
© TETCOS LLP. All rights reserved

Ver 13.3 Page 1 of 8

1 TCP Congestion Control Algorithms

1.1 Introduction

A key component of TCP is end-to-end congestion control algorithm. The TCP congestion

control algorithm limits the rate at which the sender sends traffic into the network based on the

perceived network congestion. The TCP congestion control algorithm at the sender maintains a

variable called congestion window, commonly referred as cwnd, that limits the amount of

unacknowledged data in the network. The congestion window is adapted based on the network

conditions, and this affects the sender’s transmission rate. The TCP sender reacts to congestion

and other network conditions based on new acknowledgements, duplicate acknowledgements

and timeouts. The TCP congestion control algorithms describe the precise way in which TCP

adapts cwnd with the different events.

The TCP congestion control algorithm has three major phases (a) slow start, (b) congestion

avoidance, and (c) fast recovery. In slow-start, TCP is aggressive and increases cwnd by one

MSS with every new acknowledgement. In congestion avoidance, TCP is cautious and

increases the cwnd by one MSS per round-trip time. Slow-start and congestion avoidance are

mandatory components of all TCP congestion control algorithms. In the event of a packet loss

(inferred by timeout or triple duplicate acknowledgements), the TCP congestion control

algorithm reduces the congestion window to 1 (e.g., Old Tahoe, Tahoe) or by half (e.g., New

Reno). In fast recovery, TCP seeks to recover from intermittent packet losses while maintaining

a high congestion window. The new versions of TCP, including TCP New Reno, incorporate fast

recovery as well. Figure 1-1 presents a simplified view of the TCP New Reno congestion control

algorithm highlighting slow-start, congestion avoidance and fast recovery phases.

TCP congestion control algorithm is often referred to as additive-increase multiplicative-

decrease (AIMD) form of congestion control. The AIMD congestion control algorithm often leads

to a “saw tooth” evolution of the congestion window (with linear increase of the congestion

window during bandwidth probing and a multiplicative decrease in the event of packet losses),

see Figure 1-6.

© TETCOS LLP. All rights reserved

Ver 13.3 Page 2 of 8

Figure 1-1: A simplified view of FSM of the TCP New Reno congestion control algorithm

1.2 Network Setup

We will seek a large file transfer with TCP over a lossy link to study the TCP congestion control

algorithms. We will simulate the network setup illustrated in Figure 1-3 with the configuration

parameters listed in detail in steps to study the working of TCP congestion control algorithms.

Open NetSim and click on Experiments> Internetworks>TCP> TCP Congestion Control

Algorithms > Old-Tahoe then click on the tile in the middle panel to load the example as

shown in below Figure 1-2.

Figure 1-2: List of scenarios for the example of TCP Congestion Control Algorithms

© TETCOS LLP. All rights reserved

Ver 13.3 Page 3 of 8

NetSim UI displays the configuration file corresponding to this experiment as shown below:

Figure 1-3: List of scenarios for the example of TCP Congestion Control Algorithms

1.3 Procedure

Old Tahoe

The following set of procedures were done to generate this sample.

Step 1: A network scenario is designed in NetSim GUI comprising of 2 Wired Nodes and 2

Routers in the “Internetworks” Network Library.

Step 2: In the Source Node, i.e., Wired Node 1, in the TRANSPORT LAYER Properties,

Congestion Control Algorithm is set to OLD TAHOE. Congestion plot enabled is set to TRUE.

Step 3: In the General Properties of Wired Node 1 i.e., Source, Wireshark Capture is set to

Online.

NOTE: Accept default properties for Routers as well as the Links Properties should be changed.

Step 4: Right-click the link ID (of a wired link) and select Properties to access the link’s

properties. Set Max Uplink Speed and Max Downlink Speed to 10 Mbps. Set Uplink BER and

Downlink BER to 0. Set Uplink Propagation Delay and Downlink Propagation Delay as 100

microseconds for the links 1 and 3 (between the Wired Node’s and the routers). Set Uplink

Propagation Delay and Downlink Propagation Delay as 50000 microseconds and Uplink BER

and Downlink BER to 0.0000001 for the backbone link connecting the routers, i.e., 2.

Step 5: Right click on the Application Flow App1 CBR and select Properties or click on the

Application icon present in the top ribbon/toolbar.

An CBR Application is generated from Wired Node 1 i.e., Source to Wired Node 2 i.e.,

Destination with Packet Size set to 1460 Bytes and Inter Arrival Time set to 1168 microseconds.

© TETCOS LLP. All rights reserved

Ver 13.3 Page 4 of 8

Step 6: Click on Display Settings > Device IP check box in the NetSim GUI to view the network

topology along with the IP address.

Step 7: Click on Plots icon and select the Enable Plots checkbox. This enables us to view the

throughput plot of the application App1 CBR.

Step 8: Click on Run simulation. The simulation time is set to 20 seconds. In the “Static ARP

Configuration” tab, Static ARP is set to disable.

Tahoe

Step 1: In the Source Node, i.e., Wired Node 1, in the TRANSPORT LAYER Properties,

Congestion Control Algorithm is set to TAHOE. Congestion plot enabled is set to TRUE.

Step 2: Click on Run simulation. The simulation time is set to 20 seconds. In the “Static ARP

Configuration” tab, Static ARP is set to disable.

New Reno

Step 1: In the Source Node, i.e. Wired Node 1, in the TRANSPORT LAYER Properties,

Congestion Control Algorithm is set to NEW RENO. Congestion plot enabled is set to TRUE.

Step 2: Click on Run simulation. The simulation time is set to 20 seconds. In the “Static ARP

Configuration” tab, Static ARP is set to disable.

1.4 Output

We have enabled WireShark Capture in the Wired Node 1. The PCAP file is generated at the

end of the simulation. From the PCAP file, the congestion window evolution graph can be

obtained as follows. In Wireshark, select any data packet with a left click, then, go to Statistics

> TCP Stream Graphs > Window Scaling > Select Switch Direction.

The congestion window evolution for Old Tahoe, Tahoe and New Reno congestion control

algorithms are presented in Figure 1-4, Figure 1-5, and Figure 1-6, respectively.

Table 1-1 shows the throughput values of different congestion control algorithms (obtained from

the Application Metrics).

© TETCOS LLP. All rights reserved

Ver 13.3 Page 5 of 8

Figure 1-4: Congestion window evolution with TCP Old Tahoe. We note that Old Tahoe infers packet loss

only with timeouts, and updates the slow-start threshold ssthresh and congestion window cwnd as

ssthresh = cwnd/2 and cwnd = 1

© TETCOS LLP. All rights reserved

Ver 13.3 Page 6 of 8

Figure 1-5: Congestion window evolution with TCP Tahoe. We note that Tahoe infers packet loss with

timeout and triple duplicate acknowledgements, and updates the slow-start threshold ssthresh and

congestion window cwnd as ssthresh = cwnd/2 and cwnd = 1

© TETCOS LLP. All rights reserved

Ver 13.3 Page 7 of 8

Figure 1-6: Congestion window evolution with TCP New Reno. We note that New Reno infers packet loss

with timeout and triple duplicate acknowledgements, and updates the slow-start threshold ssthresh and

congestion window cwnd as ssthresh = cwnd/2 and cwnd = ssthresh + 3MSS (in the event of triple

duplicate acknowledgements).

Congestion Control
Algorithm

Throughput

Old Tahoe 2.98 Mbps

Tahoe 2.62 Mbps

New Reno 4.12 Mbps

Table 1-1: Long-term average throughput of the different TCP congestion control algorithms

1.5 Observations and Inference

1. We can observe slow start, congestion avoidance, timeout, fast retransmit and recovery

phases in the Figure 1-4, Figure 1-5, and Figure 1-6. In Figure 1-4, we note that Old

Tahoe employs timeout, slow-start and congestion avoidance for congestion control. In

Figure 1-5, we note that Tahoe employs fast retransmit, slow-start and congestion

avoidance for congestion control. In Figure 1-6, we note that New Reno employs fast

retransmit and recovery, congestion avoidance and slow-start for congestion control.

© TETCOS LLP. All rights reserved

Ver 13.3 Page 8 of 8

2. We note that TCP New Reno reports a higher long term average throughput (in

comparison with Old Tahoe and Tahoe, see Table 1-1) as it employs fast retransmit and

recovery to recover from packet losses.

