Sink Hole Attack using RPL in IOT
Software: NetSim Standard v13.2, Visual Studio 2022
Project Download Link:

https://github.com/NetSim-TETCOS/Sink Hole Attack in loT RPL v13.2/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and setup the Project in NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-
up-netsim-file-exchange-projects

Introduction

In sinkhole Attack, a compromised node or malicious node advertises fake rank information to form the
fake routes. After receiving the message packet, it drops the packet information.

Sinkhole attacks affect the performance of 10T networks protocols such as RPL protocol.

£) £} B

ireless_Sensor_. Wireless_Sensor_3 = ess_Sensor_

_@ APP1_SENSOR_APP g @ g
Sensor 2

Wireless_Sensor_1
Wired_Node_1 4
lo,

&

Malicious_sensor_1

Malicious_sensor_1

l Dropping packets

Figure 2Network configuration of actual traffic flow along

Figure 1: network configuration of how the traffic flow is with the working of malicious node

configured

Implementation in RPL (for 1 sink)

e In RPL the transmitter broadcasts the DIO during DODAG formation.

e The receiver on receiving the DIO from the transmitter updates its parent list, sibling list, rank and
sends a DAO message with route information.

e Malicious node upon receiving the DIO message it does not update the rank instead it always
advertises a fake rank.

e The other node on listening to the malicious node DIO message the update their rank according
to the fake rank.

o After the formation of DODAG, if the node that is transmitting the packet has malicious node as
the preferred parent, transmits the packet to it but the malicious node instead of transmitting the
packet to its parent, it simply drops the packet resulting in zero throughput.

A file Malicious.c is added to the RPL project. The file contains the following functions.

V13.2

https://github.com/NetSim-TETCOS/Sink_Hole_Attack_in_IoT_RPL_v13.2/archive/refs/heads/main.zip
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

fn_NetSim_RPL_MaliciousNode(); //This function is used to identify whether a current device is
malicious or not in-order to establish malicious behavior.
fn_NetSim_RPL_MaliciousRank(); //This function is used to give a fake rank to the malicious

node.
rpl_drop_msg(); //This function is used to drop the packet by the malicious node if it enters into

its network layer.
Fn_NetSim_RPL_FreePacket(); // This function is used inside rpl_drop_msg() for dropping the
packets.

Sink Hole Attack -The malicious node advertises the fake rank
fn_NetSim_RPL_MaliciousRank(); is the sink hole attack function.

Black Hole Attack: The malicious node drops the packet, rpl_drp_msg() is the black hole attack

function

You can set any device as malicious, and you can have more than one malicious node in a scenario.
Device id’s of malicious nodes can be set inside the fn_NetSim_RPL_MaliciousNode() function.

Example

1.

V13.2

The WorkSpace_SinkHole_Attack_RPL comes with a sample network configuration that are
already saved. To open this example, go to Your work in the home screen of NetSim and click on
the SinkHole_Attack_in_RPL_Example from the list of experiments.
The saved network scenario consists of

a. 5 Wireless Sensors

b. 16 _LOWPAN Gateway

c. 1Router

d. 1 Wired Node

AN
f(rdhba’ ink 1T~ ~ 6_LOWPAN_Gateway_1 Router_2 Wired_Node_3

FARRN <<

!

s
-}]

W\reless_SensoriIS \

)
y
[| \
\
\
\

=

Wireless_Sensor 7

Wireless_Sensor_8

Figure 3: IoT Network Topology

3. Channel Characteristics: Pathloss Only, Pathloss Model: Log Distance, Pathloss Exponent: 2
4. Run the simulation for 100 Seconds.

Results and discussion

Open rpllog.txt file from the results dashboard window, then you will find the information about DODAG
formation. For every DODAG, 6LoWPAN Gateway is the root of the DODAG.

=

Natwork Performance Application Metrics Table a x

Link_Metrics
et Application_Metrics Detailed View
Queue_Metrics
Application 1D Application Name Packets Generated Packets Received Thro \-ghnul (Mbps) Delay (microsec) Jitter (microsec)
TCP_Metrics:
- App1_SENSOR_APP 00 o 0.000000 0.000000

1P_Metrics
1P_Forwarding_Table
UDP Matrics
IEEEB02.15.4_Metrics
Battery model

Application_Metrics

T rpliog - Notepad
File Edt Format View Help
node '7': was isolated, now found dodag_id = 'FDEC:3817:E256:9888:1FE7:AEGD: AB9B:BSBS

node *
node *

* MALICIOUS RANK
* MALICTOUS RANK

node ‘7' MALICIOUS RANK =
node '4': received a new/modified message from node 7' with dodag_id = 'FDEC:3817:E£256:9888:1FE7:AE@D:ABS
node "4': was isolated, now found dodag_id = 'FDEC:3017:E256:9888:1FE7:AE@D: ABIB:BSBS5"
node '6': received a new/modified message from node 7' with dodag _id = 'FDEC:3817:E256:98B8:1FE7:AF@D:ABS
Inoae 6': 7" sent a modified DIO message and is a member of dodag_id = 'FDEC:3017:£256:9888:1FE7: AEBD ABE
node '6': in dodag_id = 'FDEC:3017:E256:98B8:1FE7:AE@D:AB9B:B5BS', updated dodag config (i_s lout
node '5': received a new/modified message from node '4° with dndag_ld = "FDEC:3817:E256: QBEB 1FE7 AEBD AB‘
node '5': was isolated, now found dodag_id = 'FDEC:3017:E256:9888:1FE7:AEGD:ABIB:B5ES5"
node '8': received a new/modified message from node "4’ with dodag_id = 'FDEC:3@17:E256:98B8:1FE7:AE@D:ABS
node '8': was isolated, now found dodag_id = 'FDEC:3@17:E256:9BB8:1FE7:AEGD: AB9B:BSBS "
node '8': received a new/modified message from node '5' with dodag id = 'FDEC:3817:£256:98B8:1FE7:AEGD: AB!
node ‘8°: '5° sent a modified DIO message and is a member of dodag id = 'FDEC:3017:£256:9888:1FE7:AE@D:ABS
Open Packet Trace node '8': in dodag_id = "FDEC:3017:E256:98B8:1FE7:AE@D:AB9B:BSBS ', updated dedag config (i min = 3, i_dout
node '7° MALICIOUS RAWK = 3
node '7' MALICIOUS RANK = 3
N node '7° MALICIOUS RANK = 3
- node '7* MALICIOUS RANK = 3
node '7° MALICIOUS RAWK = 3
node '7° MALICIOUS RANK = 3
node '7' MALICIOUS RANK
node ‘7° MALICTOUS RANK
node 7
7
7

* MALICIOUS RANK =

Figure 4: Result Dashboard Window

e Rootis 1 with rank = 1 (Since the Node Id_1 is always 6LOWPAN Gateway)
e Wireless_Sensor_Node_ 7 (Malicious Node)

e Packet is ‘transmitted’ by node 8(Sensor_8) is ‘received’ by node 7(Sensor_7) since the node 7
is malicious node it drops the packet. So, the Throughput in this scenario is 0.

e Open packet trace file from simulation results window and filter the control packet Type/App
Name to Appl_Sensor_App.

e Check the data packets flow, the Transmitter_Id and receiver_Id column. Since the node 7 is
malicious node, it drops the packet without forwarding it further.

V13.2

A | B | c | D E F | G | H [
1 |PACKET_ID| ~ [SEGMENT_ID| ~ | PACKET_TYPE|~ | CONTROL_PACKET_TYPE/APP_NAME ¥ SOURCE_ID| = | DESTINATION_ID| ~ | TRANSMITTER_ID| ~ | RECEIVER_ID| ~
92: 2 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-4
93 | 2 0 Sensing Appl SENSOR_APP SENSOR-8 NODE-3 SENSOR-4 SENSOR-7
1 3: 3 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-4
114) 3 0 Sensing Appl SENSOR_APP SENSOR-8 NODE-3 SENSOR-4 SENSOR-7
12{ 4 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-4
125] 4 0 Sensing Appl SENSOR_APP SENSOR-8 NODE-3 SENSOR-4 SENSOR-7
143: 5 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-4
144) 5 0 Sensing Appl SENSOR_APP SENSOR-8 NODE-3 SENSOR-4 SENSOR-7
15{ 6 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-4
155| 6 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-4 SENSOR-7
163: 7 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-4
164 7 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-4 SENSOR-7
172: 8 0 Sensing Appl SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-4
173| 8 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-4 SENSOR-7
IQ'CE 9 0 Sensing Appl SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-4
191) 9 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-4 SENSOR-7
199: 10 0 Sensing Appl SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-4
200 10 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-4 SENSOR-7
218: 11 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-4
22@ 11 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-4 SENSOR-7
23(1 12 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-4
231 12 0 Sensing Appl SENSOR_APP SENSOR-8 NODE-3 SENSOR-4 SENSOR-7
239| 13 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-4
Packet Trace Pivot Table(TX-RX) | Pivot Table(Custom) | @ r—

Figure 5: NetSim Packet Trace

Introducing multiple malicious nodes:

To introduce the multiple malicious nodes in the network, consider a larger network consisting of more of
sensors and with multiple sensor devices generating traffic. Malicious nodes can be distributed in different
locations of the network and their impact on the network can be analyzed.

1. Add one more sensor i.e., Sensor_9 for the similar scenario and create traffic as shown below.

a2 3
NN 2 % 3
;fcr\l;c L\Mj‘\\ ~— 6 LOWPAN_Gateway_1 Router 2 el ModeLz
/ AY Ind
I\ ™ S
// I‘ ||| \ N L Sl
.‘J ~
£ \l N AN S~
1 ~ 1
AR \ ~ .
/ | \ o AN S~
ff I! En \\ \\\ B
/ I \ \ M
% 35 | \ \\ ~
3@ F! 1‘ \ \?\\ \pp2 SENSOR_APP
Wira\ess}ensor'ﬁS \ \\ -~ | Wireless_Sensor_&
| \ \ {p\iSEI\:\.RfPP
|
] % !
| e
1 Wireless_Sensor_4

\e

Wireless_Sensor_7

Wireless_Sensor_9

Wireless_Sensor_8

Figure 6: IoT Network Topology for multiple malicious nodes

2. Make sure that the Routing protocol in the added sensor is same as the network configured.

V13.2

3. Consider sensor 6 and 7 as malicious nodes with fake rank by defining it in the Malicious.c file as
shown below.

n File Edit View Git Project Build Debug Test Analyze Tools Extensions Window Help [‘Search (Ctrl+Q)
@0 |-=A0

9.Q . ‘ ‘Debug -‘ |x54 v| P Local Windows Debugger = [> 6 v| m i) :E [E | = §| 7]

[FRPL - (Global Scope)
1 F#include "main.h"
2 #include "RPL.h"
3 #include "RPL_enum.h"
q #idefine MALICIOUS_NODE1l 7
5 #define MALICIOUS_RANKL 3
6
7 H #define MALICIOUS_NODE2 6
8 #define MALICIOUS_RANK2 4
9
10 1 /%%
11 Function prototypes
12 */
13 int fn_NetSim_RPL_MaliciousNode(NetSim_EVENTDETAILS*);
14 void fn_NetSim_RPL_MaliciousRank(NetSim_EVENTDETAILS%*);
15 void rpl_drop_msg();
16 int Fn_NetSim_RPL_FreePacket(NetSim_PACHET*)ﬂ

Figure 7: Defining malicious nodes in Malicious.c file

4. Infn_NetSim_RPL_MaliciousNode() function, the if condition for checking malicious nodes
needs to be updated.

O Fie Edt View Gt Project Buld Debug Test Analze Tools Extensions Window Help | P Netsim Signin R -
j6-0|m-2@@(9-C- P Lot indows b - B /- | B3 328 7| 3 %8 | R 71 7 71 < -

= -] (Global Scope) < fn_NetSim_RPL_! X BE3

1 Hlude "main.h"

2 Tude "RPL.h" J
3 | lude "RPL_enum.h" \J.
4 ine MALICIOUS_NODE1l 7 y
5 ine MALICIOUS_RANK1 3

6
7
8

[| ime MALICIOUS_NODE2 6
ine MALICIOUS_RANK2 4 —~

9
10 B
11 tion prototypes
12
13 ~fn_NetSim_RPL_MaliciousNode(NetSim_EVENTDETAILS*);
14 fn_NetSim_RPL_MaliciousRank(NetSim_EVENTDETAILS*);
15 rpl_drop_msg();
16 #n_NetSim_RPL_FreePacket(NetSim_PACKET*);
17
18 Fn_NetSim_RPL_MaliciousNode(NetSim_EVENTDETAILS* pstruEventDetails)
19
20 I]-i'F (pstruEventDetails->nDeviceld == MALICIOUS_NODE1||pstruEventDetails->nDeviceld == MALICIOUS_NODE2)| I
21 + T T - T T — + ils->nDeviceld == MALICIOUS_NODE2)*/
22 return 1;
23 }
24 return 0;
25
26 [fn_NetSim_RPL_MaliciousRank(NetSim_EVENTDETAILS* pstruEventDetails)
27
28 NETSIM_ID receiver = pstruEventDetails—>nDeviceld;//receiver id
29 PRPL_NODE rpl_r = GET_RPL_NODE(receiver);//receiver node

Figure 8:If condition for checking multiple malicious nodes

5. Now right click on Solution explorer and select Rebuild.

V13.2

O Fle Edt View Gt Project Build Debug Test Anabwe Tools Extensions Window Help | Seacn (i) P MNetsim
B-SBB| - | [ocbug | [ss =| B Local Windows Debugger = [> | B3 | 57 -

| LiveShare &

Salution Explorer BES

o o- - oE) =]

2=

= 4 Build Solution Crre Shifts 8

(1

» EmL Clean Solution
+ [Supportfunction Anshyar and Code Cleansp
Botch Build

Configuration Manager...
B Manage NuGet Packages for Sohution.
0B Restore NuGet Packages

3 Mew Solution Explorer View

T Retarget salution

Project Dependencies.

Brniare Bl e

Figure 9: solution Explorer rebuild

Results and discussion

Sensor 8 will consider sensor 7 as a parent and sensor 9 will consider sensor 6 as parent instead of
sensor 4 since sensor 6 advertises lower rank compared to sensor 4. Packets reach sensors 7 and 6 get
dropped. Results can be visualized in the rpllog.txt and packet trace.

You can also check the distribution of ranks with the help of DODAG visualizer-

https://support.tetcos.com/support/solutions/articles/14000134056-how-to-visualize-the-rpl-dodag-in-
netsim-iot-simulations-

The DoDAG plots appear vertically flipped when compared to the network topology in NetSim since the
origin (0,0) is at the top left in NetSim whereas it is in the bottom left in the plot window.

i RPL DoDAG Visualization - O X

Wireless_Sagsor 8
_Shgsor

\\
Y
Moo e
\ - Wireless_Sensor_9%
AN L
\ __Wirdless_Seiisqr_7
J"l
-’/ \"\.
L N
» ™
W5S_Sensor_4
f’/
= ~a
Wireless_Sensor_5 Wi 55_Sensor_6
v
// ’
-
/’/
-
-~ ’/

6 LOWPAN_Gateway_l{rank:1})

+Q= B

Figure 10: RPL DODAG Visualizer

V13.2

Note: Conditions for Malicious node to be able to attract other legitimate nodes:

e The malicious node should be within the range of other nodes.
e The malicious nodes’ DIO broadcast should be received by other nodes with a rank lower than
other DIO messages received.

Appendix: NetSim source code modifications

Set malicious node id and the fake Rank in Malicious.c file which is present under RPL project

#tinclude "main.h"
#tinclude "RPL.h"

#tinclude "RPL_enum.h"
ttdefine MALICIOUS_NODE1l 7
ttdefine MALICIOUS_RANK1 3

#define MALICIOUS_NODE2 6
#define MALICIOUS_RANK2 4

Code changes done in fn_NetSim_RPL_Run(), in RPL.c file, within RPL project

_declspec (dllexport) int fn_NetSim_RPL_Run()
{
switch (pstruEventDetails—>nEventType)

case NETWORK_OUT_EVENT:
{
}
break;
case NETWORK_IN_EVENT:
{
rpl_add_to_neighbor_list();
if (is_rpl_control_packet(pstruEventDetails—->pPacket))

{

if (fn_NetSim_RPL_MaliciousNode(pstruEventDetails))
fn_NetSim_RPL_MaliciousRank(pstruEventDetails);

else
rpl_process_ctrl_msg();
fn_NetSim_Packet_FreePacket(pstruEventDetails—>pPacket);
pstruEventDetails—>pPacket = NULL;

}

else if (pstruEventDetails—>nPacketId &&
fn_NetSim_RPL_MaliciousNode(pstruEventDetails))
{

}

rpl_drop_msg(Q);

break;

V13.2

