Dynamic Clustering in WSN

Software: NetSim Standard v13.2 (64 bit), Visual Studio 2022, MATLAB R2016 or higher

Project Download Link:
https://qgithub.com/NetSim-
TETCOS/Dynamic Clustering in WSN v13.2/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and set up the Project in NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-
netsim-file-exchange-projects

Clustering in WSN

Clustering is the process of partitioning a group of sensors into small humbers of clusters. In
environments where the sensors are mobile clusters cannot be static. Like cluster heads in each
cluster are elected dynamically, the members in each cluster also need to be dynamically identified.
Therefore, the size of each cluster is not fixed and can vary depending on the position of the sensors.

Dynamic Clustering helps in efficiently grouping sensors into clusters dynamically. There is no fixed
cluster size, and the sensors are divided into the required number of clusters with members of each
cluster calculated dynamically.

Clustering using k-means algorithm

kmeans(X,k) partitions the points in the n-by-p data matrix X into k clusters. This iterative partitioning
minimizes the sum, over all clusters, of the within-cluster sums of point-to-cluster-centroid distances.
Rows of X correspond to points, columns correspond to variables. kmeans returns an n-by-1 vector
IDX containing the cluster indices of each point. By default, kmeans uses squared Euclidean
distances. When X is a vector, kmeans treats it as an n-by-1 data matrix, regardless of its orientation.

The sensor positions and number of clusters,

X - a matrix containing the X, y coordinates of the sensors in the scenario.

k- the number of clusters. are passed to k-means algorithm. [IDX,C] = kmeans(X,k).

IDX — Contains the cluster id’s of each sensor (i.e) the cluster to which the sensor belongs.
C - Centroids of each cluster.

Clustering using Fuzzy C-Means Algorithm

Fuzzy c-means (FCM) is a data clustering technique in which a dataset is grouped into n clusters with
every data point in the dataset belonging to every cluster to a certain degree. For example, a certain
data point that lies close to the center of a cluster will have a high degree of belonging or membership
to that cluster and another data point that lies far away from the center of a cluster will have a low
degree of belonging or membership to that cluster.

Cluster head election based on distance from Centroid

After grouping the sensors into different clusters, the cluster heads are determined based on the
distance between the sensor and the centroid of the cluster to which it belongs.

The sensor which is closer to the centroid will be elected as the cluster head. Here the position

https://github.com/NetSim-TETCOS/Dynamic_Clustering_in_WSN_v13.2/archive/refs/heads/main.zip
https://github.com/NetSim-TETCOS/Dynamic_Clustering_in_WSN_v13.2/archive/refs/heads/main.zip
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

values (i.e., value of x-coordinate and y-coordinate) of each sensor are passing from NetSim to
MATLAB as a sole parameter.

Cluster head election based on distance and power

After grouping the sensors into different clusters, the cluster heads are determined based on the
distance between the sensor and the remaining power of each sensor. After that, the sensors are
assigned to the respective cluster.

The sensor which is closer to the centroid and has more power than other sensors will be elected as
the cluster head. Here the position values (i.e., the value of the x-coordinate and y-coordinate) of
each sensor and power are passed from NetSim to MATLAB as a sole parameter.

Dynamic Clustering in NetSim with MATLAB Interfacing

Dynamic Clustering is implemented in NetSim by Interfacing with MATLAB for the purpose of
mathematical calculation. The sensor coordinates are fed as input to MATLAB and the k-means
algorithm that is implemented in MATLAB is used to dynamically perform clustering of the sensors
into n number of clusters.

In addition to clustering, we also determine the cluster head of each cluster mathematically in
MATLAB. The distance of each sensor from the centroid of the cluster to which it belongs is
calculated. Then the sensor which has the least distance is elected as the cluster head.

From MATLAB we get the cluster id of each sensor, the cluster heads of each cluster, and the size
of each cluster.

All the above steps are performed periodically which can be defined as per the implementation. Each
time the cluster members and the cluster heads are determined based on the current position and
they are not fixed.

The codes required for the mathematical calculations done in MATLAB are written to a clustering.m
fle and this file is available in the MATLAB folder under bin_x64 of
Dynamic_Clustering_Workspace v13.2

The clustering.m file can be run in four different modes cluster head election.
A Dynamic_Clustering.c file is added to the DSR project which contains the following functions:

o fn_NetSim_dynamic_clustering_CheckDestination()//This function is used to determine
whether the current device is the destination.

¢ fn_NetSim_dynamic_clustering_GetNextHop()//This function statically defines the routes
within the cluster and from cluster to sinknode. It returns the next hop based on the static
routing that is defined.

o fn_NetSim_dynamic_clustering_IldentifyCluster()//This function returns the cluster id of the
cluster to which a sensor belongs.

e fn_NetSim_dynamic_clustering_run()//This function makes a call to MATLAB interfacing
function and passes the inputs from NetSim (i.e) the sensor coordinates, number of clusters
and the sensor count.

e fn_netsim_dynamic_form_clusters()//This function assigns each sensor to its respective
clusters based on the cluster id’s obtained from MATLAB.

o fn_netsim_assign_cluster_heads()//This function assigns the cluster heads for each cluster
based on the cluster head id’s obtained from MATLAB.

e fn_NetSim_Dynamic_Clustering_Init()//This function initializes all parameter values.

Static Routing

Static Routing is defined in such a way that the sensors in the cluster send the packets to the cluster
head. The cluster head then directly sends the packets to the destination (sinknode).

If the current sensor is the source device and if it is not a cluster head, then its next hop is its cluster
head.

If the current sensor is the source device and if it is a cluster head, then its next hop is the destination
(i.e.) the sinknode.

If the current sensor is not the source, then the packet is sent to the destination (i.e.) the sinknode.
NOTE: To run this code 64- bit version of MATLAB must be installed in your system.
Steps to simulate

1. Add the following MATLAB install directory path in the Environment PATH variable

<MATLAB_INSTALL_DIRECTORY>\bin\win64
For eg: C:\Program Files\MATLAB\R2020a\bin\win64

Edit environment variable ot
%USERPROFILE\AppDatatLocal\Microsoft\WindowsApps Mew
C\Python3?

FUSERPROFILES:, dotnetitools Edit
Ch\Users\HP\AppData'\Local\GitHubDesktop'bin
C:\Program Files\MATLAB\R2020a\bin\win&4 Browse...
Delete
Move Up
Move Down
Edit text...

Figure 1: Environment variable PATH

Note: If the machine has more than one MATLAB installed, the directory for the target platform
must be ahead of any other MATLAB directory (for instance, when compiling a 64-bit application,
the directory in the MATLAB 64-bit installation must be the first one on the PATH).

2. Open Command prompt as admin and execute the command “matlab -regserver”. This will
register MATLAB as a COM automation server and is required for NetSim to start MATLAB
automation server during runtime.

3. Open the Source codes in Visual Studio by going to Your work-> Source code and Clicking on
Open code button in NetSim Home Screen window.

4. Under the DSR project in the solution explorer you will be able to see that and
Dynamic_Clustering.c files which contain source codes related to interactions with MATLAB
and handling clustering in NetSim respectively.

5. Right click on the solution in the solution explorer and select Rebuild.
Example

1. Run NetSim as administrative mode.

2. The Dynamic_Clustering_Workspace v13.2 comes with a sample network configuration that is
already saved. To open this example, go to Your work on the Home screen of NetSim and click
on the Dynamic_Clustering_Example from the list of experiments.

3. The saved network scenario consists of 64 sensors uniformly distributed in the grid environment

along with a sink node forming a Wireless Sensor Network. Traffic is configured from each
sensor node to the Sink Node.

xpiieeBagzceiiRotBrNsOR 47)/
3’5\:5 Xzl 81

ppraraE A enhbes eyl deise Aeptandiieo =

i Rvaless Sensph 47 ke

3/75 A6 XK 5 A & 55 %
< vad | = =
9 < P 1/ 5/ s 8
= R = R o 3 L

Figure 2: Network Scenario in this project

4. Run simulation and press any key to continue. NetSim simulation console will show the following
message in the console “Waiting for NetSim MATLAB Interface to connect...”. NetSim will

automatically open Matlabinterface.exe console window

5. It will open the Matlabinterface.exe console window. You will observe that as the simulation starts
in NetSim, MATLAB gets initialized and the graph associated with energy consumption in the
sensor network is plotted during runtime.

Results and discussion

A total of 64 sensors are placed evenly on the grid environment and each sensor is set to have equal
initial energy.

At the end of the simulation, NetSim provides Battery Model Metrics which provide detailed
information related to energy consumption in each sensor node with respect to transmission,
reception, idle mode, sleep mode, etc. as shown below:

Battery model_Table

Battery model

Device Name Initial energy(m)) Consumed energy(m)) Remaining Energy(m)) Transmitting energy(ml) Receiving energy{mJ) Idie energy(ml) Sleep energy(ml)
WIRELESS_SENSOR_1 6430.000000 557.662753 5022337247 19364115 0.000000 538.298638 0.000000
WIRELESS_SENSOR_2 6480.000000 556.639152 5923.360848 18304387 0.000000 538.334765 0.000000
WIRELESS_SENSOR_3 6480.000000 557.662753 5922.337247 19.364115 0.000000 538.298638 0.000000
'WIRELESS_SENSOR 4 6480.000000 560.268282 5919.731718 22.061604 0.000000 538.206678 0.000000
WIRELESS_SENSOR_5 6480.000000 559.430790 5920.569210 21.194554 0.000000 538236237 0.000000
WIRELESS_SENSOR_6 6480.000000 557.848862 5922151138 19.556793 0.000000 538.292070 0.000000
WIRELESS_SEMSOR_7 6480.000000 557.011371 5922988629 18.689743 0.000000 538.321628 0.000000
'WIRELESS_SENSOR_8 6480.000000 557.104425 5022895575 18.786082 0.000000 538218344 0.000000
'WIRELESS_SENSCOR_9 6480.000000 556.346098 5923453902 18.208048 0.000000 538.338030 0.000000
WIRELESS_SENSOR_10 6480.000000 561.914510 5918.085490 21.001876 2755953 538.156682 0.000000
WIRELESS_SENSOR_11 6480.000000 357.848862 5922151138 19.536793 0.000000 538.292070 0.000000
WIRELESS_SENSOR_12 6480.000000 560.809337 5919.190663 19364115 3.248087 538.197135 0.000000
WIRELESS_SEMSOR_13 6480.000000 550.430790 5920.569210 21.194354 0.000000 538.236237 0.000000
WIRELESS_SENSOR_14 6480.000000 557.011371 5922.988629 18.689743 0.000000 538321628 0.000000
WIRELESS_SENSOR_15 6480.000000 783454954 5696.535016 70.805416 181.696020 530.863548 0.000000

Figure 3: NetSim provides Battery Model Metrics

This information can also be obtained at different points of simulation time either to log or to send to
other external tools. The battery information and the position coordinates are passed to MATLAB
periodically for clustering (number of clusters is set to 4), cluster head election and to obtain energy
consumption plots.

Cluster head election using distance alone as a parameter

Running simulations with Clustering Method set to 1 and 2 in the clustering.m file will provide energy
consumption plots for k-means and fuzzy c-means algorithms respectively as shown below:

4 Figure 1 - o X 4 Figure 1 - u]
Eile Edit Yiew |Insert Joels Desktop Window Help ¥ File Edit View Inset Teols Desktop Window Help
Dade [h|RR0UDE -2 |0E nD Ogde | k| R0 RL- 2 |0E nD
o 1000
1000 ey
1200
1200 950 500
?-, 1000 ?-, ey
g g 800
£ £
= =
@ @
c| c|
o o
o o
= =
= =
o o
]]
w w
200 200
» 50 » 50
Sensor Y position 0 o Sensor X position Sensor Y position 0 0 Sensor X position

Figure 4: Energy consumption plots for k means and fuzzy c-means algorithms using method 1 and 2

As it is seen from the plot, there are 4 peaks in the plot corresponding to higher energy consumption
in the nodes in the center of the cluster, as they always become the cluster heads. This is because
the distance is used as a parameter for electing the cluster heads.

Cluster head election using distance and remaining energy as parameters

Running simulations with the Clustering Method set to 3 and 4 in the clustering.m file will provide
energy consumption plots for k-means and fuzzy c-means algorithms respectively as shown below:

4] Figure 1 - | X 4\ Figure 1

- a
File Edit View Inset Tools Desktop Window Help a File Edit View Insert Tools Desktop Window Help
DEdS (M ARAODEAL-S|(0E| O DS [MRVOPDEL-(E|0B | nDO
600
800
E 590 2
jé 600 E
g 580 2
Zhe0 <
o o
2 70 L>)~
> 5
o 200 2
2 t
w
0 560 0
200 200
150 200 550 150 200
100 150 100 150
50 400 o 100
- 50 540 ™ 50
Sensor Y position 0 o Sensor X position Sensor Y position 0 o

Sensor X position

Figure 5: Energy consumption plots for k means and fuzzy c-means algorithms using method 3 and 4

In the initial phase the plot resembles the previous one. However, as time passes, it can be observed
that the power is consumed by all the sensors at approximately the same rate.

There are no sharp peaks in this plot unlike the previous one because modified K-means consider the
power level of each sensor and thus sensors other than those in the center of the cluster will also get
a chance to be elected as the cluster head in their respective cluster.

