

V13.2

Sink Hole Attack using RPL in IOT

Software: NetSim Standard v13.2, Visual Studio 2022

Project Download Link:

https://github.com/NetSim-TETCOS/Sink_Hole_Attack_in_IoT_RPL_v13.2/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and setup the Project in NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-
up-netsim-file-exchange-projects

Introduction

In sinkhole Attack, a compromised node or malicious node advertises fake rank information to form the

fake routes. After receiving the message packet, it drops the packet information.

Sinkhole attacks affect the performance of IoT networks protocols such as RPL protocol.

Figure 1: network configuration of how the traffic flow is
configured

Figure 2Network configuration of actual traffic flow along
with the working of malicious node

Implementation in RPL (for 1 sink)

• In RPL the transmitter broadcasts the DIO during DODAG formation.

• The receiver on receiving the DIO from the transmitter updates its parent list, sibling list, rank and

sends a DAO message with route information.

• Malicious node upon receiving the DIO message it does not update the rank instead it always

advertises a fake rank.

• The other node on listening to the malicious node DIO message the update their rank according

to the fake rank.

• After the formation of DODAG, if the node that is transmitting the packet has malicious node as

the preferred parent, transmits the packet to it but the malicious node instead of transmitting the

packet to its parent, it simply drops the packet resulting in zero throughput.

A file Malicious.c is added to the RPL project. The file contains the following functions.

https://github.com/NetSim-TETCOS/Sink_Hole_Attack_in_IoT_RPL_v13.2/archive/refs/heads/main.zip
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

V13.2

• fn_NetSim_RPL_MaliciousNode(); //This function is used to identify whether a current device is

malicious or not in-order to establish malicious behavior.

• fn_NetSim_RPL_MaliciousRank(); //This function is used to give a fake rank to the malicious

node.

• rpl_drop_msg(); //This function is used to drop the packet by the malicious node if it enters into

its network layer.

• Fn_NetSim_RPL_FreePacket(); // This function is used inside rpl_drop_msg() for dropping the

packets.

• Sink Hole Attack -The malicious node advertises the fake rank

fn_NetSim_RPL_MaliciousRank(); is the sink hole attack function.

• Black Hole Attack: The malicious node drops the packet, rpl_drp_msg() is the black hole attack

function

You can set any device as malicious, and you can have more than one malicious node in a scenario.

Device id’s of malicious nodes can be set inside the fn_NetSim_RPL_MaliciousNode() function.

Example

1. The WorkSpace_SinkHole_Attack_RPL comes with a sample network configuration that are

already saved. To open this example, go to Your work in the home screen of NetSim and click on

the SinkHole_Attack_in_RPL_Example from the list of experiments.

2. The saved network scenario consists of

a. 5 Wireless Sensors

b. 1 6_LOWPAN Gateway

c. 1 Router

d. 1 Wired Node

Figure 3: IoT Network Topology

V13.2

3. Channel Characteristics: Pathloss Only, Pathloss Model: Log Distance, Pathloss Exponent: 2

4. Run the simulation for 100 Seconds.

Results and discussion

Open rpllog.txt file from the results dashboard window, then you will find the information about DODAG

formation. For every DODAG, 6LoWPAN Gateway is the root of the DODAG.

Figure 4: Result Dashboard Window

• Root is 1 with rank = 1 (Since the Node Id_1 is always 6LoWPAN Gateway)

• Wireless_Sensor_Node_7 (Malicious Node)

• Packet is ‘transmitted’ by node 8(Sensor_8) is ‘received’ by node 7(Sensor_7) since the node 7

is malicious node it drops the packet. So, the Throughput in this scenario is 0.

• Open packet trace file from simulation results window and filter the control packet Type/App

Name to App1_Sensor_App.

• Check the data packets flow, the Transmitter_Id and receiver_Id column. Since the node 7 is

malicious node, it drops the packet without forwarding it further.

V13.2

Figure 5: NetSim Packet Trace

Introducing multiple malicious nodes:

To introduce the multiple malicious nodes in the network, consider a larger network consisting of more of

sensors and with multiple sensor devices generating traffic. Malicious nodes can be distributed in different

locations of the network and their impact on the network can be analyzed.

1. Add one more sensor i.e., Sensor_9 for the similar scenario and create traffic as shown below.

Figure 6: IoT Network Topology for multiple malicious nodes

2. Make sure that the Routing protocol in the added sensor is same as the network configured.

V13.2

3. Consider sensor 6 and 7 as malicious nodes with fake rank by defining it in the Malicious.c file as

shown below.

Figure 7: Defining malicious nodes in Malicious.c file

4. In fn_NetSim_RPL_MaliciousNode() function, the if condition for checking malicious nodes

needs to be updated.

Figure 8:If condition for checking multiple malicious nodes

5. Now right click on Solution explorer and select Rebuild.

V13.2

Figure 9: solution Explorer rebuild

Results and discussion

Sensor 8 will consider sensor 7 as a parent and sensor 9 will consider sensor 6 as parent instead of

sensor 4 since sensor 6 advertises lower rank compared to sensor 4. Packets reach sensors 7 and 6 get

dropped. Results can be visualized in the rpllog.txt and packet trace.

You can also check the distribution of ranks with the help of DODAG visualizer-

https://support.tetcos.com/support/solutions/articles/14000134056-how-to-visualize-the-rpl-dodag-in-

netsim-iot-simulations-

The DoDAG plots appear vertically flipped when compared to the network topology in NetSim since the

origin (0,0) is at the top left in NetSim whereas it is in the bottom left in the plot window.

Figure 10: RPL DODAG Visualizer

V13.2

Note: Conditions for Malicious node to be able to attract other legitimate nodes:

• The malicious node should be within the range of other nodes.

• The malicious nodes’ DIO broadcast should be received by other nodes with a rank lower than

other DIO messages received.

Appendix: NetSim source code modifications

Set malicious node id and the fake Rank in Malicious.c file which is present under RPL project

 #include "main.h"
 #include "RPL.h"
 #include "RPL_enum.h"
 #define MALICIOUS_NODE1 7
 #define MALICIOUS_RANK1 3

 #define MALICIOUS_NODE2 6
 #define MALICIOUS_RANK2 4

Code changes done in fn_NetSim_RPL_Run(), in RPL.c file, within RPL project

_declspec (dllexport) int fn_NetSim_RPL_Run()
{
 switch (pstruEventDetails->nEventType)
 {
 case NETWORK_OUT_EVENT:
 {
 }
 break;
 case NETWORK_IN_EVENT:
 {
 rpl_add_to_neighbor_list();
 if (is_rpl_control_packet(pstruEventDetails->pPacket))
 {
 if (fn_NetSim_RPL_MaliciousNode(pstruEventDetails))
 fn_NetSim_RPL_MaliciousRank(pstruEventDetails);
 else
 rpl_process_ctrl_msg();
 fn_NetSim_Packet_FreePacket(pstruEventDetails->pPacket);
 pstruEventDetails->pPacket = NULL;
 }
 else if (pstruEventDetails->nPacketId &&
fn_NetSim_RPL_MaliciousNode(pstruEventDetails))
 {
 rpl_drop_msg();
 }
 }
 break;

