
V13.2

Wireless Energy Harvesting for the Internet of Things

Software: NetSim Standard v13.2, Visual Studio 2022

Project Download Link:
https://github.com/NetSim-
TETCOS/Wireless_Energy_harvesting_for_IoT_v13.2/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and setup the Project in NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-
netsim-file-exchange-projects

Introduction
Among different energy harvesting methods, such as vibration, light, and thermal energy extraction,
wireless energy harvesting (WEH) has proven to be one of the most promising solutions by virtue of
its simplicity, ease of implementation, and availability. This recent technology trend in energy
harvesting provides a fundamental method to prolong battery longevity. While harvesting from the
environmental sources is dependent on the presence of the corresponding energy source, RF energy
harvesting provides key benefits in terms of being wireless, readily available in the form of
transmitted energy (TV/radio broadcasters, mobile base stations, and handheld radios), low cost,
and small form factor implementation.

A WEH-enabled sensor device usually consists of an antenna, a transceiver, a WEH unit, a power
management unit (PMU), a sensor/processor unit, and possibly an onboard battery. The available
harvested power, PH, is given by a Friis equation and is directly proportional to the transmitted power,
PT, path loss, PL, transmitter antenna gain, GT, receiver antenna gain, GR, power conversion
efficiency of the converter, PCEH, and the square of the wavelength, l, and is inversely proportional
to the square of the communication distance, r, between the source and the device.

The communication energy consists of ELS (listening energy), ERX (receiver energy), and ETX
(transmitter energy). The computation energy includes EPR (processing energy) and ESN (sensing
energy). To capture the energy distribution among the a forementioned energy consumers, weighting
coefficients aLS > aTX > aRX > aPR > aSN are assigned to them. The total average
energy consumption ED = aLS ELS + aTX ETX + aRX ERX + aPR EPR + aSN ESN. EB is the total
energy stored in the battery, and EH is the available harvested energy per active-duty cycle. We
assume constant energy consumptions for receiver, processor, and sensor. However, the energy

consumption of the transmitter (ETX) is directly proportional to rij 2, where rij is the distance between

the originating device j and the sink node i (in ring topology) or the sink node/sensor device (in

multihop topology). The harvested energy EH is inversely proportional to rij 2 (here j is the sink node

and rij = rji).

IEEE Ref Paper:

Wireless Energy Harvesting for the Internet of Things
P. Kamalinejad C. Mahapatra ; Z. Sheng ; S. Mirabbasi ; V. C. M. Leung ; Y. L. Guan
IEEE COMMUNICATIONS MAGAZINE · JUNE 2015

COMPARATIVE ANALYSIS:

1. The WSN_Energy_Harvesting_Workspace comes with a sample network configuration that are
already saved. To open this example, go to Your work in the Home screen of NetSim and click
on the WSN_Energy_Harvesting_Example from the list of experiments.

https://github.com/NetSim-TETCOS/Wireless_Energy_harvesting_for_IoT_v13.2/archive/refs/heads/main.zip
https://github.com/NetSim-TETCOS/Wireless_Energy_harvesting_for_IoT_v13.2/archive/refs/heads/main.zip
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

V13.2

2. Create a network scenario in IoT with say 16 sensors, a 6LoWPAN Gateway, a Router and a
Wired Node as shown below.

Figure 1: Energy Harvesting Network Topology

3. Configure traffic in the network by setting a few applications between some of the sensor nodes
to the Wired Node using the Application Icon, as shown below.

Figure 2:Configured traffic wireless sensor to Cloud server

4. Disable Energy Harvesting in all Sensor nodes by setting the EnergyHarvesting parameter to OFF
in the Interface (ZigBee) Properties of the sensor nodes as shown below:

V13.2

Figure 3: Disable Energy Harvesting in all Sensor nodes

5. Run Simulation for say 100 seconds and save the simulation results. In NetSim Simulation
Results Window, the Battery model table provides detailed metrics related to energy consumed
by each sensor node. The column Remaining energy can be used to compare simulations with
and without energy harvesting code modification.

WITHOUT ENERGY HARVESTNG

Figure 4: Battery model table from result dashboard

WITH ENERGY HARVESTING

V13.2

1. Now re-run the network simulation for 100 seconds by enabling the EnergyHarvesting and save

the simulation results. You can use the table remaining energy column present in the Battery
model table which is part of NetSim Simulation Results window to compare simulations with and
without wireless energy harvesting.

Figure 5: Battery Model Table from Result Dashboard

Now on comparing the custom IOT metrics we can observe that Energy Harvesting increases
sensors’ working capability. Simulations can be performed for different values of EH Fraction which
may vary as per the efficiency of the Energy Harvesting unit.

V13.2

Appendix: NetSim source code modifications

Changes to Battery Model.h within Battery Model project

/* We implemented the Batter Model*/

#ifndef _NETSIM_BATTERY_MODEL_H_
#define _NETSIM_BATTERY_MODEL_H_
#ifdef __cplusplus
extern "C" {
#endif

#ifndef _BATTERY_MODEL_CODE_
#pragma comment(lib,"BatteryModel.lib")
 typedef void* ptrBATTERY;
#endif

 _declspec(dllexport) ptrBATTERY battery_find(NETSIM_ID d,

NETSIM_ID in);
 _declspec(dllexport) void battery_add_new_mode(ptrBATTERY battery, int mode, double current,
char* heading);
 _declspec(dllexport) ptrBATTERY battery_init_new(NETSIM_ID deviceId, NETSIM_ID interfaceId,
double initialEnergy, double voltage, double dRechargingCurrent);

 _declspec(dllexport) bool battery_set_mode(ptrBATTERY battery, int mode, double time);
 _declspec(dllexport) void battery_animation();
 _declspec(dllexport) void battery_metrics(PMETRICSWRITER metricsWriter);
 _declspec(dllexport) double battery_get_remaining_energy(ptrBATTERY battery);
 _declspec(dllexport) int battery_energy_harvesting(ptrBATTERY battery, double eh_energy);
 _declspec(dllexport) double battery_get_consumed_energy(ptrBATTERY battery, int mode);

#ifdef __cplusplus
}
#endif
#endif //_NETSIM_BATTERY_MODEL_H_

Changes to double battery_get_remaining_energy (), Battery Model.c within Battery Model
project

_declspec(dllexport) double battery_get_remaining_energy(ptrBATTERY battery)
{
 return battery->remainingEnergy;
}
_declspec(dllexport) int battery_energy_harvesting(ptrBATTERY battery, double eh_energy)
{
 double eh_energy_mJ = eh_energy * ((pstruEventDetails->dEventTime - battery-
>modeChangedTime) / 1000000);
 battery->remainingEnergy += eh_energy_mJ;
}
Changes code to ChangeRadioState.c, within Zigbee project at the end of the file

#define EH_FRACTION 0.1
// EH_FRACTION is the fraction of the received signal energy that can be
// captured and harvested by the sensor.

V13.2

int calculate_eh(NETSIM_ID dev1, NETSIM_ID dev2)
{
 double rx_pwr = GET_RX_POWER_mw(dev1, dev2, pstruEventDetails->dEventTime);
 double eh_energy = EH_FRACTION * rx_pwr;
 ptrBATTERY battery = WSN_PHY(dev2)->battery;
 if (battery)
 battery_energy_harvesting(battery, eh_energy);
}

Changes code to int fn_NetSim_Zigbee_Run(), 802_15_4.c file, within Zigbee project

case UPDATE_MEDIUM:
{
double dtime=pstruEventDetails->dEventTime;
NETSIM_ID nLink_Id, nConnectionID, nConnectionPortID, nLoop;
NETSIM_ID nTransmitterID;

nTransmitterID = pstruEventDetails->nDeviceId;

ZIGBEE_CHANGERADIOSTATE(nTransmitterID, WSN_PHY(nTransmitterID)->nRadioState, RX_ON_IDLE);
if(WSN_PHY(nTransmitterID)->nRadioState != RX_OFF)
WSN_MAC(nTransmitterID)->nNodeStatus = IDLE;
nLink_Id = fn_NetSim_Stack_GetConnectedDevice(pstruEventDetails->nDeviceId,pstruEventDetails-
>nInterfaceId,&nConnectionID,&nConnectionPortID);

for(nLoop=1; nLoop<=NETWORK->ppstruNetSimLinks[nLink_Id-1]-
>puniDevList.pstruMP2MP.nConnectedDeviceCount; nLoop++)
{
NETSIM_ID ncon = NETWORK->ppstruNetSimLinks[nLink_Id-1]->puniDevList.pstruMP2MP.anDevIds[nLoop-
1];
if(ncon != pstruEventDetails->nDeviceId)
{
calculate_eh(nTransmitterID, nLoop);
WSN_PHY(ncon)->dTotalReceivedPower -= GET_RX_POWER_mw(nTransmitterID,ncon,pstruEventDetails-
>dEventTime);

if(WSN_PHY(ncon)->dTotalReceivedPower < WSN_PHY(ncon)->dReceiverSensivity)
WSN_PHY(ncon)->dTotalReceivedPower = 0;
}
}
This completes the code modifications for energy harvesting.

