
Congestion Control AODV (CC-AODV) 

 
Software: NetSim Standard v13.1 (64 bit), Visual Studio 2019. 

 
Project Download Link:  
https://github.com/NetSim-TETCOS/CC_AODV_v13.1/archive/refs/heads/main.zip 

 
Follow the instructions specified in the following link to download and setup the Project in NetSim: 

 
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-
netsim-file-exchange-projects 

Reference: Y. Mai, F. M. Rodriguez and N. Wang, "CC-ADOV: An effective multiple paths 
congestion control AODV," 2018 IEEE 8th Annual Computing and Communication Workshop 
and Conference (CCWC), Las Vegas, NV, 2018, pp. 1000-1004. 

 

Introduction 

Ad hoc On-Demand Distance Vector (AODV) routing is one of the famous routing algorithms. 
Tremendous amounts of research on this protocol have been done to improve the performance. In 
this paper, a new control scheme, named congestion control AODV (CC- AODV), is proposed to 
manage the described routing condition. With this table entry, the package delivery rates are 
significantly increased while the package drop rate is decreased, however its implementation causes 
package overhead. 
 
CC-ADOV aims to lower the performance degradation caused by the packets congestion while the 
data is delivered using AODV. Furthermore, CC-AODV determines a path for the data by using the 
congestion counter label. This is achieved by checking how stressed the current node is in a table, 
and once the RREP package is generated and transmitted through the nodes, the congestion 
counter adds one to the counter. The process of CC-AODV explains how to establish the route. 
First, the source node performs a flooding broadcast RREQ package in the entire network. When 
RREQ package arrives to the intermediate node, the router checks the congestion counter whether 
it is less than a certain predetermined value. If the comparison yields less than the counter, the 
routing table updates and forwarding to next router; otherwise, the router drops the RREQ package. 
Once the RREQ arrives to the corresponding destination, the RREP is generated by the router. In 
CC-AODV, the congestion flag is added to the RREP header. There are two cases of which a RREP 
is generated corresponding to a RREQ. One is from the source node to establish the route and the 
other is from the neighbour nodes to maintain the route. When the destination node receives the 
RREQ from the source node, it generates the RREP with the congestion flag set to true. While the 
RREP unicast back to the corresponding source node, passing by the intermediate node, the router 
checks the congestion flag. If it is true, the counter increases; otherwise, the counter keeps the 
same. Then, the router updates the routing information. 
 
Steps to simulate  
  

1. Open the Source codes in Visual Studio by going to Your work-> Source Code and Clicking 
on Open code button in NetSim Home Screen window.  

2. In Visual Studio, Right click on the AODV Project and select rebuild. 

 

https://github.com/NetSim-TETCOS/CC_AODV_v13.1/archive/refs/heads/main.zip


 

Figure 1: Screen shot of NetSim project source code in Visual Studio 

3. Upon rebuilding, libAodv.dll will automatically get updated in the respective bin folder of the 
current workspace. 

 
Example 

 
1. The CC_AODV_Workspace comes with a sample network configuration that are already 

saved. To open this example, go to Your work in the Home screen of NetSim and click on 
the 10_Nodes from the list of experiments. 
 

 

Figure 2: Network topology in this project 

 
2. Run the simulation for 30 sec. 

Simulations have been carried out using a different number of nodes in a network to symbolize 
different practical applications of wireless network. For example, 10 nodes symbolize a small 
network that can be used in an agricultural setup. 30 nodes symbolize a medium size network 
that can be used in an industrial setup. 
 
Results and discussion  

Performance of CC-AODV has been compared with other reactive protocol AODV based on 
different performance metrics such as Throughput, End to End delay etc. 
 
 
 



Throughput Comparison of CC-AODV and AODV 
 

Number of Nodes AODV 
Aggregate 
Throughput (Mbps) 

CC_AODV 
Aggregate 
Throughput (Mbps) 

10Nodes 0.27 0.84 

30Nodes 0.21 0.72 

Table 1: Aggregate Throughput comparison between AODV and CC_AODV 

As per the Table 1 the proposed CC-AODV has higher throughput than the AODV. In CC- AODV, 
the internal nodes can be utilized much efficiently than AODV because the counter helps to reroute 
the path if the internal node is busy. This can increase the network channel utilization. 
 
Graph 

 

Figure 3: Plot comparison between of Aggregate Throughput AODV and CC_AODV 

 
Delay Comparison of CC-AODV and AODV 

 

Number of Nodes AODV 
Average Delay 
(microseconds) 

CC_AODV 
Average Delay 
(microseconds) 

10Nodes 8661852.68 2484809.88 

30Nodes 7590207.33 4634542.55 

Table 2: End to End delay comparison between AODV and CC_AODV 

Table 2 demonstrate that AODV has higher End-to-End performance than the CC-AODV, the 
result is achieved by rerouting the path of the data if the router is on a busy state. 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10Nodes 30Nodes

A
gg

re
ga

te
 T

h
ro

u
gh

p
u

t 
(M

b
p

s)

Number of Nodes

Throughput (Mbps)

AODV CC-AODV



Graph 

 

Figure 4: Plot comparison between of Aggregate Throughput AODV and CC_AODV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10Nodes 30Nodes

A
ve

ra
ge

 D
el

ay
 (

µ
s)

Number of Nodes

Delay (µs)

AODV CC-AODV



Appendix: NetSim source code modifications 
 
Changes to RREP structure stru_NetSim_AODV_RREP, in AODV.h file, within AODV project 
 
/* This is used to add a Congestion flag for implementing CC-AODV*/ 
 
struct stru_NetSim_AODV_RREP 
{ 
unsigned int Type:8;//2 
char RA[3]; /**< 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
R             Repair flag; used for multicast. 
 
A             Acknowledgment required; see sections 5.4 and 6.7. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
*/ 
unsigned int Reserved:9; ///< Sent as 0; ignored on reception. 
unsigned int PrefixSz:5; /**< 
If nonzero, the 5-bit Prefix Size specifies that the 
indicated next hop may be used for any nodes with 
the same routing prefix (as defined by the Prefix 
Size) as the requested destination. 
*/ 
unsigned int HopCount:8; /**< 
The number of hops from the Originator IP Address 
to the Destination IP Address.  For multicast route 
requests this indicates the number of hops to the 
multicast tree member sending the RREP. 
*/ 
NETSIM_IPAddress DestinationIPaddress;////< The IP address of the destination for which a route is 
supplied. 
unsigned int DestinationSequenceNumber;///< The destination sequence number associated to the route. 
NETSIM_IPAddress OriginatorIPaddress;///< The IP address of the node which originated the RREQ for 
which the route is supplied. 
unsigned int Lifetime;///< The time in milliseconds for which nodes receiving the RREP consider the route to 
be valid. 
NETSIM_IPAddress LastAddress; //NetSim-specific 
bool congestionflag : true; 
}; 

 
 

Changes to RREP structure stru_AODV_DeviceVariable, in AODV.h file, within AODV project 
 
/* This is used to add a Congestion congestion counter for implementing CC-AODV*/ 
 
 struct stru_AODV_DeviceVariable 
 { 
  unsigned int nSequenceNumber; 
  AODV_FIFO* fifo; 
  AODV_ROUTETABLE* routeTable; 
  AODV_RREQ_SEEN_TABLE* rreqSeenTable; 
  AODV_RREQ_SENT_TABLE* rreqSentTable; 
  AODV_PRECURSORS_LIST* precursorsList; 
  double dLastBroadcastTime; 
  unsigned int nRerrCount; 
  double dFirstRerrTime; 
  AODV_METRICS aodvMetrics; 
  unsigned int ncounter; 
 
};



 
Changes to fn_NetSim_AODV_ProcessRREP(), in RREP.c file, within AODV project 

 
/* This is used to modified suitably to Increment, Decrement the congestion counter accordingly */ 
 
 int fn_NetSim_AODV_ProcessRREP(NetSim_EVENTDETAILS* pstruEventDetails) 
{ 
 AODV_ROUTETABLE* table = AODV_DEV_VAR(pstruEventDetails->nDeviceId)->routeTable; 
 AODV_RREP* rrep = (AODV_RREP*)pstruEventDetails->pPacket->pstruNetworkData-
>Packet_RoutingProtocol; 
 //Update the routing table 
 if(rrep->DestinationIPaddress == aodv_get_curr_ip()) 
  return 0; 
 if (rrep->congestionflag == true) 
  AODV_DEV_VAR(pstruEventDetails->nDeviceId)->ncounter++; 
 AODV_INSERT_ROUTE_TABLE(rrep->DestinationIPaddress, 
  rrep->DestinationSequenceNumber, 
  rrep->HopCount, 
  rrep->LastAddress, 
  pstruEventDetails->dEventTime+AODV_ACTIVE_ROUTE_TIMEOUT); 

 
 
Changes to fn_NetSim_AODV_ActiveRouteTimeout(), in RouteTable.c file, within AODV project 

 
/*This function adds the timeout event of a Route Table which is equal to the table_LifeTime*/ 
 
int fn_NetSim_AODV_ActiveRouteTimeout(NetSim_EVENTDETAILS* pstruEventDetails) 
{ 
 int flag = 0; 
 NETSIM_IPAddress dest = (NETSIM_IPAddress)pstruEventDetails->szOtherDetails; 
 AODV_ROUTETABLE* table = AODV_DEV_VAR(pstruEventDetails->nDeviceId)->routeTable; 
 while(table) 
 { 
  if(!IP_COMPARE(table->DestinationIPAddress,dest)) 
  { 
   if(table->Lifetime <= pstruEventDetails->dEventTime) 
   { 
    AODV_ROUTETABLE* temp = LIST_NEXT(table); 
    IP_FREE(table->DestinationIPAddress); 
    IP_FREE(table->NextHop); 
    LIST_FREE(&AODV_DEV_VAR(pstruEventDetails->nDeviceId)->routeTable,table); 
    AODV_DEV_VAR(pstruEventDetails->nDeviceId)->ncounter--; 
    table = temp; 
    continue; 
   } 
   else 
   { 
    //Add new time out event 
    pstruEventDetails->dEventTime = table->Lifetime; 
    pstruEventDetails->szOtherDetails = dest; 
    fnpAddEvent(pstruEventDetails); 
    flag = 1; 
   } 
  } 
  table=(AODV_ROUTETABLE*)LIST_NEXT(table); 
 } 
 if(!flag) 
  IP_FREE(dest); 
 return 1; 



} 
 

 

Changes to fn_NetSim_AODV_GenerateRERR (), in AODV_RouteError.c file, within AODV project 
 
/*This function Generates a route error and sends it to the previous HOP.*/ 
 
int fn_NetSim_AODV_GenerateRERR(NETSIM_ID nDeviceId, 
 NETSIM_IPAddress UnreachableIP, 
 NetSim_EVENTDETAILS* pstruEventDetails) 
{ 
 AODV_DEV_VAR(nDeviceId)->ncounter--; 
 int DestCount=0; 
 NETSIM_IPAddress* DestinationList=NULL; 
 unsigned int* DestinationSequence=NULL; 
 AODV_DEVICE_VAR* pstruDeviceVar = AODV_DEV_VAR(nDeviceId); 
 AODV_ROUTETABLE* routeTable = pstruDeviceVar->routeTable; 
 AODV_PRECURSORS_LIST* precursorList = pstruDeviceVar->precursorsList; 

 

 

Changes to fn_NetSim_AODV_ProcessRREQ(), in RREQ.c file, within AODV project 
 
/* modified suitably to check the value of the congestion counter in the received RREQ packet and 
accordingly forward or drop the packet */ 
{ 
  int dev_counter = AODV_DEV_VAR(pstruEventDetails->nDeviceId)->ncounter; 
  if (dev_counter > 25) 
  { 
   fn_NetSim_Packet_FreePacket(packet); 
   pstruEventDetails->pPacket = NULL; 
   return 1; 
  } 
  if (AODV_CHECK_ROUTE_FOUND(rreq->DestinationIPAddress) && 
   rreq->JRGDU[3] != '1' /* Destination only flag*/) 
  { 
   if (AODV_GENERATE_RREP_BY_IN()) 
   { 
    fn_NetSim_Packet_FreePacket(packet); 
    pstruEventDetails->pPacket = NULL; 
   } 
 
   else 
   { 
    //Forward the rreq 
    AODV_FORWARD_RREQ(); 
   } 
  } 
 } 

 return 1; 


