Sink Hole Attack using RPL in 10T

Software:NetSim Standard v13.1 (64-bit), Visual Studio 2019

Project Download Link:
https://qgithub.com/NetSim-

TETCOS/SinkHole attack in 1oT RPL v13.1l/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and setup the Project in NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-

netsim-file-exchange-projects

Introduction

In sinkhole Attack, a compromised node or malicious node advertises fake rank information to
form the fake routes. After receiving the message packet, it drops the packet information.
Sinkhole attacks affect the performance of 10T networks protocols such as RPLprotocol.

Implementation in RPL (for 1 sink)

In RPL the transmitter broadcasts the DIO during DODAGformation.

The receiver on receiving the DIO from the transmitter updates its parent list, sibling list, rank
and sends a DAO message with route information.

Malicious node upon receiving the DIO message it does not update the rank instead it
always advertises a fakerank.

The other node on listening to the malicious node DIO message the update their rank
according to the fakerank.

After the formation of DODAG, if the node that is transmitting the packet has malicious node
as the preferred parent, transmits the packet to it but the malicious node instead of
transmitting the packet to its parent, it simply drops the packet resulting in zerothroughput.

A file Malicious.c is added to the RPL project. The file contains the following functions.

fn_NetSim_RPL_MaliciousNode(); //This function is used to identify whether a current device
is malicious or not in-order to establish malicious behavior.
fn_NetSim_RPL_MaliciousRank(); //This function is used to give a fake rank to the malicious
node.

rpl_drop_msg(); //This function is used to drop the packet by the malicious node if it enters
into its network layer.

Sink Hole attackThe malicious node advertises the fake
rankfn_NetSim_RPL_MaliciousRank(); is the sink hole attack function.

Black Hole attack — The malicious node drops the packet.rpl_drp_msg() is the black hole
attack function

https://github.com/NetSim-TETCOS/SinkHole_attack_in_IoT_RPL_v13.1/archive/refs/heads/main.zip
https://github.com/NetSim-TETCOS/SinkHole_attack_in_IoT_RPL_v13.1/archive/refs/heads/main.zip
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

You can set any device as malicious, and you can have more than one malicious node in a
scenario. Device id's of malicious nodes <can be set inside the
fn_NetSim_RPL_MaliciousNode() function.

Steps to simualte
1. Open the Source codes in Visual Studio by going to Your work-> Source code and Clicking

on Open code button in NetSim Home Screen window.
2. Now right click on Solution explorer and select Rebuild.

B¢ File Edit View Git Project Bulld Debug Test Analyze Tools Edensions Window Help Search (Cul-Q) » NetSim ® = x
col@R-e w0 Re\easev}LocﬂledUwsDebuggervl A @i . & LiveShare &

Solution Explorer -

@R - an] s

Search Solution Explorer (Ctrl+:) P

1 Build Solution Ctrl+Shift+B

Rebuild Solution

Clean Solution

Analyze and Code Cleanup »

Batch Builel

Fig 1: Screenshot of NetSim project source code in Visual Studio

3. Upon rebuilding, modified binarieswill automatically get updated in the respective bin folders
of the currentworkspace.

Example

1. The WorkSpace_SinkHole_Attack_RPL comes with a sample network configuration that
are already saved. To open this example, go to Your work in the Home screen of NetSim
and click on the SinkHole_Attack_in_RPL_Example from the list of experiments.

2. The saved network scenario consists of

5 Wireless Sensor

16_LOWPAN Gateway

1 Router

1 Wired Node

aoow

T~ ™ —
Adhoc Bk~ ——
1N
~,

N
N T -3 1

h ~ Y £

SN Y ~~]

~ NS ™= 6 LOWPAN_Gateway_1

Router.2 Wired_Node_3

lApp1_SENSCR_APP

Wireless_Sensor_6 ~

Wireless_Sensor_8

Fig 2: 10T Network Topology

e Channel Characteristics: Path Loss Only, Path Loss Model: Log Distance, Path Loss
Exponent: 2

e Run Simulation for 100 Seconds.

Results and discussion

Open rpllog.txt file from simulation results window,then you will find the information about
DODAG formation.For every DODAG, 6LoWPAN Gateway is the root of the DODAG.

e Rootis 1 with rank = 1 (Since the Node Id_1 is 6LOWPAN Gateway)

o Wireless_Sensor_Node_7(Malicious Node)

¥ Network Performance Application Metrics_Table X
Link_Metrics
- Application_Metrics [] Detailed View

Queue_Metrics
Application |d Application Name Packetgenerated Packetreceived Throughput (Mbps) Delayimicrosec) Jitter{microsec)

TCP_Metrics
1 App1_SENSOR_APP 100 0 0.000000 0.000000 0.000000

1P_Metrics

> IP_Forwarding_Table
UDP Metrics

> IEEES02.15.4_Metrics
Battery model
Application_Metrics

Link_Metrics Table: x
Link_Metrics [] Detailed View
Packet_transmitt., Packet errored Packet_collided
Linkid Link_throughput_plot
Export Results (.xs/.csv) Data Control Data Control Data Control
Print Results {.html) Al NA 91 1016 0 0 78
1 NA 91 93 0 0 7 e
Open Packet Trace
2 NA 0 3 0 0 0 0
3 NA 0 0 0 0 0 0
“Lag Files
ospflog
ospf_hello.log
rpllog

Fig 3: From the Result Dashboard window

Packet is transmitted by node 8(Sensor_8) is received by node 7(Sensor_7) since the
node 7 is malicious node it drops the packet. So,theThroughput in this scenario is O.

Open Packet trace file from simulation results window and filter the Control Packet
Type/App Name to Appl_ Sensor _App.

Check the data packets flow, the Transmitter_Id and receiver_ldcolumn. Since the node 7
is malicious node, it drops the packet without forwarding it further.

1 |PACKET_ID| ~ |SEGMENT_ID| ~ | PACKET_TYPE|~ | CONTROL_PACKET_TYPE/APP_NAME -Y| SOURCE_ID| ~ | DESTINATION_ID|~ | TRANSMITTER_ID| ~ | RECEIVER_ID| ~
129| 2 0 Sensing App1_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-7
153] 3 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-7
165| a 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-7
185| 5 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-7
196| 6 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-7
204| 7 0 Sensing Appl_SENSOR_APP SENSOR-8 | NODE-3 SENSOR-8 SENSOR-7
220| 8 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-7
239| 9 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-7
247] 10 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-7
263| 11 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-7
276| 12 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-7
24| 13 0 Sensing Appl_SENSOR_APP SENSOR-8 | NODE-3 SENSOR-8 SENSOR-7
2096 14 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-7
304| 15 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-7
323 16 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-7
338 17 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-7
46| 18 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-7
354| 19 0 Sensing App1_SENSOR_APP SENSOR-8 | NODE-3 SENSOR-8 SENSOR-7
362| 20 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-7
373 21 0 Sensing Appl_SENSOR_APP SENSOR-8 NODE-3 SENSOR-8 SENSOR-7

Fig 4:NetSim Packet Trace

Introducing multiple malicious nodes:

To introduce the multiple malicious nodes in the network, consider a larger network consisting of
more of sensors and with multiple sensor devices generating traffic. Malicious nodes can be
distributed in different locations of the network and their impact on the network can be analyzed.

1.

3.

Add one more sensor i.e., Sensor_9 for the similar scenario and create traffic as shown
below.

——fp
e]

6_LOWPAN_Gateway_1

Wired_Node_3

N
Wireles:j:rsuri')\

\ ~
\e & ~

Wireless_Sensor_6 ~

Wireless_Sensor_8

Fig 5:10T Network Topology for multiple malicious nodes

Consider sensor 6 and 7 as malicious nodes with fake rank by defining it in the Malicious.c
file as shown below.

[RPL - (Global Scope) -
1 —l#include "main.h"
2 #include "RPL.h"
3 #include "RPL _enum.h"
4 #define MALICIOUS_NODE1l 7
5 #define MALICIOUS_RANK1 3
6
7 #define MALICIOUS_NODE2 6
8 #define MALICIOUS_RANK2 4
9
18 =/
11 Function prototypes
12 =/
13 int fn_NetSim_RPL_MaliciousNode(NetSim_EVENTDETAILS*);
14 void fn_MetSim_RPL_MaliciousRank(NetSim_EVENTDETAILS*);
15 void rpl_drop_msg();
16 int fn_MNetSim RPL FreePacket(NetSim PACKET*);

Fig 6: Defining the malicious nodes in Malicious.c file

In fn_NetSim_RPL_MaliciousNode() function, the if condition for checking malicious nodes
needs to be updated.

(%] RPL vI (Global Scope) vI(ﬁ fn_NetSim_RPL_MaliciousNode(NetSim_EVENTDETAILS * pstruEver ~
1 E#include "main.h"
2 #include "RPL.h"
3 #include "RPL_enum.h"
4 #define MALICIOUS_NODE1 7
5 #define MALICTOUS_RANK1 3
6
7 #define MALICIOUS_NODE2 6
8 #define MALICIOUS_RANK2 4
9
1@ B/ **
11 Function prototypes
12 =/
13 int fn_NetSim_RPL_MaliciousNode(NetSim_EVENTDETAILS*);
14 void fn_NetSim_RPL_MaliciousRank(NetSim_EVENTDETAILS¥);
15 void rpl_drop_msg();
16 int fn_NetSim_RPL_FreePacket(NetSim PACKET¥);
17
18 =int fn_NetSim_RPL_MaliciousNode(NetSim_EVENTDETATLS* pstruEventDetails)
19 {
20 =] |i1‘ (pstruEventDetails->nDeviceld == MALICIOUS NODE1 || pstruEventDetails->nDeviceld == MALICIOUS NODE2) |
21 { /*For multiple malicious nodes use if(pstruEventDetails->nDeviceld == MALICIDUSJ\IODEI || pstruEventDetails->nDeviceld == MALICIOUS NODE2)*/
22 return 1;
23 }
24 return 8;
25 }

Fig 7: If condition for checking multiple malicious node

4. Now right click on Solution explorer and select Rebuild.

B¢ File Edit View Git Project Bulld Debug Test Analyze Tools Edensions Window Help Search (Cul-Q) » NetSim ® = x
SOl @ W - -] Relesse - P Local Windows Debugger ~ | a | @ _¥ = 9 - & LiveShare &
Solution Explorer -1 x
@ o am] A
Search Solution Explorer (Ctrls+-) P~
1 Build Solution Ctrl+Shift+B
Rebuild Solution

Clean Solution

Analyze and Code Cleanup »
Batch Build

Fig 8: Rebuild solution explorer

Results and discussion

Sensor 8 will consider sensor 7 as a parent and sensor 9 will consider sensor 6 as parent instead of
sensor 4 since sensor 6 advertises lower rank compared to sensor 4. Packets reach sensors 7 and
6 get dropped. Results can be visualized in the rpllog.txt and packet trace.

You can also check the distribution of ranks with the help of DODAG visualizer-
https://support.tetcos.com/en/support/solutions/articles/14000134056-how-to-visualize-the-rpl-
dodag-in-netsim-iot-simulations-

The DoDAG plots appear vertically flipped when compared to the network topology in NetSim since
the origin (0,0) is at the top left in NetSim whereas it is in the bottom left in the plot window.

https://support.tetcos.com/en/support/solutions/articles/14000134056-how-to-visualize-the-rpl-dodag-in-netsim-iot-simulations-
https://support.tetcos.com/en/support/solutions/articles/14000134056-how-to-visualize-the-rpl-dodag-in-netsim-iot-simulations-

! RPL DoDAG Visualization

/
I
/
/!
7
o’
I
» Tem——— /
Wireless~Sensor_6rank: 4] ~===~____ /
r/’ I —— ¢
L B
-~ .
- Wireless_Sentor_7({rank:3)
L = $Il _
\
Wireless_Sensor_9 |
1
\
' i
|
Wireless_Segsor_S(rank
-~ 1 I
| Wireless_Sensor_4]rank:16) | ‘r;
T 1 i
S { /
T v/
“"'--
' \ /
~ 1

6 LOWPAN_Gateway l{rank:1}

|#la)=
"~ Fig 9: RPL DODAG Visualizer

Note: Conditions for malicious node to be able to attract other legitimate nodes:
The malicious node should be within the range of other nodes.
[]

The malicious nodes' DIO broadcast should be received by other nodes with a rank lower than the
other DIO messages received.

Appendix: NetSim source code modifications

Set malicious node id and the fakeRank in malicious.c file which is present under RLP Project.

#include "main.h"

#include "RPL.h"

#include "RPL_enum.h"
#define MALICIOUS NODE1 7
#define MALICIOUS RANK1 3

#define MALICIOUS_NODE? 4
#define MALICIOUS_RANK2 4

Changes code to fn_NetSim_RPL_Run(), in RPL.c file, within RPL project

_declspec (dllexport) int fn_NetSim_RPL_Run()
{

switch (pstruEventDetails->nEventType)

{
case NETWORK_OUT_EVENT:
{
}

break;
case NETWORK IN_EVENT:

{

rpl_add_to_neighbor_list();

if (is_rpl_control_packet(pstruEventDetails->pPacket))

{

if (fn_NetSim_RPL_MaliciousNode(pstruEventDetails))
fn_NetSim_RPL_MaliciousRank(pstruEventDetails);

else

rpl_process_ctrl_msg();
fn_NetSim_Packet_FreePacket(pstruEventDetails->pPacket);
pstruEventDetails->pPacket = NULL;

}
else if (pstruEventDetails->nPacketld&&fn_NetSim_RPL_MaliciousNode(pstruEventDetails))

{
rpl_drop_msg();
}
}

break;

