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1 M/D/1 and M/G/1 Queues (Level 3) 

1.1 Motivation 

In this simulation experiment, we will study a model that is important to understand the 

queuing and delay phenomena in packet communication links. Let us consider the network 

shown in Figure 1-2. Wired_Node_1 is transmitting UDP packets to Wired_Node_2 through 

a router. Link 1 and Link 2 are of speed 10 Mbps. The packet lengths are 1250 bytes plus a 

54-byte header, so that the time taken to transmit a packet on each 10 Mbps link is 
1304×8

10
 

𝜇sec =1043.2 𝜇sec. In this setting, we would like answers to the following questions: 

1. We notice that the maximum rate at which these packets can be carried on a 10 Mbps 

link is 
106

1043.2
= 958.59 packets per second. Can the UDP application send packets at 

this rate? 

2. The time taken for a UDP packet to traverse the two links is 2 × 1043.2 = 2086.4 𝜇sec. 

Is this the time it actually takes for a UDP packet generated at Wired_Node_1 to reach 

Wired_Node_2. 

The answer to these questions depends on the manner in which the UDP packets are being 

generated at Wired_Node_1. If the UDP packets are generated at intervals of 1043.2 𝜇sec 

then successive packets will enter the Link 1, just when the previous packet departs. In 

practice, however, the UDP packets will be generated by a live voice or video source. 

Depending on the voice activity, the activity in the video scene, and the coding being used 

for the voice and the video, the rate of generation of UDP packets will vary with time. 

Suppose two packets were generated during the time that one packet is sent out on Link 1, 

then one will have to wait, giving rise to queue formation. This also underlines the need for a 

buffer to be placed before each link; a buffer is just some dynamic random-access memory 

in the link interface card into which packets can be stored while waiting for the link to free up.  

Queuing models permit us to understand the phenomenon of mismatch between the service 

rate (e.g., the rate at which the link can send out packets) and the rate at which packets 

arrive. In the network in Figure 1-2, looking at the UDP flow from Wired_Node_1 to 

Wired_Node_2, via Router 3, there are two places at which queueing can occur. At the 

interface between Wired_Node_1 and Link 1, and at the interface between Router 3 and 

Link 2. Since the only flow of packets is from Wired_Node_1 to Wired_Node_2, all the 

packets entering Link 2 are from Link 1, and these are both of the same bit rate. Link 2, 

therefore, cannot receive packets faster than it can serve them and, at any time, only the 
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packet currently in transmission will be at Link 2. On the other hand at the Wired_Node_1 to 

Link 1 interface, the packets are generated directly by the application, which can be at 

arbitrary rates, or inter-packet times. 

Suppose that, at Wired_Node_1, the application generates the successive packets such that 

the time intervals between the successive packets being generated are statistically 

independent, and the probability distribution of the time intervals has a negative exponential 

density, i.e., of the form 𝜆 𝑒−𝜆𝑥,  where 𝜆 (packets per second) is a parameter, called the rate 

parameter, and 𝑥 (seconds) is the argument of the density. The application generates the 

entire packet instantaneously, i.e., all the bits of the packet arrive from the application 

together, and enter the buffer at Link 1, to wait behind the other packets, in a first-in-first-out 

manner.  The resulting random process of the points at which packets enter the buffer of 

Link 1 is called a Poisson Process of rate 𝜆 packets per second. The buffer queues the 

packets while Link 1 serves them with service time 𝑏 = 1043.2 𝜇sec. Such a queue is called 

an M/D/1 queue, where the notation is to be read as follows. 

▪ The M before the first slash (denoting “Markov”) denotes the Poisson Process of 

instants at which packets enter the buffer. 

▪ The D between the two slashes (denoting “Deterministic”) denotes the fixed time taken 

to serve each queued packet. 

▪ The 1 after the second slash denotes that there is just a single server (Link 1 in our 

example) 

This way of describing a single server queueing system is called Kendall’s Notation. 

In this experiment, we will understand the M/D/1 model by simulating the above-described 

network on NetSim. The M/D/1 queueing model, however, is simple enough that it can be 

mathematically analyzed in substantial detail. We will summarize the results of this analysis 

in the next section. The simulation results from NetSim will be compared with the analytical 

results. 

1.2 Mathematical Analysis of the M/D/1 Queue 

The M/D/1 queueing system has a random number of arrivals during any time interval. 

Therefore, the number of packets waiting at the buffer is also random. It is possible to 

mathematically analyze the random process of the number of waiting packets. The 

procedure for carrying out such analysis is, however, beyond the scope of this document. 

We provide the final formulas so that the simulation results from NetSim can be compared 

with those provided by these formulas. 
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As described earlier, in this chapter, the M/D/1 queue is characterized by two parameters: 𝜆 

(packets per second), which is the arrival rate of packets into the buffer, and 𝜇 (packets per 

second), which is the rate at which packets are removed from a nonempty queue. Note that 

1/𝜇 is the service time of each packet. 

Define 𝜌 =  𝜆 ×
1

𝜇
=  𝜆/𝜇. We note that 𝜌 is the average number of packets that arrive during 

the service time of a packet. Intuitively, it can be expected that if 𝜌 > 1 then packets arrive 

faster than the rate at which they can be served, and the queue of packets can be expected 

grow without bound. When 𝜌 < 1 we can expect the queue to be “stable.” When 𝜌 = 1, the 

service rate is exactly matched with the arrival rate; due to the randomness, however, the 

queue can still grown without bound. The details of this case are beyond the scope of this 

document. 

For the 𝑘𝑡ℎ arriving packet, denote the instant of arrival by 𝑎𝑘 , the instant at which service for 

this packet starts as 𝑠𝑘 , and the instant at which the packet leaves the system as 𝑑𝑘 . Clearly, 

for all 𝑘, 𝑑𝑘 − 𝑠𝑘 =
1

𝜇
, the deterministic service time. Further define, for each 𝑘, 

𝑊𝑘 = 𝑠𝑘 − 𝑎𝑘 

𝑇𝑘 = 𝑑𝑘 − 𝑎𝑘 

i.e., 𝑊𝑘 is called the queuing delay, i.e., time from the arrival of the 𝑘𝑡ℎ packet until it starts 

getting transmitted, whereas 𝑇𝑘 is called the total delay, i.e., the time from the arrival of the 

𝑘𝑡ℎ packet until its transmission is completed. Considering a large number of packets, we 

are interested in the average of the values 𝑊1, 𝑊2, 𝑊3, ⋯, i.e., the average queueing time of 

the packets. Denote this average by 𝑊. By mathematical analysis of the packet queue 

process, it can be shown that for an M/D/1 queueing system, 

𝑊 =
1

2𝜇
 ×

𝜌

1 − 𝜌
 

Denoting by 𝑇, the average total time in the system (i.e., the average of 𝑇1, 𝑇2, 𝑇3, ⋯), clearly  

𝑇 = 𝑊 +
1

𝜇
. 

Observe the following from the above formula: 

1. As 𝜌 approaches 0, 𝑊 becomes 0. This is clear, since, when the arrival rate becomes 

very small, and arriving packet sees a very small queue. For arrival rate approaching 0, 

packets get served immediately on arrival. 

2. As 𝜌 increases, 𝑊 inreases. 
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3. As 𝜌 approaches 1 (from values smaller than 1), the mean delay goes to ∞. 

We will verify these observations in the NetSim simulation. 

1.3 The Experimental Setup 

Open NetSim and click on Experiments> Internetworks> Network Performance> MD1 

and MG1 Queues then click on the tile in the middle panel to load the example as shown in 

below  Figure 1-1. 

 

Figure 1-1: List of scenarios for the example of MD1 and MG1 Queues 

NetSim UI displays the configuration file corresponding to this experiment as shown above: 

The model described at the beginning of this chapter is shown in Figure 1-2. 
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Figure 1-2: A single wired node (Wired_Node_1) sending UDP packets to another wired node 

(Wired_Node_2) through a router (Router 3). The packet interarrival times at Wired_Node_1 are 

exponentially distributed, and packets are all of the same length, i.e., 1250 bytes plus UDP/IP header. 

1.4 Procedure 

Queuing delay for IAT-20863 (µ𝒔) Sample: 

The following set of procedures were done to generate this sample: 

Step 1: A network scenario is designed in NetSim GUI comprising of 2 Wired Nodes and 1 

Router in the “Internetworks” Network Library. 

Step 2: Link Properties are set as per the table given below Table 1-1. 

Link Properties Link 
1 

Link 2 

Uplink Speed (Mbps) 10 10 

Downlink Speed (Mbps) 10 10 

Uplink BER 0 0 

Downlink BER 0 0 

Uplink Propagation Delay (μs) 0 0 

Downlink Propagation Delay (μs) 0 0 

Table 1-1: Wired link properties 

Step 3: Right click on the Application Flow App1 CUSTOM and select Properties or click on 

the Application icon present in the top ribbon/toolbar. 
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A CUSTOM Application is generated from Wired Node 1 i.e. Source to Wired Node 2 i.e. 

Destination. Transport Protocol is set to UDP with Packet Size set to 1250 Bytes and Inter 

Arrival Time set to 20863 µs and distribution to Exponential. 

The Packet Size and Inter Arrival Time parameters are set such that the Generation Rate 

equals 0.096 Mbps. Generation Rate can be calculated using the formula: 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝑀𝑏𝑝𝑠)  =  𝑃𝑎𝑐𝑘𝑒𝑡 𝑆𝑖𝑧𝑒 (𝐵𝑦𝑡𝑒𝑠)  ∗  8/𝐼𝑛𝑡𝑒𝑟𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 (µ𝑠) 

Step 4: Packet Trace is enabled in NetSim GUI. At the end of the simulation, a very large 

.csv file is containing all the packet information is available for the users to perform packet 

level analysis. 

Step 5: Plots are enabled in NetSim GUI. Run the Simulation for 100 Seconds. 

Similarly, the other samples are created by changing the Inter Arrival Time per the formula 

𝐼𝐴𝑇 =
106

958.59 ∗ 𝜌
 

as per the table given below Table 1-2. 

Ρ IAT (𝝁𝒔) 

0.05 20863 

0.1 10431 

0.15 6954 

0.2 5215 

0.25 4172 

0.3 3477 

0.35 2980 

0.4 2607 

0.45 2318 

0.5 2086 

0.55 1896 

0.6 1738 

0.65 1604 

0.7 1490 

0.75 1390 

0.8 1303 

0.85 1227 

0.9 1159 

0.95 1098 

Table 1-2: Inter Arrival Time Settings 

Even though the packet size at the application layer is 1250 bytes, as the packet moves 

down the layers, overhead is added. The overheads added in different layers are shown in 

the below table and can be obtained from the packet trace: 



© TETCOS LLP. All rights reserved 

Ver 13.3 Page 7 of 10 

Layer Overhead (Bytes) 

Transport Layer 8 

Network Layer 20 

MAC layer 26 

Physical Layer 0 

Total 54 

Table 1-3: Overheads added to a packet as it flows down the network stack 

1.5 Obtaining the Mean Queuing delay from the Simulation 

Output 

After running the simulation, note down the “Mean Delay” in the Application Metrics within 

the Results Dashboard. This is the average time between the arrival of packets into the 

buffer at Wired_Node_1, and their reception at Wired_Node_2.  

As explained in the beginning of this chapter, for the network shown in Figure 1-2, the end-

to-end delay of a packet is the sum of the queueing delay at the buffer between the wired-

node and Link_1, the transmission time on Link_1, and the transmission time on Link_2 

(there being no queueing delay between the Router and Link_2). It follows that. 

𝑀𝑒𝑎𝑛 𝐷𝑒𝑙𝑎𝑦 = (
1

2𝜇
×

𝜌

1 − 𝜌
) +

1

𝜇
+

1

𝜇
 

1.6 Output Table 

Sample ρ 𝝀 Mean Delay 
(𝝁𝒔) 

Queuing Delay 
(𝝁𝒔) (Simulation) 

Queuing Delay (𝝁𝒔) 
(Theory) 1 0.05 47.93 2112.87 26.47 27.45 

2 0.10 95.86 2144.01 57.61 57.96 

3 0.15 143.79 2178.86 92.46 92.05 

4 0.20 191.72 2218.09 131.69 130.40 

5 0.25 239.65 2259.11 172.71 173.87 

6 0.30 287.58 2309.49 223.09 223.54 

7 0.35 335.51 2365.74 279.34 280.86 

8 0.40 383.44 2435.65 349.25 347.73 

9 0.45 431.37 2513.79 427.39 426.76 

10 0.50 479.30 2608.38 521.98 521.60 

11 0.55 527.22 2721.59 635.19 637.51 

12 0.60 575.15 2864.88 778.48 782.40 

13 0.65 623.08 3052.84 966.44 968.68 

14 0.70 671.01 3304.58 1218.18 1217.07 

15 0.75 718.94 3633.66 1547.26 1564.80 

16 0.80 766.87 4160.39 2073.99 2086.40 

17 0.85 814.80 5115.95 3029.55 2955.73 

18 0.90 862.73 6967.16 4880.76 4694.39 

19 

 

0.95 910.66 12382.98 10296.58 

 

 

 

9910.39 

Table 1-4: Mean Delay, Queueing delay from Simulation and Queueing delay from analysis 
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Comparison Chart 

 
Figure 1-3: Comparison of queueing delay from simulation and analysis 

1.7 Advanced Topic: The M/G/1 Queue 

In Section 1.1, we introduced the M/D/1 queue. Successive packets were generated 

instantly at exponentially distributed time intervals (i.e., at the points of a Poisson process); 

this gave the “M” in the notation. The packets were all of fixed length; this gave the “D” in the 

notation. Such a model was motivated by the transmission of packetized voice over a fixed 

bit rate wireline link. The voice samples are packetized into constant length UDP packets. 

For example, typically, 20ms of voice samples would make up a packet, which would be 

emitted at the instant that the 20ms worth of voice samples are collected. A voice source 

that is a part of a conversation would have listening periods, and “silence” periods between 

words and sentences.  Thus, the intervals between emission instants of successive UDP 

packets would be random. A simple model for these random intervals is that they are 

exponentially distributed, and independent from packet to packet. This, formally, is called the 

Poisson point process. With exponentially distributed (and independent) inter-arrival times, 

and fixed length packets we obtain the M/D/1 model. On the other hand, some applications, 

such as video, generate unequal length packets. Video frames could be encoded into 

packets. To reduce the number of bits being transmitted, if there is not much change in a 

frame, as compared to the previous one, then the frame is encoded into a small number of 

bits; on the other hand if there is a large change then a large number of bits would need to 

be used to encode the new information in the frame. This motivates variable packet sizes.  

Let us suppose that, from such an application, the packets arrive at the points of a Poisson 
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process of rate 𝜆, and that the randomly varying packet transmission times can be modelled 

as independent and identically distributed random variables, 𝐵1, 𝐵2, 𝐵3, ⋯, with mean 𝑏  and 

second moment 𝑏(2) , i.e., variance 𝑏(2) − 𝑏2.  Such a model is denoted by M/G/1, where M 

denotes the Poisson arrival process, and G (“general”)  the “generally” distributed service 

times. Recall the notation M/D/1 (from earlier in this section), where the D denoted fixed (or 

“deterministic”) service times. Evidently, the M/D/1 model is a special case of the M/G/1 

model. 

Again, as defined earlier in this section, let 𝑊 denote the mean queueing delay in the M/G/1 

system. Mathematical analysis of the M/G/1 queue yields the following formula for 𝑊  

𝑊 =
𝜌

1 −  𝜌

𝑏(2)

2𝑏
  

where, as before, 𝜌 = 𝜆𝑏. This formula is called the Pollacek-Khinchine formula or P-K 

formula, after the researchers who first obtained it. Denoting the variance of the service time 

by 𝑉𝑎𝑟(𝐵), the P-K formula can also be written as 

𝑊 =
𝜌𝑏

2(1 − 𝜌)
 (

𝑉𝑎𝑟(𝐵)

𝑏2
+ 1)  

Applying this formula to the M/D/1 queue, we have 𝑉𝑎𝑟(𝐵) = 0.  Substituting this in the 

M/G/1 formula, we obtain. 

𝑊 =
𝜌

1 − 𝜌

𝑏

2
 

which, with 𝑏 = 1/𝜇, is exactly the M/D/1 mean queuing delay formula displayed earlier in 

this section.  

1.8 A NetSim Exercise Utilizing the M/G/1 Queue 

In this section we demonstrate the use of the M/G/1 queueing model in the context of the 

network setup shown in Figure 1-2. The application generates exponentially distributed data 

segment with mean 𝑑 bits, i.e., successive data segment lengths are sampled independently 

from an exponential distribution with rate parameter 
1

𝑑
. Note that, since packets are integer 

multiples of bits, the exponential distribution will only serve as an approximation. These data 

segments are then packetised by adding a constant length header of length ℎ bits. The 

packet generation instants form a Poisson process of rate 𝜆. Let us denote the link speed by 

𝑐. Let us denote the random data segment length by X and the packet transmission time by 

B, so that 
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𝐵 =
𝑋 + ℎ

𝑐
 

Denoting the mean of 𝐵 by 𝑏, we have 

𝑏 =
𝑑 + ℎ

𝑐
 

Further, since ℎ is a constant, 

𝑉𝑎𝑟(𝐵) = 𝑉𝑎𝑟(𝑋)/𝑐2 

These can now be substituted in the P-K formula to obtain the mean delay in the buffer 

between Node 1 and Link 1. 

We set the mean packet size to 100B or 800 bits, the header length ℎ = 54B or 432 bits and 

𝜆 = 5000 

For a 10Mbps link, the service rate 𝜇 =
10∗106

154×8
= 8116.8  

Using the Pollaczek–Khinchine (PK) formula, the waiting time for a M/G/1 queuing system is 

𝑤 =
𝜌 + 𝜆 × 𝜇 × 𝑉𝑎𝑟(𝑠)

2(𝜇 − 𝜆)
 

Where 𝑣𝑎𝑟(𝑠) is the variance of the service time distribution S. Note that 

𝑣𝑎𝑟(𝑠) =
1

(𝜇′)2 where 𝜇′ is the mean service time of the exponential random variable (100B 

packets and not 154B) 

𝜇′ =
10 × 106

100 ∗ 8
= 12500 

Hence substituting into the PK formula, one gets 

𝑤 =
0.4 +

(3467.7 × 8116.8)
125002  

2 (8116.8 − 3246.7)
= 59.5 𝜇𝑠 

By simulation the queuing delay is 60.5 𝜇𝑠.  

The queuing delay is not available in the NetSim results dashboard. It can be got from the 

packet trace. It is the average of (PHY_layer_Arrival_time - APP_layer_arrival time) for 

packets being sent from Node_1.  

 


