
ML with NetSim: Training a DNN for
predicting SINR for 5G scenarios

Maitri Saraf∗

Abstract: 1 Any general 5G scenario with gNBs can be modeled in
NetSim’s 5G library. UEs can be placed anywhere and received SINR can
be obtained. We build, train, and validate a Deep Neural Network (DNN)
using NetSim SINR output at different locations. Once the DNN is trained,
we use it to predict the SINR - at locations not in the training data. These
predictions are compared with Netsim simulation output. Results show an
excellent fit. This methodology can be applied to numerous use cases and
can be used to train real-world DNNs with NetSim’s data.2.

1 Introduction and Approach

Machine learning is a powerful tool for developing predictive models from
data. Deep learning is a specialized type of machine learning that uses neural
networks with multiple layers to learn hierarchical representations of data.
DNNs have been highly successful in various applications.

Our objective is to demonstrate how Deep Neural Networks (DNNs) de-
ployed in the real world can be trained using synthetic data from NetSim.

We begin by training a DNN to approximate the log distance mean path
loss model. Distances and transmit power are input “features” while received
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1Project download link: See Appendix-1. The Github link contains ipython files and

necessary data for running the code.
Applicable release: v13.3 or higher
Applicable versions: All (Academic, Standard and Pro)

2This paper is meant for readers reasonably knowledgeable in machine learning and
communication networking
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power is the output “label”. We start with this toy example keeping in mind
readers who may be new to DNNs.

We then progress to training a DNN using NetSim’s 5G simulation output
data. For this, we chose to predict the downlink signal-to-interference-plus-
noise ratio (SINR) for the classical 7-cell network. The base station (BS)
to BS inter-site distance, termed ISD, is fixed and SINR measurements were
collected at various (X, Y) points using the distance (d) and angle (θ) of the
UE with respect to the central gNB within the central cell. Once the DNN is
trained and validated, we chose a set of random points in the scenario which
are not part of the training set. At these points, we use the DNN to predict
the SINR. These predictions are compared to NetSim simulation results.

2 The NetSim Network Simulator

NetSim is a GUI-based, easy-to-use, high-performance network simulator and
emulator. Through its user interface users can design networks by simply
“clicking and dropping” network elements. Protocol and device properties
can be configured by “right-clicking and editing attributes”. Underneath
the GUI is a high-performance C language-based simulation engine, network
stack, and protocol library set. Simulations can be run for thousands of
nodes, millions of packets, and billions of events. Post-simulation, NetSim
displays performance measures as tables and charts for intuitive visualization.
Launched in 2005, NetSim now is used by 500+ organizations across 25+
countries for network R & D. [6].

3 The Log Distance Mean Pathloss Model

The log distance mean path loss model is given by:

Pr = Pt + 20log10(
λ

4πdo
) + 10ηlog10(

do
d
)

where, Pr is the received power, Pt, is transmit power, d, is the transmitter-
receiver distance, and η, is the path-loss exponent, which we take as 3. We
take f = 3.5GHz, which is the frequency of the 5G C-Band, c = 3×108m/s,
as the speed of light, and do = 1m, the reference distance. The wavelength
λ can be calculated as λ = c

f
.
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3.1 Data Generation and Test-Train-Validate Split

We experiment with different values of two features, namely d (ranging from
30m to 500m) and Pt (ranging from 20dBm to 43dBm), to generate the
label Pr using a given formula, which serves as the training data for the
DNN. Before feeding the data into the DNN, we normalize the features to
facilitate training.

The dataset comprises of 10,810 samples, which are divided into three
sets: 70% for training, 20% for testing, and 10% for validation. The train-
ing set is utilized to train the DNN’s parameters, while the validation set
is employed for hyperparameter tuning and model selection. By using the
validation error metric, we can fine-tune the model’s hyperparameters such
as the number of layers and learning rate, to achieve optimal bias and vari-
ance trade-off. This can be achieved through regression techniques in both
overfitting and underfitting scenarios [4]. Lastly, the testing set is used to
assess the model’s performance on new, unseen data points and ensure its
ability to generalize well. Refer Appendix 1 for more details.

3.2 DNN Architecture, Parameters, and Hyper Pa-
rameters

Figure 1: The DNN architecture used to approximate the Log Distance Mean
Path Loss function

Fully connected deep neural networks (DNN) are a type of artificial neural
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network where the architecture is such that all the neurons, in one layer,
are connected to the neurons in the next layer [1]. We built such a DNN
sequential model using Python’s Keras library [5]. The model consists of 1
input layer with 2 neurons, 2 hidden layers comprising 128 and 64 neurons
with tanh activation functions, and 1 output layer (Figure 1).

We use the Mean Squared Error (MSE) loss function with Stochastic
Gradient Descent (SGD) as the optimizer. We choose a batch size of 4 with
50 epochs. The choice of batch size and epochs merit additional discussion.

The number of epochs is a hyperparameter that defines the number of
times the learning algorithm will work through the entire training data set.
We need to choose an optimum batch size considering the number of sam-
ples in the training data set and computation time. Small values give a
learning process that converges quickly at the cost of noise in the training
process. Large values give a learning process that converges slowly with
accurate estimates of the error gradient. SGD with a specified batch size
basically computes the gradients on small batches of data in order to reduce
the variance of the updates.

3.3 Results

Distance d = 30.5m d = 300.5m d = 495.5m

MSE (m2) 0.0220 0.3927 0.4101
R2 0.9993 0.9880 0.9875

Table 1: Measures for Log Distance Path loss for various distances

We use MSE (mean squared error) and R2 (coefficient of determination
that provides information about the goodness of fit of a model) [3] for eval-
uating the model performance.

MSE =
1

N

N∑
i=1

(yi − ŷi)
2

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳ)2

where,
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(a) d = 30.5m (b) d = 300.5m

(c) d = 495.5m

Figure 2: Plots: Pt vs Pr for varying d

N is the number of samples
yi is the actual value of ith sample
ŷi is the predicted value of ith sample
ȳ is the sample mean
We plot Pt vs Pr to compare the actual(given by formula) and predicted

(obtained from DNN) for 3 different values of d as shown in Figure 2 and
obtain MSE and R2 values as given by Table 1. The training MSE was
obtained as 0.1661 m2.
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4 Approximating SINR in a 5G NR 7-cell

scenario

Figure 3: The standard hexagonal 7-cell network. Each cell is equipped with
a BS or gNB at its center. Our goal is to approximate the SINR within the
central cell using a DNN. We grid the area within the central cell in a polar
fashion. Concentric circles are spaced at intervals of 10m, and the radial
lines are drawn every 10 degrees, spanning the grey-shaded area. The SINR
measurements are taken at the intersection points marked by blue dots. The
distance between the center of Cell-1 and the centers of the other six cells is
constant, and it is referred to as ISD.

We create a NetSim scenario consisting of a central gNB placed at position
(1500, 1500), with 6 gNBs surrounding it, in accordance with the assumption
of a hexagonal cell structure. The SINR measurements are taken by placing
UEs on a polar grid - UEs are distributed in a circular fashion around the
central gNB at distances ranging from 30m to ISD/2, i.e. upto the edge
of the central hexagon at intervals of 10m, and at diverse angles from 0
to 360 degrees, as depicted in Figure 3. The UEs see a direct signal from
the central gNB and interfering signals from the surrounding 6 gNBs. For
details regarding creating scenario and running simulations in NetSim, refer
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Appendix 2
We measure SINR at all the UEs by running NetSim simulations. Then

we train the DNN to approximate this SINR based on the input features.
The DNN would thus be able to predict the SINR at any point within the
central cell. In the first case we keep the ISD fixed and in the second case
vary ISD thereby making it an additional input feature. Fugure 4a shows
variation in SINR with angle for a fixed distance of 295m and and Figure 4b
shows SINR vs distance for a fixed angle of 60 degrees.

4.1 SINR calculation in NetSim as per 3GPP propa-
gation models

(a) SINR vs Angle (b) SINR vs distance

Figure 4: Plots: Variation in SINR with respect to angle and distance

The 3GPP pathloss equations defined in 39.901 standards, for a rural
scenario assuming line-of-sight (LOS) communication between a UE and a
gNB is

PLRMALOS
=

{
PLa if 10m <= d2D <= dBP

PLb if dBP <= d2D <= 10Km

PLa = 20log10(40πd3Dfc/3) +min(0.03h1.72, 10)log10(d3D)

−min(0.044h1.72, 14.77) + 0.002log10(h)d3D
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PLb = PLa(dBP ) + 40log10(
d3D
dBP

)

where,
dBP = 2πhBShUTfc/c is the breakpoint distance
hBS = 35m is the height of hBS antenna height
hUT = 1.5m is the height of hUT antenna height
c = 3× 108 is the speed of light
fc is the centre frequency
h = height of the gNB
d2D =2D distance between the gNB and the UE
d3D =3D distance between the gNB and the UE [2]
Now, the Pr the received power is Pt the transmit power minus the path

loss. This is applicable to both the direct signal and interfering signals. The
signal-to-noise ratio is defined as

SINR =
Pt

PL1∑7
k=2

Pt

PLk
+BW ×N0

Where PL1 represents the direct signal pathloss from gNB1, while PLk

represents the interfering signal pathloss from gNBs 2, 3, ..., 7, BW is the
total bandwidth and N0 is the total Noise.

4.2 Model with fixed ISD

To approximate the label, SINR, we vary the features namely (i) the distance
of the UE from the central gNB and (ii) its polar angle. The reason for
choosing the radial distance and polar angle rather than Cartesian X, Y, is
because of the symmetry that is evident. Given that there are 6 surrounding
gNBs we can expect the SINR measurements to exhibit a (360

6
) = 60 degree

periodicity. Specifically, we set the distance from the central gNB to range
from 30m to 500m in increments of 10m, and the angle to range from 0 to
360 degrees in increments of 10 degrees, with ISD set to 1000m.

4.2.1 UE and gNB placement

Recall that, NetSim is a Discrete Event Simulator (DES) and not a radio
planning tool, and hence measurements are recorded only where UEs are
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present. We use NetSim’s Rapid Scenario Generator to create this scenario
with 7 gNBs and 1692 UEs. The gNB coordinates are given in the Table
2. We write python code for generating UE coordinates (x, y) taking dis-
tances (d in range (30, 500, 10)) and angles (θ in range (0, 360, 10)), as
(d cos θ, d sin θ), thus getting (500−30

10
) × (360

10
) = 1692 co-ordinates. UEs are

placed at each point where SINR is to be measured. Simulation is run (i)
without configuring any network traffic since the focus is not on the network
performance but on obtaining SINR measurements, and (ii) for the minimum
duration required for UEs to get associated with gNBs. The SINR measure-
ments in the downlink channel (PDSCH) are considered only after the UEs
get associated with their respective gNBs.

gNB X Y

gNB 1 1500 1500
gNB 2 500 1500
gNB 3 1000 634
gNB 4 2000 634
gNB 5 2500 1500
gNB 6 2000 2366
gNB 7 1000 2366

(a) ISD=1000m

gNB X Y

gNB 1 1500 1500
gNB 2 1500-ISD 1500
gNB 3 1500-ISDcos60 1500-ISDsin60
gNB 4 1500-ISDcos60 1500-ISDsin60
gNB 5 1500+ISD 1500
gNB 6 1500+ISDcos60 1500+ISDsin60
gNB 7 1500-ISDcos60 1500+ISDsin60

(b) Varying ISDs

Table 2: gNB placement coordinates

4.2.2 Data Collection and Split

When running NetSim simulation, we enable radio measurements. We then
record the following with the output value in a separate comma-separated
value (CSV) file: (i) UE distance (ii) UE polar angle (θ) and (iii) measured
SINR. We normalize the input features. Then we split this data as follows:
70% training data, 20% for testing, and 10% for validation.

4.2.3 Model Architecture, Parameters, and Hyper Parameters

The neural network model depicted in Figure 5 has 1 input layer with 2 neu-
rons, 4 hidden layers with 16, 32, 64, and 128 neurons. The first 3 hidden

9



Figure 5: Neural Network Diagram for SINR approximation

layers use tanh activation and the last hidden layer uses the softplus activa-
tion. Softplus activation function (y = log(1 + ex)) is a smooth continuous
version of ReLU which gives a positive output and is also differentiable at
all points unlike ReLU. Additionally, we apply a dropout with a probability
of 0.3 on the layer with 128 neurons. Then we employ the mean squared
error loss function with Adam optimizer running a batch size of 8 for 400
epochs. We tried SGD and Adam optimizers and found the Adam optimizer
to converge quickly. Stochastic gradient descent algorithm takes a lot of iter-
ations and makes N (number of samples) updates in one epoch. It moves very
slowly in error curve having gentle gradient therefore it takes a lot of time
to converge. Mini batch SGD just gives better approximate as compared to
SGD with batch size 1. Adam on the other hand takes into consideration the
momentum parameter which helps it to move quickly in the regions of gentle
slope and also it takes different/adaptive learning rates for each parameter
to make sure the updates are made inversely proportional to update history,
hence it is optimal and yields faster convergence The plot of mean squared
error with the number of epochs is shown in Figure 6.

10



Figure 6: Plot: MSE vs Epochs -
fixed ISD

Figure 7: Plot: MSE vs Epochs -
varying ISD

(a) d = 35m (b) d = 295m (c) d = 495m

Figure 8: Plots: SINR vs Angle for varying distances

Loss MSE (dB2)

Training Loss 0.4584
Validation Loss 0.2762

Test Loss (20% test data) 0.1567
Test Loss (plot) 0.0766

Table 3: Loss values for Model with fixed ISD

4.2.4 Results

To evaluate the model, we create a NetSim scenario with 60 UEs, 20 placed
at a distance of 35m, 20 at 295m, and 20 at 495m with some random angles
not in the training set.. We plot SINR vs distance, comparing the values
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obtained from NetSim and values obtained from DNN as shown in Figure 8.
The measures obtained for the DNN Model: MSE=0.0766 and R2=0.9992.
Refer Table 3 for loss values.

4.2.5 Limitations

(a) Plot depicting values obtained from
NetSim close to DNN

(b) Plot zoomed in to show variation in
SINR values

Figure 9: SINR vs Angle by taking angles from 0 to 360 degrees at interval
of 10 degrees for distance = 495m

As mentioned earlier, the SINR measurements exhibit polar symmetry.
This arises from the scenario geometry. There are 6 identical gNBs placed
such that the centers of the gNBs lie on a circle whose center is the first
gNB and each gNB in the surrounding ring is separated in polar angle by 60
degrees. Therefore, we can theoretically expect a 60-degree periodicity in the
SINR measurements. This is indeed what we see from NetSim measurements
shown in orange in Figure 9. However, the DNN is unable to capture this
periodicity in its approximation - as seen in the blue plots in the same figure.
We hypothesize that the reason the DNN is unable to capture this is because
of how small the periodic variations are. If one were to measure the coefficient
of variation, we see that it is equal to σ

µ
= 0.95, where σ is the standard

deviation and µ is the mean. When we calculate the value of R2 for the
test data we get overall value as 0.999 but if we consider for individual plots
like Figure 9b, we get the value as -102.397. In practice, R2 will be negative
whenever the model’s predictions are worse than a constant function that
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always predicts the mean of the data. In case of a periodic function, the
mean lies in its equilibrium position whereas the DNN predicts value close
to the actual value that can be greater than or less than the mean.

4.3 Understanding the periodicity of the SINR

Figure 10: Approximating Log Distance Pathloss to understand periodic
varioations in SINR values by calculating it for 0 degrees and 30 degrees

We try to understand the periodic variations by approximating SINR for
log distance pathloss model for two points at 0 and 30 degrees. We assume
that noise is very small. So, the relation between the received power and
transmitted power is given as Pr = Pt(

d
d0
)−η. We calculate the value for two

points represented by blue dots in Figure 10. Taking d0 = 1 and η = 3, the
formula for SINR will be as follows:

SINR =
Pt1∑7
k=2 Ptk

=
d−3
1∑7

k=2 d
−3
k

We write a python code to obtain SINR for the two points by calculating
the values of dk which is the distance of the point where SINR is calculated
from the kth gNB where k varies from 1 to 7. The euclidean distances are
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obtained by taking the co-ordinates of UE and gNB. The SINR values for 0
degrees and 30 degrees are 0.78 and 0.85 as expected (peak at 0 degrees and
minimum at 30 degrees).

4.4 Model with varying ISD

We now also add ISD as an input feature along with the UE distance and
angle from the central gNB. So, now we have 3 neurons in the input layer
instead of 2. We vary the ISD from 1000m to 1500m in steps of 100m, so we
have 6 values of ISDs. We take UEs in the shaded area at distances 30m to
ISD
2

from the central gNB in steps of 10m at angles from 0 to 360 degrees,
so in total and 12744 data samples and we split for train, test and validation
as the previous case. Figure 7 shows the plot of mean squared error with the
number of epochs while training the data.

4.4.1 Results

We take two different values of ISD (not in training set), a mid range distance
value and some random angles (same as in previous case) , and plot SINR
vs angle (Figure 11). The measures of losses are given in Table 4.

(a) ISD = 1150m (b) ISD = 1250m

Figure 11: Plots: SINR vs Angle for varying ISD at distance = 405m
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Loss MSE (dB2)

Training Loss 0.5765
Validation Loss 0.2384

Test Loss (20% test data) 0.2591
Test Loss (plot) 0.0215

Table 4: Loss values for Model with varying ISD
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Appendix 1: Python DNN code

The entire DNN code is written in python. We use Keras which is a high-
level API of tensorflow to build a sequential model. In the sequential API,
data goes from one layer to another until it reaches the ouput layer. We
use Jupyter notebook to write the code for training the DNN as Jupyter
Notebook allows us to record code and analyze steps in a single document.

We extract the features from a Comma-Separated (csv) file using pandas
dataframe and normalize them to input to the DNN. The data is then split
into train test and validation using train test split. The model is constructed
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using the keras sequential API adding layers successively. Then we add the
dropout rate and activation function as layers. The model is then compiled
using a suitable optimzer by choosing the optimum batch size and epochs
through experimentation. The validation data is useful in adjusting hyper-
parameters such as the number of layers, learning rate, batch size, epochs,
etc as it validates the model on an unseen dataset. We then test the model
on the test data and obtain suitable plots using matplotlib and obtain the
measures using sklearn.metrics.

The entire code can be viewed here: https://github.com/NetSim-TETCOS/
DNN-for-NetSim-s-5G-Library-data/archive/refs/heads/main.zip

Appendix 2: Procedure for running simulations in Net-
Sim for the different cases

Figure 12: NetSim Rapid Scenario Generator for file-based placement

In NetSim v13.3.11, we open the Scenario Generator from NetSim file
location by specifying four arguments namely, Output path, Configuration
helper files path where ‘scenario generator’ folder will be present, Version Name
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Figure 13: The scenario obtained using NetSim

Figure 14: Radio Measurements Log File obtained by running the simulation
in NetSim

and Version Number. Using the Rapid Scenario Generator, (Refer Figure 12)
we specify UE and gNB coordinates, and their respective properties are set
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using a reference file consisting of only 1 UE and 1 gNB. We then import
the configuration file to NetSim and obtain the configuration as shown in
Figure 13 and run the application by enabling Radio Measurement Logs. We
run the simulation without configuring any network traffic since the focus
is not on the network performance but on obtaining SINR measurements.
Simulation is run for the minimum duration required for UEs to get asso-
ciated with gNBs. The SINR measurements in downlink channel (PDSCH)
are taken only after the UEs get associated to their respective gNB. The
result obtained is a csv file consisting of UE name, gNB with which it is
associated, pathloss, SNR, SINR measurements as shown in Figure 14. From
this, we extract the SINR values for training the DNN. Similarly, we obtain
the configuration for test data.
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