Dos Attack in Internetworks

Software Used: NetSim Standard v13.1 64 bit, Visual Studio 2019
Project Download Link:

https://github.com/NetSim- https://github.com/NetSim-
TETCOS/DOS Attack Internetworks va13.1/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and setup the Project in NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-
netsim-file-exchange-projects

Introduction:

A Denial of Service (DoS) attack is an attempt to make a system unavailable to the intended
user(s), such as preventing access to a website. A successful DoS attack consumes all
available network or system resources, usually resulting in a slowdown or server crash.
Whenever multiple sources are coordinating in the DoS attack, it becomes known as a

DDoS (Distributed Denial of Service) attack. Standard DDoS Attack types:

SYN Flood

UDP Flood
SMBLoris

ICMP Flood
HTTP GET Flood

o~ DR

SYN Flood:

TCP SYN floods are DoS attacks that attempt to flood the DNS server with new TCP

connection requests. Normally, a client initiates a TCP connection through a three-way
handshake of messages:

- The client requests a connection by sending a SYN (synchronize) message to the
server.

- The server acknowledges the request by sending SYN-ACK back to the client.
- The client answers with a responding ACK, establishing the connection.

V13.1

https://github.com/NetSim-TETCOS/DOS_Attack_in_Internetworks_v13.0/archive/refs/heads/main.zip
https://github.com/NetSim-TETCOS/DOS_Attack_Internetworks_v13.1/archive/refs/heads/main.zip
https://github.com/NetSim-TETCOS/DOS_Attack_Internetworks_v13.1/archive/refs/heads/main.zip
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

This triple exchange is the foundation for every connection established using the
Transmission Control Protocol (TCP). A SYN Flood is one of the most common forms of
DDoS attacks. It occurs when an attacker sends a succession of TCP Synchronize (SYN)
requests to the target in an attempt to consume enough resources to make the server
unavailable for legitimate users. This works because a SYN request opens network
communication between a prospective client and the target server. When the server
receives a SYN request, it responds acknowledging the request and holds the
communication open while it waits for the client to acknowledge the open connection.
However, in a successful SYN Flood, the client acknowledgment never arrives, thus
consuming the server’s resources until the connection times out. A large number of
incoming SYN requests to the target server exhausts all available server resources and
results in a successful DoS attack. Before implementing this project in NetSim, users

have to understand the steps given below:

1. TCP Log file
« User need to understand the TCP log file which will get created in the temp
path of NetSim <Windows Temp Folder>/NetSim>

« The TCP Log file is usually a very large file and hence is disabled by default in
NetSim.

- To enable logging, go to TCP.c inside the TCP project and change the
function bool isTCPIog() to return true instead of false.

2. At malicious node:

Create a new timer event called SYN_FLOOD in TCP for sending TCP_SYN packets

that should be triggered for every 1000 micro seconds. This will create and send the

TCP_SYN packet for every 1000 micro seconds. SYN request opens network

communication between a client and the target

3. At Target node:

When the target receives a SYN request, it responds acknowledging the request and
holds the communication open while it waits for the client to acknowledge the open
connection. If a SYN packet arrives at Receiver, it should reply with a SYN_ACK
packet. For this SYN_ACK packet, add a processing time of 2000 micro seconds in
Ethernet Physical Out. This delays the arrival of SYN_ACK at source node. During
this delay, another SYN packet will get created at the malicious node. A large number

of incoming SYN requests to the target exhausts all available server resources and

V13.1

results in a successful DoS attack SYN_FLOOD in NetSim:

C functions for the SYN_FLOOD attack

To implement this project in NetSim, we have created SYN_FLOOD.c file inside TCP

project. The file contains the following functions:

int is_malicious_node();//This function is used to check the node is malicious node or not
int socket_creation();//This function is used to create a new socket and update the socket
parameters

static void send_syn_packet(PNETSIM_SOCKET s);//This function is used to create and
send SYN packet to the network layer

void syn_flood();//This function is used to check whether the socket is present or not and
also adds a timer event called SYN_FLOOD (triggers for every 1000ps)

Steps to simulate the attack

Open the Source codes in Visual Studio by going to Your work-> Source code

option and Clicking on Open code in NetSim Home Screen window.

In Visual Studio under the TCP project in the solution explorer you will be able to see that
SYN_FLOOD.c file.

Right click on the solution in the solution explorer and select Rebuild (Note: first

rebuild the TCP project and then rebuild the Ethernet project

0Q Fle Edit View Projet Build Debug Tes nalyze Tools

def _TEST_TCP_

4. Upon successful build modified libTCP.dIl and libEthernet.dll file gets automatically

updated in the directory containing NetSim binaries.

Running Simulations. Case 1: Without Malicious Node

1. Then DOS_Attack_Internetworks comes with a sample configuration that is already

V13.1

saved. To open this example, go to Your work and click on the

DOS_Attack_Inw_Case_1 that is present under the list of experiments as shown
below:

2. The saved network scenario consisting of 2 Wired Nodes, 1 L2 Switch, 2 router, 1

Access Point and 1 wireless node in the grid environment forming a internetworks
Network. Traffic is configured from Wired node to the Wireless node.

B 147
\er/ 5 e
Router_6 AccTFss_Point_'."
I

) (S
3 R/ 4

Router_5

_Switch_3

Wired_Node_1

!

|

I.

|

3

[

|

|

|

|
gl 4

Wireless_Mode_ 4

< App2_CER

Wired_Node_2

3. Help LI Open Source code

qi Internetworks. Workspace Name: DOS_Attack_Internetwork. Experiment Name: DOS_Attack_(]

File Settings Help

___ User Manual F1
S v 5
‘*-,.7 Technology Libraries Manuals » /" Wired/Wireless Ggﬁ
L
Node Swite Source Code Help Links Application

~ Individual Experiment Manuals » -
Open source code

Video Tutonals (YouTube)

Answers/FAQ
Raise a Support Ticket

About NetSim

In TCP.h set NUMBEROFMALICIOUSNODE as 1.

In SYN_FLOOD.c set malicious node as 0.
Right click on the solution in the solution explorer and select Rebuild. (Note: first
rebuild the TCP project and then rebuild the Ethernet project)

Upon successful build modified libTCP.dIl and libEthernet.dll file gets automatically
updated in the directory containing NetSim binaries.
Run the simulation for 10 seconds.

Case-2: With one Malicious Node

1. Then DOS_Attack_Internetworks comes with a sample configuration that is already

V13.1

saved. To open this example, go to Your work and click on the
DOS_Attack Inw_Case_2 that is present under the list of experiments as shown
below:

The saved network scenario consisting of 3 Wired Nodes, 1 L2 Switch, 2 router, 1
Access Point and 1 wireless node in the grid environment forming a internetworks
Network. Traffic is configured from Wired node to the Wireless node.

3.

o 0 A

8.

Help LI Open Source code

ci Internetworks. Workspace Name: DOS_Attack_Internetwork. Experiment Name: DOS_Attack_(]

File Settings Help

____ User Manual F1

]

(e
g ‘ '-; Technology Libraries Manuals » /" Wired/Wireless DJ,]‘

Source Code Help

Node Switc Links Application

- Individual Experiment Manuals » -
Open source code

Video Tutonals (YouTube)

Answers/FAQ
Raise a Support Ticket

About NetSim

In TCP.h set NUMBEROFMALICIOUSNODE as 1.

In SYN_FLOOD.c set malicious node as 8.

Right click on the solution in the solution explorer and select Rebuild. (Note: first
rebuild the TCP project and then rebuild the Ethernet project)

Upon successful build modified libTCP.dIl and libEthernet.dll file gets automatically
updated in the directory containing NetSim binaries.
Run the simulation for 10 seconds.

Case-3: With two Malicious Node

1.

2.

V13.1

Then DOS_Attack_Internetworks comes with a sample configuration that is already
saved. To open this example, go to your work and click on the
DOS_Attack _Inw_Case_3 that is present under the list of experiments.

The saved network scenario consisting of 4 Wired Nodes, 1 L2 Switch, 2 router, 1
Access Point and 1 wireless node in the grid environment forming a internetworks
Network. Traffic is configured from Wired node to the Wireless node.

3. Help LU Open Source code

“! Internetworks. Workspace Name: DOS_Attack_Internetwork. Experiment Name: DOS_Attack_(

File Settings Help

-

Node Switc

___ User Manual F1
o

Links Application

(-
-y - -
*, AN
|.‘ “a Technology Libraries Manuals » /" Wired/Wireless

Source Code Help

Individual Experiment Manuals
Open source code

Video Tutonals (YouTube)

Answers/FAQ
Raise a Support Ticket

About NetSim

4. In TCP.h set NUMBEROFMALICIOUSNODE as 2.

5. In SYN_FLOOD.c set malicious node as 8, 9.

Right click on the solution in the solution explorer and select Rebuild. (Note: first

rebuild the TCP project and then rebuild the Ethernet project)

7. Upon successful build modified libTCP.dIl and libEthernet.dll file gets automatically

updated in the directory containing NetSim binaries.

Results and discussion

After simulation, open metrics window and observe the Throughput.

V13.1

[Sirmulstion Resuits - 8 x

Link Metrics ;
ink Metrics Application_Metrics Detailed View
Quese_ Metrics

Appication D Applcation Name Packets Generated Packets Racsived [T AckSemt Ack Recsived

TEP_Metrics

App1_CBR 50 w8 b 0
P _Metrics

- App2_CER 500 a4 o o 0
P Forwarding_Table 0
UDP Met o o
EEEBD2.11_) 3
Switch Mac address table 0 0

Application_Metrics

e e T omwens ox

Link_Metics] Detailed View | Queue_Metiics [] Detailed View
Packets Transmit.. Packets Errored Packess Collided Deviceid Portjd Queued packet Dequeued packet Dropped_packet
Lk 1D Link Theoughput Plot " = o L
Osts Conol Daws Contol Data Coatrol s 2 10995 1099
‘a4 B0 6 4 o 0 6
Na a
Open Event T
A o
. Na a
Log Files
N
o
A 892 18806
A o wm® o 0 v 0
Restore To Original View
Calcutato

Go to the result window open Event trace, user can find out the SYN_FLOOD packets via
filtering subevent type as SYN_FLOOD.

AutoSave (@ oft) D~ = Event Trace.csv ~ £ Search A sagar khetagouda

File m Insert Page Layout Formulas Data Review View Help Table Design
ﬁj EA Calibri o CA A = v BwaepText General ¥ ﬁ % Fj @ i @ -
Paste 2 B I U<|H~|ad-A~ === @ %9 BY Fi?rrr‘\:ﬁ:‘;alv F?r;r;::tvas St:f:I:Islv Insert Delete Format J%
Clipboard 15 Font 5] Alignment 51 Number & Styles Cells
Al v f Event_Id
A B C D E F G H | J K
1 [Event_1d| - |Event Type|~]Event Time(us)|~|Device Type|~]Device 1d[~] . 1d| ~ | Application_Id|~]|Packet_Id|~| - 1d| ~ | Protocol_Name|~ | Type|-¥|
124 1 TIMER_EVENT 1000 NODE 8 0 0] 0 TCP SYN_FLOOD
154: 137 TIMER_EVENT 2000 NODE 8 0 0 0 0 TCP SYN_FLOOD
194 168 TIMER_EVENT 3000 NODE 8 0 0 0 0 TCP SYN_FLOOD
217; 208 TIMER_EVENT 4000 NODE 8 0 0 0 0 TCP SYN_FLOOD
279 231 TIMER_EVENT 5000 NODE 8 0 0 o 0 TCP SYN_FLOOD
330 292 TIMER_EVENT 6000 NODE 8 0 0 0 0 TCP SYN_FLOOD
388 343 TIMER_EVENT 7000 NODE 8 0 0 o 0 TCP SYN_FLOOD
443 400 TIMER_EVENT 8000 NODE 8 0 0 0 0 TCP SYN_FLOOD
498 | 455 TIMER_EVENT 9000 NODE 8 0 0 o 0 TCP SYN_FLOOD
552 | 510 TIMER_EVENT 10000 NODE 8 0 0 0 0 TCP SYN_FLOOD
599 | 564 TIMER_EVENT 11000 NODE 8 0 0 o 0 TCP SYN_FLOOD
651 | 612 TIMER_EVENT 12000 NODE 8 0 0 0 0 TCP SYN_FLOOD
702 | 664 TIMER_EVENT 13000 NODE 8 0 0 o 0 TCP SYN_FLOOD
753 715 TIMER_EVENT 14000 NODE 8 0 0 0 0 TCP SYN_FLOOD
814 | 766 TIMER_EVENT 15000 NODE 8 0 0 0 0 TCP SYN_FLOOD
865 827 TIMER_EVENT 16000 NODE 8 0 0 0 0 TCP SYN_FLOOD
921 | 876 TIMER_EVENT 17000 NODE 8 0 0 o 0 TCP SYN_FLOOD
972 933 TIMER_EVENT 18000 NODE 8 0 0 0 0 TCP SYN_FLOOD
1023] 984 TIMER_EVENT 19000 NODE 8 0 0 o 0 TCP SYN_FLOOD
1068 1035 TIMER_EVENT 20000 NODE 8 0 0 0 0 TCP SYN_FLOOD
1168 1082 TIMER_EVENT 21000 NODE 8 0 0 o 0 TCP SYN_FLOOD
anasl a1ep/Tinaco cvEnT, 22000 MODE a o o aten cvaL ciann

Note: Users can also create their own network scenarios in Internetworks and run
simulation.

Case 1 shows the results when there is no attack. The two user applications, attain a throughput of
about 0.58 Mbps. In the table we see the throughput of for these two applications falling as we
increase the number of attack nodes. This is because the server’s resources are being used up in
handling the SYN-FLOOD packets and the server is unable to sustain packet transmissions for the
regular applications. In this example, with a coordinated attack involving 4 systems the throughputs
are down 70%.

V13.1

Throughput_APP1 Throughput_APP2

(Mbps) (Mbps)
Sgse-l: Malicious Node 0.5805 0.5782
ste-Z: Malicious Node 0.5233 0.5186
Sgse-s: Malicious Node 0.2873 0.2862

Table 1: Throughputs seen by the user applications. The first row is the throughput when there is no attack. In other
samples show the fall in throughputs as the number of attacker systems are increased

Appendix: NetSim source code modifications

Changes to fn_NetSim_TCP_Trace(), in TCP.c file, within TCP project
/* This is used to add the SYN_FLOOD sub-events in Event Trace file */
_declspec (dllexport) char *fn_NetSim_TCP_Trace(int nSubEvent)

{

if (nSubEvent == SYN_FLOOD)

return "SYN_FLOOD";

return (GetStringTCP_Subevent(nSubEvent));

}

Changes to fn_NetSim_TCP_HandleTimer(), in TCP.c file, within TCP project

[* This is used to call the syn_flood() function periodically */
static int fn_NetSim_TCP_HandleTimer()

{
switch (pstruEventDetails->nSubEventType)

{

case SYN_FLOOD:

syn_flood();

break;

case TCP_RTO_TIMEOUT:

handle_rto_timer();

break;

Changes to fn_NetSim_TCP_Init(), in TCP.c file, within TCP project
/* This is used to register the first SYN_FLOOD event */

V13.1

_declspec (dllexport) int fn_NetSim_TCP_Init(struct stru_NetSim_Network
*NETWORK_Formal,

NetSim_EVENTDETAILS *pstruEventDetails_Formal,
char *pszAppPath_Formal,

char *pszWritePath_Formal,

int nVersion_Type,

void **fnPointer)
{
fn_NetSim_TCP_Init_ F(NETWORK_Formal,
pstruEventDetails_Formal,

pszAppPath_Formal,

pszWritePath_Formal,

nVersion_Type,

fnPointer);

NetSim_EVENTDETAILS pevent;

memcpy(&pevent, pstruEventDetails, sizeof pevent);
for (inti = 0; i < NETWORK->nDeviceCount; i++)

{

if (is_malicious_node(i + 1))

{

pevent.nDeviceld =i + 1;

pevent.dEventTime += 1000;

pevent.nEventType = TIMER_EVENT,;
pevent.nSubEventType = SYN_FLOOD;
pevent.nProtocolld = TX_PROTOCOL_TCP;
fnpAddEvent(&pevent);

}

}

return O;

}

Changes to add_timeout_event() in RTO.c file, within TCP project
/* This is used to avoid RTO timeouts for malicious nodes */
void add_timeout_event(PNETSIM_SOCKET s,
NetSim_PACKET* packet)

V13.1

{
NetSim_PACKET* p = fn_NetSim_Packet CopyPacket(packet);

add_packet_to_queue(&s->tcb->retransmissionQueue, p, pstruEventDetails-
>dEventTime);

NetSim_EVENTDETAILS pevent;

memcpy(&pevent, pstruEventDetails, sizeof pevent);
pevent.dEventTime += TCP_RTO(s->tcb);

pevent.dPacketSize = packet->pstruTransportData->dPacketSize;
pevent.nEventType = TIMER_EVENT;

pevent.nPacketld = packet->nPacketld;

if (packet->pstruAppData)

{

pevent.nApplicationld = packet->pstruAppData->nApplicationld;
pevent.nSegmentld = packet->pstruAppData->nSegmentid;

}

else

pevent.nSegmentld = 0;

if (lis_malicious_node(pevent.nDeviceld))

{

pevent.nProtocolld = TX_PROTOCOL_TCP;

pevent.pPacket = fn_NetSim_Packet_CopyPacket(p);
pevent.szOtherDetails = NULL,;

pevent.nSubEventType = TCP_RTO_TIMEOUT;
fnpAddEvent(&pevent);

print_tcp_log("Adding RTO Timer at %0.1lf", pevent.dEventTime);

}

}
Changes to TCP.h file, within TCP project

[* This is used to define the number of malicious nodes */

#pragma comment (lib,"NetworkStack.lib")

_declspec(dllexport) target_node;

//USEFUL MACRO

#define isTCPConfigured(d) (DEVICE_TRXLayer(d) && DEVICE_TRXLayer(d)->isTCP)
#define isTCPControl(p) (p->nControlDataType/100 == TX_PROTOCOL_TCP)
//Constant

#define TCP_DupThresh 3

#define NUMBEROFMALICIOUSNODE 2

V13.1

Addition of SYN_flood.c file, within TCP project

/* This is used to define the malicious node ID’s and the target node ID */
/* This has functions defined for SYN flood attack*/

#include "main.h"

#include "TCP.h"

#include "List.h"

#include "TCP_Header.h"

#include "TCP_Enum.h"

int malicious_node[NUMBEROFMALICIOUSNODE] = {2,6};

static void send_syn_packet(PNETSIM_SOCKET s);

/Istatic PNETSIM_SOCKET socket_creation();

int target_node = 4;

PNETSIM_SOCKET get_Remotesocket(NETSIM_ID d, PSOCKETADDRESS addr);
static PSOCKETADDRESS sockAddr = NULL;

int is_malicious_node(NETSIM_ID devid){}

void syn_flood(){}

static void send_syn_packet(PNETSIM_SOCKET s){}

int socket_creation(){}

Changes to TCP_Enum.h file, within TCP project

/* This is used to a new SYN_FLOOD subevent in TCP_Subevent */
#include "EnumString.h"

BEGIN_ENUM(TCP_Subevent)

{

DECL_ENUM_ELEMENT_WITH_VAL(TCP_RTO_TIMEOUT, TX_PROTOCOL_TCP *
100),

DECL_ENUM_ELEMENT(TCP_TIME_WAIT_TIMEOUT),
DECL_ENUM_ELEMENT(SYN_FLOOD),

}

Changes to Ethernet.h file, within ETHERNET project

/* This is used to define processing time for syn_flood packets */
#ifndef _NETSIM_ETHERNET_H_

#define _NETSIM_ETHERNET_H_

#ifdef __ cplusplus

extern "C" {

#endif

#pragma comment(lib,"NetworkStack.lib")

#pragma comment(lib,"Metrics.lib")

#pragma comment (lib,"libTCP.lib")

#define isETHConfigured(d,i) (DEVICE_MACLAYER(d,i)->nMacProtocolld ==

V13.1

MAC_PROTOCOL_IEEE802_3)

//Global variable

PNETSIM_MACADDRESS multicastSPTMAC;
#define ETH_IFG 0.960 //Micro sec

#define Processing_TIME 1000

Changes to fn_NetSim_Ethernet_HandlePhyOut() in Ethernet_Phy.c file, within
ETHERNET project

/* This is used to add processing delay for TCP SYN packets */
/* This is used to add processing delay for TCP SYN packets */
double start;

if (pstruEventDetails->nDeviceld == target_node && (packet->nControlDataType ==
40102 || packet-

>nControlDataType == 40105))

{

if (phy->lastPacketEndTime + phy->IFG <= pstruEventDetails->dEventTime)
start = pstruEventDetails->dEventTime + Processing_TIME;

else

start = phy->lastPacketEndTime + phy->IFG + Processing_TIME;

}

else

{

if (phy->lastPacketEndTime + phy->IFG <= pstruEventDetails->dEventTime)
start = pstruEventDetails->dEventTime;

else

start = phy->lastPacketEndTime + phy->IFG;

}

TCP Project Properties:

* Right click on TCP project and select Properties.

* In Linker section go to Advanced

* The import library value has been updated for 64-bit source code settings.
0 64-bit as .\lib_x64\lib$(TargetName).lib

V13.1

V13.1

¢ File Edt View Project Buld Debug Test Anslyze Took Extensions Window Help Sesrch
{0-0|8-2@d|?-C | Dby - ¥t - P Local Windows Debugger - | 4% 5

CP Property Pages

Configuntion: Active(Debug)

onfiguration Properties
ol

Debugging
VCo+ Directories

8

Input
Manifest ile
Debugging
Optimization
Embedded (DL
Windows Metadata
Advanced

Al Options
Command Line

Maniest Tool

XML Document Generator

Custom Busd Step
Code Analysis

v Platform: Active(x64)
Entry Point
No Entry Point
Set Checksum
Base Address

557 Solution ‘NetSim' @2 projects)
4 [§) Ethemet

v
b

References
% External Dependencies

§F

BASE)

Fixed Base Address

Data Execution Prevention (DEP)
Turn Off Assembly Generation
Undoad delsy loaded DLL
Nobind delay loaded DLL

mp
Merge Sections

Terget Machine

Profile

CLR Theesd Attibute:

CLR image Type

Key Fie

Key Container

Delay Sign

CLR Unmanaged Code Check

Yes /NXCOMPAT)
No

i x64\iS TargetName).ib v

MachineX64 (/MACHINEX4)
No

Default image type

Promptimmediately (/ERRORREPORT.PROMPT)

Co] o

- 8 X
& LiveShare &7
A%
S apl|s-
Search Solution Explore (Ctr»:) p-

