ping) request 1d-0x0001, seq-12017/61742, ttl=128 (no response found!)
28 92.388857 192.168.0.46 IcHp 60 Echo (ping) request 1d-8x0601, seq=12818/61998, tt1=128 (no response found!)
£993.407942 192.168.0.12 192.168.9.46 ICHP 60 Echo (ping) request 1d-0x0001, seq-12019/62254, ttl-128 (no response found!)
90 94.427213 192.168.0.12 192.168.0.46 TCHP 60 Echo (ping) request id-0x0001, seq=12620/62510, tt1-128 (no response found!)

| 9195.455394 192.168.8.12 192.168.9.46 ICHP 60 Echo (ping) request 1d=9x0001, seq-12821/62766, tt1=128 (no response found!)
92 96.469905 192.168.0.12 192.168.0.46 I 60 Echo (ping) request 1d-0x0001, 52q~12022/63022, ttl=128 (no response found!)
93 97.485791 192.168.8.12 192.168.0.46 cHp 60 Echo (ping) request 1d=0x0601, seq=12623/63278, tt1=128 (no response found!)
94 98.498878 192.168.0.12 192.168.9.46 e 60 Echo (ping) request 1d-@x0001, seq-12024/63534, ttl-128 (no response found!)
9599.513956 192.168.0.12 192.168.0.46 0 60 Echo (ping) request id=0x0001, seq=12025/63790, ttl=128 (no response found!)

| > Frame 91: 68 bytes on wire (488 bits | 4500 00 3c ea 99 00 00 80 01 ce 9c <O o8 00 Oc

Raw packet data 2010 CO a8 00 2e 06 00 le 66 00 01 2e 5 41 41 41 41

> Internet Protocol Version 4, Src: 19| 2620 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
2030 41 41 41 41 41 41 41 41 4141 41 41

<

Internet Control Message Protocol
Type: 8 (Echo (ping) request) Modified payload after FDI attack
Code: B
Checksum: @xle66 incorrect, shoul
[Checksum Status: Bad]
Identifier (BE): 1 (8x0081)
Identifier (LE): 256 (0x0100)
Sequence Number (BE): 12021 (@x2¢
Sequence Number (LE): 62766 (@xf%
[No response seen]
Data (32 bytes)
Data: 41414141414141414141414]
[Length: 32]

<

Fig 8: Traffic with false data injected. Notice the difference in payload.
Case 2: FDI implementation in NetSim emulator. Packet header modification.

We have 3 systems — source, destination, and Emulator. The PING packets from source to
destination pass through the emulator.

FDI attack on real traffic using NetSim Emulator

False Data Injected into the
packet header of ICMP Traffic
during FDI Attack

NetSim Emulator

ICMP packets

generated from real < | Packets with modified
source node } | header
\ |
77777 R T B SO SO w—— |
Real Source IP Destination IP

192.168.0.12 192.168.0.68

Fig 9 : PING application between source and destination. The source IP is set to 192.168.0.12 and the destination
IP is set to 192.168.0.46. In NetSim We are implementing FDI Attack by modifying the destination IP address to
192.168.0.68 in ICMP packet header.

Steps to Simulate

The set-up to run emulation would be to have a minimum of three (3) PC’s. One would be the
real source, the second would run NetSim emulation server, and the third would be the real
destination.

In this example, we have considered 3 systems as shown below.

Ver 13.3 Page 6 of 11

http://www.tetcos.com/

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2023

Real Source IP: 192.168.0.12
NetSim Emulation Server IP: 192.168.0.81
Real Destination IP: 192.168.0.46

Setting up the NetSim Emulation Server
1. Run the NetSim in Administrator Mode (Right Click on NetSim Icon = Run as
Administrator)
2. Open the Existing Sample FDI_Sample_Internetwork from the list of Experiments (In
NetSim Home Screen - Your Work)
3. The saved network scenario consists of
o 2 Wired Node
o 1L2 Switch
o 1 Router

(<212 a4
e

L2_Switch_3 Router_ 4 Wired_Node_2

Wired_Node_1

Fig 10: NetSim Emulation Scenario, Wired_Node_1 device mapped for Source IP 192.168.0.12 and
Wired_Node_2 device mapped for Destination IP 192.168.0.46

4. Application Properties
o Application Type - EMUALTION
o Source IP - 192.168.0.12
o Destination IP — 192.168.0.46
5. Run the Simulation for 100 sec.

Setting up the Real Source and Destination

The client systems which are sources of real traffic can be connected to NetSim emulator by
resetting the gateway. Once the gateway for the client system is set as the NetSim Emulator
PC then traffic from the clients will go via NetSim Emulator PC.

Configuring NetSim Emulator as a Gateway in NetSim in Windows clients

1. Open command prompt in Administrator Mode

2. Type the command
a. route add 192.168.0.46 mask 255.255.255.0 192.168.0.81 metric 1
b. After execution, you will get “OK”.

EX Administrator: Command Prompt — O b4

2»route ADD 192.

Fig 11: Adding the Static route from source to destination via gateway as NetSim emulation server-192.168.0.81

3. To check whether IP Configuration affected or not type the command as show below
a. netstat -r

Ver 13.3 Page 7 of 11

http://www.tetcos.com/

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2023

EX Administrator: Command Prompt - O >

0On-link
0On-link

Fig 12 : Display of routing information at source node 192.168.0.12

We can observe that for the node 192.168.0.46, the gateway address assigned is
192.168.0.81, which is the IP Address of the system where NetSim Emulation server is
running

Results and discussion

After the simulation is completed, we can check the results using Wireshark captured files.
In the Result Dashboard, On the left side, Packet Capture = Emulation and we can see all
Emulated Packets captured.

2

L2_SWITCH_3
Application_Metrics
" Packet Capture
¥ Emulation
ALL_NETWORK_PAC
DISPATCHED_TO_EN
NOT_DISPATCHED_
REINJECTED_FROM_"—

Fig 13: Emulation Packet Capture in Result Dashboard

We observe original ping traffic generated at the source 192.168.0.12

Ver 13.3 Page 8 of 11

http://www.tetcos.com/

© TETCOS LLP. All rights reserved.
www.tetcos.com

£ “Ethemet - 68 X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
mae RE Q@ &= S =EQaam
[X] -]+
Destination Protocol Length Info ~
192.168.0.46 IcHp 74 Echo (ping) request id=0x0001, seq=5238/30228, ttl=128 (reply in 44)
92.165.0.12 P 92 Red r ¥ ork)
request id=0xdB01, seqe5233/38484, ttl=128 (reply in 52)
- request id=0x0801, seq=5248/ tt1=128 (reply in 62)
61 2 o T
73 3.219358 1CHP 74 Echo (ping) request 41/30996, ttl=128 (reply in 75)
ZE IcH 102 Redirect Redirect for network)
91 4.234601 IcHp 74 Echo (ping) request id=0x0001, sequ5242/31252, ttl=12s (reply in 93)
92 5366 ICHP 102 Redirect Re ect for network)
167 5.256313 ICHP 74 Echo (ping) request id=0x8081, s 43/31508, ttl=128 (reply in 109)
1 46 ICHP 102 Redirect rec
116 6.262952 IcHP 74 Echo (ping) request id=0xe00l, s tt1=128 (reply in 118)
117 6.263719 e.81 ICMP 102 Redirect Redirect fo k)
125 7.279873 .0.12 ICHe 74 Echo (ping) request id=0x0001, seq=5245/32020, ttl=128 (reply in 127) v
Frame 68: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface \Device\NPF _{ [18 co 4d be de 72 94 de 89 59 66 99 06 @0 45 8@ M- r-- Y - E
Ethernet II, Src: Giga-Byt 59:86:99 (94:de:80:59:86:99), Dst: Giga-Byt be:de:72 (18:c0:4d:be:d @0 3c 91 a9 00 20 30 01 0 00 cB a8 00 oc <@ a3 <
v Internet Protocol Version 4, Src: 192.168.8.12, Dst: 192.168.8.46 @@ 2e 05 00 33 e3 00 01 14 78 61 62 63 64 65 66 . 8 xabedef
100 = Versioa: 4 67 68 69 6a 6b 6c 6d 6e 6f 76 71 72 75 74 75 76 ghijklan opgrstuv
seoe T Version: 77 61 62 63 64 65 66 67 68 69 wabcdefg hi
. @11 = Header Length: 20 bytes (5)
Differentiated Services Field: @x0@ (DSCP: €S8, ECN: Not-ECT)
Total Length: 66
Identification: @x31a9 (37289)
@e@. = Flags: @x@
...0 0BOO ©OOO 0OV = Fragment Offset: ©
Time to Live: 128
protocol: ICMP (1)
Header Checksum: @x@00@ [validation disabled]
der_check: : ified
Original packet header
Internet Control Message Protoce
< >
@ 7 wireshark Ethemet028D21.pcapng Packets: 1727 - Displayed: 238 (13.8%) Profie: Default

Fig 14: Original ping traffic generated from real source 192.168.0.12, captured using Wireshark.

We can see false data injected packets in the false destination node 192.168.0.68

a
mie NG QewmEFSE =Sl
N |iemp & ip.sre==192.168.0.12
No. Time Source Destination Protocol Length Info
913 57.307933 192.168.0.12 192.168.0.68 IMe 74 Echo (ping) request id=0x@001, seq=2085/9480, ttl=127 (no response found!)
928 62.085348 192.168.0.12 192.168.0.68 IMP 74 Echo (ping) request id=0x@001, seq=2086/9736, ttl=127 (no response found!)
967 67.091952 192.168.0.12 192.168.0.68 e 74 Echo (ping) request id=0x@001, seq=2087/9992, ttl=127 (no response found!)
1025 72.094388 192.168.0.12 192.168.0.68 e 74 Echo (ping) request 1id=8x@001, seq-2088/10248, ttl=127 (no response found!)
1065 77.089713 192.168.0.12 192.168.0.68 e 74 Echo (ping) request id=0x@001, seq=2089/10504, ttl=127 (no response found!)
1149 82.092135 192.168.0.12 192.168.0.68 IcMP 74 Echo (ping) request id=0x@001, seq=2098/1076@, ttl=127 (no response found!)
1966 87.883133 192.168.0.12 192.168.0.68 IcHP 74 Echo (ping) request id=0x@0@1, seq=2091/11016, ttl=127 (no response found!)
2434 92.096064 192.168.0.12 192.168.0.68 IcHp 74 Echo (ping) request id=0x@001, seq=2092/11272, ttl=127 (no response found!)
2929 97.894593 192.168.0.12 192.168.0.68 IcHp 74 Echo (ping) request id=0x@001, seq=2093/11528, ttl=127 (no response found!)
3183 102.103787 192.168.0.12 192.168.0.68 pla 74 Echo (ping) request id=0x@001, seq=2094/11784, ttl=127 (no response found!)
3346 107.095221 192.168.0.12 192.168.0.68 pe 4 74 Echo (ping) request id=0x@001, seq=2095/12040, ttl=127 (no response found!)
3489 112.100850 192.168.0.12 192.168.0.68 e 74 Echo (ping) request 1d=0x0001, seq=2096/12296, ttl=127 (no response found!)
3627 117.100473 192.168.0.12 192.168.0.68 e 74 Echo (ping) request id=0x@801, seq=2097/12552, ttl=127 (no response found!)
3727 122.095225 192.168.0.12 192.168.0.68 P 74 Echo (ping) request id=8x0001, seq=-2098/12808, ttl=127 (no response found!)
4219 127.108133 192.168.0.12 192.168.0.68 P 74 Echo (ping) request 1d=@x0001, seq=2099/13864, ttl=127 (no response found!)
4519 132.083288 192.168.0.12 192.168.0.68 P 74 Echo (ping) request 1d=8x0001, seq=210@/13320, ttl=127 (no response found!)
4810 137.100359 192.168.8.12 192.168.0.68 P 74 Echo (ping) request id=0x0001, seq=2101/13576, ttl=127 (no response found!)
5129 142.083010 192.168.0.12 192.168.0.68 e 74 Echo (ping) request 1id=0x@001, seq=2102/13832, ttl=127 (no response found!)
5376 147.111344 192.168.0.12 192.168.0.68 e 74 Echo (ping) request id=0x@001, seq=2103/14088, ttl=127 (no response found!)
> Frame 3489: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface \ 18 ¢@ 4d 72 91 47 18 <@ 4d be de 72 08 00 45 00 Mr-G-- M--r--E
> Ethernet II, Src: Giga-Byt_be:de:72 (18:c@:4d:be:de:72), Dst: Giga-Byt_72:91:47 (18: 90 3c 85 48 00 00 7f @1 34 ee c@ aB 0@ Oc O aB <-H 4
v Internet Protocol Version 4, Src: 192.168.0.12, Dst: 192.168.8.68 8020 80 44 68 86 45 2b @0 B1 ©8 36 61 62 63 64 65 66 -D--E+- - -Babcdef
0100 = Version: 4 0838 67 68 69 6a 6b 6c 6d 6e 6F 78 71 72 73 74 75 76 ghijklmn opgrstuv
0840 77 61 62 63 64 65 66 67 68 69 wabcdefg hi

. 0101 = Header Length: 20 bytes (5)

» Differentiated Services Field: @xe® (DSCP: (S8, ECN: Not-ECT)

Total Length: 6@
Identification: @x8548 (34120)
> 000. = Flags: @x@
...0 0000 PO0O VOOR = Fragment Offset: ©
Time to Live: 127
Protocol: ICMP (1)
Header Checksum: @x34ee [validation disabled]

FDI attack

> Internet Control Message Protocol

Ver 13.3

Modified packet header after

header by NetSim.

Page 9 of 11

Fig 15: FDI Traffic captured by the destination 192.168.0.68, which is the false data Injected in the ICMP packet

The original ping traffic generated by the source 192.168.0.12 destined to 192.168.0.46 was
passed via NetSim Emulation server 192.168.0.81. At the server we implemented the FDI
attack. After the FDI attack, NetSim will reinject the modified packet to the actual network with
Destination IP modified to 192.168.0.68. We see that the real destination will not receive any
ICMP Packets from source 192.168.0.12, since the destination address is now different in the
packets. If there is a machine with IP 192.168.0.68 in the network, then that machine will now
receive the ICMP traffic from source 192.168.0.12.

http://www.tetcos.com/

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2023

Appendix: NetSim source code modifications

MS Visual Studio Development environment is required for editing and building NetSim
source codes. Please see this link on setting up Visual Studio
https://support.tetcos.com/support/solutions/articles/14000138721-what-components-of-
visual-studio-community-2022-to-install-and-configure-to-work-with-netsim-source-c

To open our project source code section, in NetSim home screen to > your work - source
code - open code.

NetSim comes with inbuilt low-level functions to capture packets. This code is not open for
user modification. The code to access the payload/header and to modify the payload/header
is open to users and can be modified. We show below the source code changes we have
made in red. Users can alter these functions to implement their own FDI attacks.

Changes to fn_NetSim_IP_Run() in IP.c file, in IP project

Case 1: Payload modification

_declspec(dllexport) int fn_NetSim_IP_Run()

{
/IFalse Data
char s[BUFSIZ] = "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA™,
switch (pstruEventDetails->nEventType)

{
case NETWORK_OUT_EVENT:

{

ptrlP_FORWARD_ROUTE route = NULL;
NetSim_PACKET* packet = pstruEventDetails->pPacket;
NETWORK_LAYER PROTOCOL nLocalNetworkProtcol;
/[False Data Injection in Network Layer into packet payload
if (packet)
{

/[Device ID of Attacker

if (pstruEventDetails->nDeviceld == 4){

for (inti=28;i<60; i++)
packet->szPayload->packet[i] = s[i - 28];

}
}
nLocalNetworkProtcol =

fnGetLocalNetworkProtocol(pstruEventDetails);

if (nLocalNetworkProtcol)

fnCallProtocol(nLocalNetworkProtcol);
return O;

Ver 13.3 Page 10 of 11

http://www.tetcos.com/
https://support.tetcos.com/support/solutions/articles/14000138721-what-components-of-visual-studio-community-2022-to-install-and-configure-to-work-with-netsim-source-c
https://support.tetcos.com/support/solutions/articles/14000138721-what-components-of-visual-studio-community-2022-to-install-and-configure-to-work-with-netsim-source-c

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2023

Case 2: Header modification

_declspec(dllexport) int fn_NetSim_IP_Run()

{
//[False Data
char s[BUFSIZ] = "D"; //hexadecimal value for D is 68
switch (pstruEventDetails->nEventType)

{
case NETWORK_OUT_EVENT:

{
ptrlP_FORWARD_ROUTE route = NULL,;
NetSim_PACKET* packet = pstruEventDetails->pPacket;
NETWORK_LAYER_PROTOCOL nLocalNetworkProtcol;
// False Data Injection in Network Layer into packet header
if (packet)

/[Device ID of Attacker
if (pstruEventDetails->nDeviceld == 1){
for (inti=19;i< 20; i++)
packet->szPayload->packet[i] = s[i - 19];
}

nLocalNetworkProtcol =
fnGetLocalNetworkProtocol(pstruEventDetails);
if (nLocalNetworkProtcol)
{
fnCallProtocol(nLocalNetworkProtcol);
return O;

Ver 13.3 Page 11 of 11

http://www.tetcos.com/

