Dos Attack in Internet of Things

Software Used: NetSim Standard v13.1(64 bit), Visual Studio 2019

Project Download Link:

https://github.com/NetSim-TETCOS/DOS Attack loT v13.1/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and setup the Project in NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-
netsim-file-exchange-projects

Introduction:

A Denial of Service (DoS) attack is an attempt to make a system unavailable to the intended
user(s), such as preventing access to a website. A successful DoS attack consumes all
available network or system resources, usually resulting in a slowdown or server crash.
Whenever multiple sources are coordinating in the DoS attack, it becomes known as a

DDoS (Distributed Denial of Service) attack. Standard DDoS Attack types:

SYN Flood

UDP Flood
SMBLoris

ICMP Flood
HTTP GET Flood

a r 0w DN P

SYN Flood:

TCP SYN floods are DoS attacks that attempt to flood the DNS server with new TCP
connection requests. Normally, a client initiates a TCP connection through a three-way

handshake of messages:

- The client requests a connection by sending a SYN (synchronize) message to the
server.

- The server acknowledges the request by sending SYN-ACK back to the client.
- The client answers with a responding ACK, establishing the connection.

V13.1


https://github.com/NetSim-TETCOS/DOS_Attack_IoT_v13.1/archive/refs/heads/main.zip
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-

This triple exchange is the foundation for every connection established using the
Transmission Control Protocol (TCP). A SYN Flood is one of the most common forms of
DDoS attacks. It occurs when an attacker sends a succession of TCP Synchronize (SYN)
requests to the target in an attempt to consume enough resources to make the server
unavailable for legitimate users. This works because a SYN request opens network
communication between a prospective client and the target server. When the server
receives a SYN request, it responds acknowledging the request and holds the
communication open while it waits for the client to acknowledge the open connection.
However, in a successful SYN Flood, the client acknowledgment never arrives, thus
consuming the server’s resources until the connection times out. A large number of
incoming SYN requests to the target server exhausts all available server resources and
results in a successful DoS attack. Before implementing this project in NetSim, users have

to understand the steps given below:

1. TCP Log file
« User need to understand the TCP log file which will get created in the temp path
of NetSim <Windows Temp Folder>/NetSim>

+ The TCP Log file is usually a very large file and hence is disabled by default in
NetSim.

« To enable logging, go to TCP.c inside the TCP project and change the function

bool isTCPlog() to return true instead of false.

2. At malicious node:

Create a new timer event called SYN_FLOOD in TCP for sending TCP_SYN packets

that should be triggered for every 1000 micro seconds. This will create and send the

V13.1



TCP_SYN packet for every 1000 micro seconds. SYN request opens network

communication between a client and the target

3. At Target node:

When the target receives a SYN request, it responds acknowledging the request and

holds the communication open while it waits for the client to acknowledge the open

connection. If a SYN packet arrives at Receiver, it should reply with a SYN_ACK packet.

For this SYN_ACK packet, add a processing time of 2000 micro seconds in Ethernet

Physical Out. This delays the arrival of SYN_ACK at source node. During this delay,

another SYN packet will get created at the malicious node. A large number ofincoming

SYN requests to the target exhausts all available server resources and results in a
successful DoS attack SYN_FLOOD in NetSim:

C functions for the SYN_FLOOD attack

To implement this project in NetSim, we have created SYN_FLOOD.c file inside TCP

project. The file contains the following functions:

int is_malicious_node();//This function is used to check the node is malicious node or not
int socket_creation();//This function is used to create a new socket and update the socket
parameters

static void send_syn_packet(PNETSIM_SOCKET s);//This function is used to create and
send SYN packet to the network layer

void syn_flood();//This function is used to check whether the socket is present or not and
also adds a timer event called SYN_FLOOD (triggers for every 1000us)

Steps to simulate the attack

1.

2.

V13.1

Open the Source codes in Visual Studio by going to Your work-> Source code option

and Clicking on Open code in NetSim Home Screen window.

In Visual Studio under the TCP project in the solution explorer you will be able to see that
SYN_FLOOD.c file.

Right click on the solution in the solution explorer and select Rebuild (Note: first

rebuild the TCP project and then rebuild the Ethernet project



0 Fle Edit View Project Build Debug Tet Amslyze Tools

B Debug - xb

ef _TEST_TCP_

(DEVICE_TRXLayer yer(d)->isTCP)
->nControlDataType/100 -= L_TCP)

4. Upon successful build modified libTCP.dIl and libEthernet.dll file gets automatically
updated in the directory containing NetSim binaries.

Running Simulations. Case 1: Without Malicious Node

1. Then DOS_Attack loT_Workspace comes with a sample configuration that is
already saved. To open this example, go to Your work and click on the
DOS_Attack Example Case 1 that is present under the list of experiments as
shown below:

2. The saved network scenario consisting of 2 sensors, 1 6LOWPAN Gateway, 1
router, and 1 wired node in the grid environment forming a 0T Network. Traffic is
configured from sensor node to the Wired Node.

?. 5
'S @2 .
S =
A
-~ Aghoc Link 1
s~ /
Pt /
7 /
7 /
2 71 h
o / 4
£

Nirdlecs-Serisor-14
Wireless_Sensol _1” Wired_Node_4

App2_CBR

Wireless_Sensor_7

3. Help LU Open Source code

21 Internet_of_Things. Workspace Name: DOS_Attack_loT_Workspace. Experiment Name: DOS_Attack_Example_Case |
File Settings Help

__ User Manual F1 - o %% AdhocLink
(= ~ =l 25
2 Technology Libraries Manwals  + 3 |G|/ Wired/Wireless o

Node 125w Source Code Help Sensor  Gateway Links Applicati
Individual Experiment Manuals  »
Open source code

Video Tutorials (YouTube) 100

Answers/FAQ
Raise a Support Ticket

About NetSim

4.
5.

V13.1

In TCP.h set NUMBEROFMALICIOUSNODE as 1.
In SYN_FLOOD.c set malicious node as 0.



Right click on the solution in the solution explorer and select Rebuild. (Note: first
rebuild the TCP project and then rebuild the Ethernet project).

Upon successful build modified libTCP.dll and libEthernet.dll file gets automatically
updated in the directory containing NetSim binaries.

Run the simulation for 100 seconds.

Case-2: With one Malicious Node

1.

2.

~

8.

Then DOS_Attack |oT_Workspace comes with a sample configuration that is
already saved. To open this example, go to Your work and click on the
DOS_Attack _Example_Case_ 2 that is present under the list of experiments.

The saved network scenario consisting of 3 sensors, 1 6LOWPAN Gateway, 1
router, and 1 wired node in the grid environment forming a 1oT Network. Traffic is
configured from sensor node to the Wired Node.

Help 1 Open Source code

In TCP.h set NUMBEROFMALICIOUSNODE as 1.
In SYN_FLOOD.c set malicious node as 2.

Right click on the solution in the solution explorer and select Rebuild.(Note: first
rebuild the TCP project and then rebuild the Ethernet project)

Upon successful build modified libTCP.dIl and libEthernet.dll file gets automatically
updated in the directory containing NetSim binaries.
Run the simulation for 100 seconds.

Case-3: With two Malicious Node

1.

2.

V13.1

Then DOS_Attack_IoT_Workspace comes with a sample configuration that is
already saved. To open this example, go to Your work and click on the
DOS_Attack_Example_Case_3 that is present under the list of experiments

The saved network scenario consisting of 4 sensors, 1 6LOWPAN Gateway, 1
router, and 1 wired node in the grid environment forming a loT Network. Traffic is
configured from sensor node to the Wired Node.



& °
wllelgss_S'ensQITG S
\ ™17,

\ e
¥ 2 e

1
\
~<~<>'\\ = \
Wireless_Sensof. 2~ <o

/ B
7 Aghoc Link 1

/
Wureless_SensDr_ll Wired_Node_4

Wireless_Sensor_7

3. Help U Open Source code
In TCP.h set NUMBEROFMALICIOUSNODE as 2.

5. In SYN_FLOOD.c set malicious node as 2, 6.

Right click on the solution in the solution explorer and select Rebuild.(Note: first
rebuild the TCP project and then rebuild the Ethernet project)

7. Upon successful build modified libTCP.dIl and libEthernet.dll file gets automatically

updated in the directory containing NetSim binaries.
8. Run the simulation for 100 seconds.

Results and discussion

After simulation, open metrics window and observe the Throughput.

Bttt basami .
- Aot pven Vs OViw | TCP M wkabed View
I | i i hopunied oo [T B pia . . Sout O S T R Wl B i

TP Mty

Mo et Paket pevnd  Pachet soiied

L L g g
OCus  Costod Dota Coowt Dots  Compet

Go to the result window open Event trace, user can find out the SYN_FLOOD packets via

filtering subevent type as SYN_FLOOD.
V13.1



3 cut
D ER Copy ~

~ Format Painter

> Auto
@ Fin-

& Clear

Calibri vl VA A

&+ ®WapText Genenl v EE) [ Normal | Bad
Bru-|E-|O-A- :

9 | Conditional Formatas Good Neutral =
Formatting~ Table ~ [
I Number o Styles

Clipboard (5] Font 51

Al =: fe || Event_id

SBTIMEREVENT|  4000SENSoR 2 o o o  ome  swFoOD | o
102TIMEREVENT|  G00SENSOR | 2l o o o om  |swEop | o
UGTIMEREVENT|  8O0OSENSOR | 2l o 0o o o1 s\wFooDb | o0
12TIMEREVENT|  10000SENSOR | 2l o o o ow  [swRmoD | o
voTmeReveNT  mwsson 2 o 0 o owe  smeow o
moTmeREveNT amssson 2 o o o owe  smmow o

BTIMER EVENT | 16000SENSOR | 2 o o o ome  swFOOD | o
20TIMER EVENT|  18000lSENSOR | 2l o 0o 0o o1 s\wFoob | o0
257TIMER EVENT|  20000lSENSoR | 2/ o o o o1 s\wFoob | o0

Case 1 shows the results when there is no attack. The two user applications, attain a throughput of
about 0.06 Mbps. In the table we see the throughput of for these two applications falling as we
increase the number of attack nodes. This is because the server’s resources are being used up in
handling the SYN-FLOOD packets and the server is unable to sustain packet transmissions for the
regular applications. In this example, with a coordinated attack involving 4 systems the throughputs
are down 70%.

Throughput_APP1 Throughput_APP2(Mbps)
(Mbps)

Case-1: Malicious Node 0.06 0.06

=0

Case-2: Malicious Node @ 0.05 0.05

=1

Case-3: Malicious Node 0.04 0.04

=2

Table 1: Throughputs seen by the user applications. The first row is the throughput when there is no attack. In other
samples show the fall in throughputs as the number of attacker systems are increased

Users can similarly run DOS attack simulations on their own networks and analyze its
impact on throughput and latency.

Appendix: NetSim source code modifications

Changes to fn_NetSim_TCP_Trace(), in TCP.c file, within TCP project
/* This is used to add the SYN_FLOOD sub-events in Event Trace file */
_declspec (dllexport) char *fn_NetSim_TCP_Trace(int nSubEvent)

{

if (nSubEvent == SYN_FLOOD)

return "SYN_FLOOD";

V13.1



return (GetStringTCP_Subevent(nSubEvent));
}

Changes to fn_NetSim_TCP_HandleTimer(), in TCP.c file, within TCP project

/* This is used to call the syn_flood() function periodically */
static int fn_NetSim_TCP_HandleTimer()

{
switch (pstruEventDetails->nSubEventType)

{

case SYN_FLOOD:

syn_flood();

break;

case TCP_RTO_TIMEOQOUT:

handle_rto_timer();

break;

Changes to fn_NetSim_TCP_lInit(), in TCP.c file, within TCP project
[* This is used to register the first SYN_FLOOD event */

_declspec (dllexport) int fn_NetSim_TCP_Init(struct stru_NetSim_Network
*NETWORK_Formal,

NetSim_EVENTDETAILS *pstruEventDetails_Formal,
char *pszAppPath_Formal,

char *pszWritePath_Formal,

int nVersion_Type,

void **fnPointer)

{

fn_NetSim_TCP_Init F(NETWORK_Formal,
pstruEventDetails_Formal,

pszAppPath_Formal,

pszWritePath_Formal,

nVersion_Type,

fnPointer);

NetSim_EVENTDETAILS pevent;

memcpy(&pevent, pstruEventDetails, sizeof pevent);
for (inti = 0; i < NETWORK->nDeviceCount; i++)

{

if (is_malicious_node(i + 1))

{

pevent.nDeviceld =i + 1;

V13.1



pevent.dEventTime += 1000;
pevent.nEventType = TIMER_EVENT,;
pevent.nSubEventType = SYN_FLOOD;
pevent.nProtocolld = TX_PROTOCOL_TCP;
fnpAddEvent(&pevent);

}
}
return O;
}
Changes to add_timeout_event() in RTO.c file, within TCP project
[* This is used to avoid RTO timeouts for malicious nodes */
void add_timeout_event(PNETSIM_SOCKET s,
NetSim_PACKET* packet)
{
NetSim_PACKET* p = fn_NetSim_Packet_CopyPacket(packet);

add_packet_to_queue(&s->tcb->retransmissionQueue, p, pstruEventDetails-
>dEventTime);

NetSim_EVENTDETAILS pevent;

memcpy(&pevent, pstruEventDetalils, sizeof pevent);
pevent.dEventTime += TCP_RTO(s->tch);

pevent.dPacketSize = packet->pstruTransportData->dPacketSize;
pevent.nEventType = TIMER_EVENT,

pevent.nPacketld = packet->nPacketld;

if (packet->pstruAppData)

{

pevent.nApplicationld = packet->pstruAppData->nApplicationld;
pevent.nSegmentld = packet->pstruAppData->nSegmentlid,;

}

else

pevent.nSegmentld = 0;

if (lis_malicious_node(pevent.nDeviceld))

{

pevent.nProtocolld = TX_PROTOCOL_TCP;

pevent.pPacket = fn_NetSim_Packet_CopyPacket(p);
pevent.szOtherDetails = NULL;

pevent.nSubEventType = TCP_RTO_TIMEOUT,
fnpAddEvent(&pevent);

print_tcp_log("Adding RTO Timer at %0.1If", pevent.dEventTime);

}

V13.1



}
Changes to TCP.h file, within TCP project

[* This is used to define the number of malicious nodes */

#pragma comment (lib,"NetworkStack.lib")

_declspec(dllexport) target_node;

I/USEFUL MACRO

#define isTCPConfigured(d) (DEVICE_TRXLayer(d) && DEVICE_TRXLayer(d)->isTCP)
#define isTCPControl(p) (p->nControlDataType/100 == TX_PROTOCOL_TCP)
//IConstant

#define TCP_DupThresh 3

#define NUMBEROFMALICIOUSNODE 2

Addition of SYN_flood.c file, within TCP project

/* This is used to define the malicious node ID’s and the target node ID */

[* This has functions defined for SYN flood attack*/

#include "main.h"

#include "TCP.h"

#include "List.h"

#include "TCP_Header.h"

#include "TCP_Enum.h"

int malicious_node[NUMBEROFMALICIOUSNODE] = {2,6};

static void send_syn_packet(PNETSIM_SOCKET s);

//static PNETSIM_SOCKET socket_creation();

int target_node = 4;

PNETSIM_SOCKET get_Remotesocket(NETSIM_ID d, PSOCKETADDRESS addr);
static PSOCKETADDRESS sockAddr = NULL;

int is_malicious_node(NETSIM_ID devid){}

void syn_flood(){}

static void send_syn_packet(PNETSIM_SOCKET s){}

int socket_creation(){}

Changes to TCP_Enum.h file, within TCP project

/* This is used to a new SYN_FLOOD subevent in TCP_Subevent */
#include "EnumString.h"

BEGIN_ENUM(TCP_Subevent)

{

DECL_ENUM_ELEMENT_WITH_VAL(TCP_RTO_TIMEOUT, TX_PROTOCOL_TCP *
100),

DECL_ENUM_ELEMENT(TCP_TIME_WAIT_TIMEOUT),
DECL_ENUM_ELEMENT(SYN_FLOOD),

V13.1



}
Changes to Ethernet.h file, within ETHERNET project

/* This is used to define processing time for syn_flood packets */
#ifndef _NETSIM_ETHERNET_H_

#define _NETSIM_ETHERNET_H_

#ifdef _ cplusplus

extern "C" {

#endif

#pragma comment(lib,"NetworkStack.lib")

#pragma comment(lib,"Metrics.lib")

#pragma comment (lib,"libTCP.lib")

#define isETHConfigured(d,i) (DEVICE_MACLAYER(d,i)->nMacProtocolld ==
MAC_PROTOCOL_IEEE802_3)

//Global variable

PNETSIM_MACADDRESS multicastSPTMAC;

#define ETH_IFG 0.960 //Micro sec

#define Processing_TIME 1000

Changes to fn_NetSim_Ethernet_HandlePhyOut() in Ethernet_Phy.c file, within
ETHERNET project

/* This is used to add processing delay for TCP SYN packets */
/* This is used to add processing delay for TCP SYN packets */
double start;

if (pstruEventDetails->nDeviceld == target_node && (packet->nControlDataType ==
40102 || packet-

>nControlDataType == 40105))

{

if (phy->lastPacketEndTime + phy->IFG <= pstruEventDetails->dEventTime)
start = pstruEventDetails->dEventTime + Processing_TIME;

else

start = phy->lastPacketEndTime + phy->IFG + Processing_TIME;

}

else

{

if (phy->lastPacketEndTime + phy->IFG <= pstruEventDetails->dEventTime)
start = pstruEventDetails->dEventTime;

else

start = phy->lastPacketEndTime + phy->IFG;

}

TCP Project Properties:

* Right click on TCP project and select Properties.
V13.1



* In Linker section go to Advanced
* The import library value has been updated for 64-bit source code settings.
0 64-bit as ..\lib_x64\lib$(TargetName).lib

0¢) File Edit View Project Buld Debug Test Anshze Took [Extensions Window Melp  SesrchViousiStudio P Netsim - 8 x
0-0 8- B0 vy - s = B Local Windows Debugger = | 4V , & Liveshare &7
A%

I p =
Search Solution Explorer (Ctrle:) p-
1) Solution NetSim' 2 projects) -

4[] Ethemet
b em References
b ¥ External Dependencies

Lo oo

V13.1

P Property Pages X
Configuration:  Active(Debug) ~| Platform: | Active(64) ~| | Configuration Manager...
4 Configunation Properties | | Entry Pont A

General No Entry Point No
Debugging Set Checksum No
VCe+ Directories Base Address
G Randomized Base Address Yes UDYNAMICBASE)
il d Fixed Base Address
- Dats Execution Prevention (DEP) Ves (NXCOMPAT)
lopud Turn Off Assembly Generation No
::;;:g‘" Unlead delay loaded DL
et Nobind delay loaded DLL
i T R x5 aetime z
Embedded IOL cge Seetions)
i Terget Machine MachineXéd (/MACHINEX6)
Ao Profiie No
Al Options CLR Thresd Attibute
Conraidtine CLRImage Tpe Defauit image type
» Manifest Tool Key Fie
b XML Document Generstor| | Key Container
+ Browse Information Delay Sign
+ Buld Events CLR Unmanaged Code Check
b Custom Busld Step Error Reporting Promptimmedistely (ERRORREPORTPROMPT)
b Code Analysis SectionAbgament 4
Import Library




