Simulation of WSN in NetSim Clustering using Self-Organizing Map
Neural Network

Software Recommended: NetSim Standard v12.0 (64bit), Visual Studio 2017/2019, MATLAB (64 bit)

Follow the instructions specified in the following link to clone/download the project folder from GitHub using
Visual Studio:
https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-

exchange-project-repositories-from-github-

Other tools such as GitHub Desktop, SVN Client, Sourcetree, Git from the command line, or any client you
like to clone the Git repository.

Note: It is recommended not to download the project as an archive (compressed zip) to avoid incompatibility
while importing workspaces into NetSim.

Secure URL for the GitHub repository:

https://github.com/NetSim-TETCOS/SOM_Optimization_Project_v12.0.git

Objective

The goal of this project is to maximize the life time of a Wireless Sensor network using Self Organizing Map
(SOM) based Neural Network algorithms for cluster head selection.

Introduction

We define the lifetime of a WSN as the time at which the power of half the sensors reach zero (also called
half-life of Network). Initially all sensors start with a fixed amount of energy. Subsequently energy is
consumed during transmission, reception and idle states. Packets are transmitted from sensors to their
cluster head sensor and then it is forwarded to sink node through other cluster heads. The selection of the
cluster heads is done using SOM.

All MAC / PHY layer simulations are carried using NetSim while the cluster head selection using SOM
algorithm is done using MATLAB.

Self-Organizing Map based Neural Network

We would be using a 2 Dimensional SOM to get a k sized cluster from n sensors located in 2D space using
distance as a metric for clustering.

https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-exchange-project-repositories-from-github-
https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-exchange-project-repositories-from-github-

Fig 1: A neural network of k 2D lattice points where red points represent the lattice points (nodes) and the
green points (neuron) represent the input layer. The connections between the red and green points
represent the links

As shown in the above figure, a neural network is created from k 2D lattice points (also known as nodes)
each of which is connected with the input layer. Each link has an associated weight. As the input vectors
are 2D points here, there are 2 neurons in input layer of neural network. Each node has a topological
position (x coordinate and y coordinate) and also a weight vector of 2 dimensions (one weight for each
dimension).

So, with input vectors and weight vectors, the SOM algorithm explained below, orders the weight vectors
in a way that represents similarities with input vectors.

The algorithm consists of the following steps:

1. Each node weights are randomly initialized.

2. Choose an input vector and find that node whose weight vector is closest to the chosen point.
The most common method to calculate distance is finding the Euclidean distance. This node is
called BMU (Best matching unit).

3. The neighborhood of BMU is defined as all the nodes lying within its radius of influence. The no of
neighbors decreases over time because Radius of influence is decreased over time.

4. The weight vector associated with neighbor node (and BMU too) is updated using following
equation —
iw(g)=jw(a-1)+a(p(a)-jw(q-1))

Where p(q) is the input vector chosen and iw(g-1) is the weight vector associated with node i and
iw(q) is the updated value of weight vector.

5. Repeat from step 2 till the iteration limit has been reached.
The above procedure is repeated for large no of iterations (chosen as 200 in our example)

There would be k output nodes in the neural network where each output node is associated with some
pattern or cluster in the input point.

Each point would be passed through network and suppose ith output node has highest value, then this
point belongs to the cluster i.

The topology function of the k nodes and the distance function used to evaluate distance between sensor
and node can be chosen from a given set of values as below.

Topology

The neurons in the layer of an SOM are arranged originally in physical positions according to a topology
function. The function gridtop, hextop, or randtop can arrange the neurons in a grid, hexagonal, or random

topology.
1. The gridtop topology starts with neurons in a rectangular grid of dimensions which you may specify.

Suppose you want to classify n points into k clusters. Then, you can start with k neurons arranged in
rectangular grid of dimensions [k1 k2] such that k1*k2=k.

e.g.-
pos = gridtop([2, 3])
pos =

0 1 0 1 0 1

0O 01 1 2 2

Suppose you had chosen dimensions to be [3, 2], then you would get following configuration of neurons

pos = gridtop([3, 2])

2. In hextop topology, neurons are initially arranged in a hexagonal pattern.
e.g. A 2-by-3 pattern of hextop neurons is generated as follows:
pos = hextop([2, 3])
pos =
0 1.0000 0.5000 1.5000 0 1.0000
0 0 0.8660 0.8660 1.7321 1.7321
Hextop is the default pattern for SOM networks generated by selforgmap
3. The randtop function creates neurons in a random pattern in the specified dimensions.

Pos=randtop ([2, 3]);

Pos =
0 0.42 0.29 0.87 0.07 0.43
0 0.01 0.26 0.48 1.32 1.33

Distance functions

Distances between neurons are calculated from their positions with a distance function. There are four
distance functions, dist, boxdist, linkdist, and mandist

The link distance from one neuron is just the number of links, or steps that must be taken to get to the
neuron under consideration.

The dist is Euclidean distance from neuron to a point.

The mandist calculates the Manhattan distance between points.

Creating a Self-Organizing Map Neural Network (selforgmap) -

SOM is created using selforgmap function whose syntax is as given below.

Selforgmap (dimensions, coversteps, initNeighbour, topologyFunction, distanceFunction)
Where the parameters can take following value-

1. dimensions is a row vector of dimension sizes of the initial neurons. Default value= [8 8].

2. coversteps is number of training steps to cover the whole input dataset initially(Default=100)
3. initNeighbour is the size of initial neighbourhood.(default =3)

4. topologyFunction is the initial topology of neurons (default =’hextop’)

5. distanceFunction is neuron distance function (default="linkdist’)

Suppose you want to cluster n points located in 2D space into k clusters based on Euclidean distance-
Let x be a matrix with dimension 2*n which contains the coordinate of points.

net = selforgmap([2 k/2], 100, 3, , ‘gridtop’, dist’);

You can set the no of iterations the neural network will train using
net.trainParam.epochs=1000;

Network is trained using train (network, dataset) as

net = train(net, x);

To get the cluster id of the points by passing them as input to the learnt neural network-
y=net(x);

y would be a 4*n matrix. The ith column of y would be the output for the ith point and all the entries in the
column would be zero except one which is the cluster to which that points belong or more precisely the
node which is the cluster head of the ith point.

To get cluster-id in range (1, k)-
IDX=vec2ind(y);
Where IDX is a n length vector.

Now we have to get the geometrical centroid of each cluster which can be obtained by iterating through all
the points that belong to that cluster and finding mean of their position vectors.

https://in.mathworks.com/help/nnet/ref/dist.html
https://in.mathworks.com/help/nnet/ref/boxdist.html
https://in.mathworks.com/help/nnet/ref/linkdist.html
https://in.mathworks.com/help/nnet/ref/mandist.html

On running the above code, a GUI nntraintool appears in which there are several visualizations of the
network that is learnt like SOM topology, SOM neighbor connection, SOM neighbor distances, SOM input
planes, SOM sample hits, SOM Weight positions.

Interfacing WSN Simulation in NetSim with SOM algorithm running in MATLAB:

SOM based clustering is implemented in NetSim by Interfacing with MATLAB for the purpose of running
the SOM algorithm. The sensor coordinates are fed as input to MATLAB and Self Organizing map neural
network algorithm that is implemented in MATLAB is used to dynamically perform clustering of the sensors
into n number of clusters.

In addition to clustering we also determine the cluster head of each cluster mathematically in MATLAB. The
distance of each sensor from the centroid of the cluster to which it belongs is calculated. Then the sensor
which has the least distance is elected as the cluster head.

From MATLAB we get the cluster id of each sensor, cluster heads of each cluster and the size of each
cluster.

All the above steps are performed periodically which can be defined as per the implementation. Each time
the cluster members and the cluster heads are determined based on the current position and they are not
fixed.

The codes required for the mathematical calculations done in MATLAB are written to a
som_optimization.m file and user need to place this file inside the root directory of MATLAB.

For Eg: “C:\Program Files\MATLAB\R2016a”.

| som_cptimization.m - Notepad

File Edit Format View Help
FFERAERRER KA ERAERRER KA ERARRRER KRR RARRRXR KA ERA IR IR KR ERARRRRR KRR R IR KRR KRR AR KRR R KRR KK ~

% Copyright (C) 2017 %
% TETCOS, Bangalore. India %
% %
% Tetcos owns the intellectual property rights in the Product and its content. %
% The copying, redistribution, reselling or publication of any or all of the %
% Product or its content without express prior written consent of Tetcos is %
% prohibited. Ownership and / or any other right relating to the software and all %
% intellectual property rights therein shall remain at all times with Tetcos. %
% %
% Author: Rahul %
IR %
function [A,B,C] = som_optimization(x,scount,num_cls,power,max_energy)

% power: column vector of remaining power for each device
% s_count is sensor_count
% num_cls is number of clusters into which the sensors are grouped

% The following code is for clustering using Self-Organizing Map Neural MNetwork

% Clustering_Method =1 SOM using distance

% Clustering Method =2 SOM using distance and remaining power

% Clustering_Method =3 SOM and then iterative update of cluster heads
Clustering_Method = 3; %change here for different algorithm

save som_clustering.mat
%parameters that can be varied
%selforgmap(dimension vector, coversteps , initial no of neighbor, initial topologyFnc,distanceFnc)

neural_net = selforgmap([2 num_cls/2],10@, 3, 'gridtop’, dist');
% Set epochs which works best for your setting
neural_net.trainParam.epochs = 208;

neural_net= train(neural_net,x.');

output_net = neural_net(x.');
IDX=vec2ind(output_net); v

A SOM_Clustering.c file is added to the DSR project which contains the following functions:

A Netsim - Microsoft Visual Studio ¥ & QuickLaunch (Ctrl+Q) P e B x
File Edit View Project Build Debug Team Tools Test Analyze Window Help kanakmaaya ~
f@-0 | @2 B9 - Q- Debug - s ~ B Local Windows Debugger = | 51 _i b (- |

i
i
) |
I

SOM_Clustering.c = X Solution Explorer - BX
[DSR ~| (Global Scope) - @ fn_NetSim_som_Clustering_Init() - Qe o-5d
28 H#include "main.h" R e nrch Solution Bxplorer (Cutbe) 0 -
29 #incl DSR.h" -
: X . 1 Solution 'NetSim' (1 project)
30 #incl List.h a DSR
31 #incl ../BatteryModel/BatteryModel _h" b =B References
32 #include "../ZigBee/802 15 4.h" b Iz External Dependencies
33 #define NUMBEROFCLUSTERS 4 b ¢ CheckRouteFound.c
3 b ¢ DSRc
3) > B DSRh
35 int *ClusterkElements; b € MaintBuffer.c
36 int CH[NUMBEROFCLUSTERS]; b € MATLAB Interface.c
37 int CL_SIZE[NUMBEROFCLUSTERS]; b € Network_Layer Ack.c
ag b ¢ PacketProcessing.c
39 b ¢ RouteCachec
- b € RouteError.
49 = int fn_NetSim_som_clustering CheckDestination(NETSIM ID nDeviceId, NETSIM ID r'Destina—_ior'Id) I RZ:t:R’;;;:(
48 b C RouteRequest.c
49 #int fn_NetSim_som_clustering_GetNextHop(NetSim EVENTDETAILS* pstr‘l,Ex-‘ent)eiails) b € SendBuffer.c
a4 b C SOM Clustering.c
a5 #int fn_NetSim_som_clustering_IdentifyCluster(int Je',-i:elj) » ¢ SourceRoutec
180
101 =int fniNetSimisumiclusteringﬁr‘um()
106
107 #int fn_netsim_som_form_clusters(double* cl_id,double* c_size) [... }
119
120 #int fn_netsim_assign_cluster_heads(double* cl head)| { ... }
128
129 Hvoid fn_NetSim_som_Clustering_Init()| [... }
127% ~ 4 »

fn_NetSim_som_clustering_CheckDestination()
This function is used to determine whether the current device is the destination.

fn_NetSim_som_clustering_GetNextHop()
This function statically defines the routes within the cluster and from cluster to sinknode. It returns
the next hop based on the static routing that is defined.

fn_NetSim_som_clustering_IldentifyCluster()
This function returns the cluster id of the cluster to which a sensor belongs.

fn_NetSim_som_clustering_run() - This function makes a call to MATLAB interfacing function and passes
the inputs from NetSim (i.e) the sensor coordinates, number of clusters and the sensor count.

fn_netsim_som_form_clusters() - This function assigns each sensor to its respective clusters based on
the cluster id’s obtained from MATLAB.

fn_netsim_assign_cluster_heads() - This function assigns the cluster heads for each cluster based on
the cluster head id’s obtained from MATLAB.

fn_NetSim_som_Clustering_Init() - This function initializes all parameter values.

Static Routing:

Static Routing is defined in such a way that the sensors in the cluster send the packets to the cluster head.
The cluster head then directly sends the packets to the destination (sinknode).

If the current sensor is the source device and if it is not a cluster head then its next hop is its cluster head.

If the current sensor is the source device and if it is a cluster head then its next hop is the destination (i.e)
the sinknode.

If the current sensor is not the source then the packet is sent to the destination (i.e) the sinknode.

Steps to run SOM Clustering Code in NetSim:

1. The downloaded project folder contains the folders Documentation, MATLAB_Code and
SOM_ Optimization_Workspace directory as shown below:

| @ = | SOM_Optimization_Project_v12.0 — O e

Home Share View o
4y Cut - T Open Select all
»* O X ¥ M =

Wl Copy path il Edit Select none
Pin to Quick Copy Paste Move Copy Delete Rename Mew Properties
access d Paste shortcut to to - folder - 47 History EFIn\rert selection
Clipboard Organize New Open Select
<« v > ThisPC » Desktop » SOM_Optimization_Project_v12.0 v @ Search 50.. @
~
Documentation ™ MName Date modified Type Size
Documentation Documentation 18- File folder
Properties MATLAB_Code 18- File folder
System32 SOM_Optimization_Workspace 18- File folder
@ Onelrive
[This PC
M 3D Objects
I Desktop
v

[PR +e

3 items -
2. Import SOM_Optimization_Workspace by going to Open Simulation->Workspace Options->More
Options in NetSim Home window. Then select Import as shown below:

[% MetSim Home - x

NetSim Standard
MNetwork Simulation/Emulation Platform

Version 12.0.18 (64 Bit)

Current workspace: NetSim_12.0.18_64_sid_default

MNew Simulation Ctrl+N Workspace name Location Description
MNetSim_12.0.18_64_std_default C:\Users\TETCOS-DEMO SYSTEM\D... - Export TI[
| Cpen Simulation Ctrl+O
Examples

License Settings

Mew Import Back
Support Learn Documentation Contact us
A s/FAC User Manual Email - sales@tetcos.com
Contact Technical Support Technology Libraries Phone - +91 767 605 4321
Email - support@tetcos.com Sour de Help

3. ltdisplays a window where users need to give the path of the workspace folder and click on OK
as shown below:

m Import Workspace

Analyse the content of your folder or archive file to find projects and import
them. Browse the respective Workspace folder and import it as a current
working Workspace, This will import all the folders experiments.

Impaort from

Browse to the SOM_Optimization_Workspace folder and click on select folder as shown below:

&# Dropbox
@ OneDrive

[This PC
“J 3D Objects
I Desktop

[I P 2

Select Folder
“ v A <« S0M.. » S0M_Optimization_Works... »
Organize * Mew folder
Documents # * Mame
&= Pictures - bin
Documentation lcons
Experiment SOM_Optimization_Example
GEC-JAGDALPUI src
WorkSpace

v Search SOM_Optimization_W... 2@

Date modified

26-03-2019 11:43
21-03-2019 13:07
21-03-201913:11

21-03-2019 13:07

Type

File folder
File folder
File folder

File folder

*

Folder: | SOM_Optimization_Workspace

Select Folder

Cancel

After this click on OK button in the Import Workspace window.

While importing the workspace, if the following warning message indicating Software Version
Mismatch is displayed, you can ignore it and proceed.

m Warning *

Software Version Mismatch

You are importing a workspace from &4 build of MetSim into a 32
build of MetSim. After import, reset binaries for this workspace, and
then rebuild your code if you have made any changes to the source
codes.

OK

The Imported workspace will be set as the current workspace automatically. To see the imported
workspace, click on Open Simulation->Workspace Options->More Options as shown below:

[% MetSim Home

NetSim Standard

Network Simulation/Emulation Platform
Version 12.0.18 (84 Bit)

Current workspace: SOM_Optimization Workspace

o]
nta hnical Support iments Manual
Email - support@tetcos.com

User Manual

Mew Simulation Ctrl+MN Workspace name Location Description
SOM_Optimization_Workspace C:\Users\TETCOS-DEMO SYSTEM\De... - Expor |

O Simulati Ctrl+O
| (@r=n Sl i MetSim_12.0.18_64_stdl_default C:\Users\TETCOS-DEMO SYSTEMD... por |

Examples

License Settings

New Import Back

Support Learn Documentation Contact us

Email - sales@tetcos.com
Phone - +91 767 605 4321

Create a user variable with the name of MATLAB_PATH and provide the path of the installation

directory of user’s respective MATLAB version.

Edit User Yariable

Variable name:

Variable value:

MATLAE_PATH

Ok

] | Cancel |

9. Make sure that the following directory is in the PATH(Environment variable)
<Path where MATLAB is installed>\bin\win64

e

Edit System Variable

Variable name:

Variable value:

Path

(3]

b \Progr:

Ok

] | Cancel |

-

Note: If the machine has more than one MATLAB installed, the directory for the target platform
must be ahead of any other MATLAB directory (for instance, when compiling a 64-bit application,
the directory in the MATLAB 64-bit installation must be the first one on the PATH).

10. Open Command prompt as admin and execute the command “matlab -regserver”. This will register
MATLAB as a COM automation server and is required for NetSim to start MATLAB automation
server during runtime.

Bl Administrator: C:\Windows\System32\cmd.exe

Microsoft Windows [Version 10.0.17134.648]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\WINDOWS\system32>matlab -regserverg

11. Place clustering.m present in the MATLAB_Code folder inside the root directory of MATLAB. For
Example: “C:\Program Files\MATLAB\R2016a”.

[4] || = | MATLAB Code

Home Share

O *
View 0
& cut = x @ Ty~ 8 “Jopen - FHselectan
w.] Copy path « hd L__TEdit Select none
Pin to Quick Copy Paste Move Copy Delete Rename Mew Properties
access E] Paste shortcut to- tow - falder - History DD Invert selection
Clipboard Organize Mew Open Select
<« - 4 » ThisPC » Desktop » SOM_Optimization_Project v12.0 » MATLAE Code v { Search M... 2@
Documentation ™ Mame Date modified Type Size
Documentation | som_optimization.m 26-03-201911:06 M File 7KB
Properties
System32
@ OneDrive
3 This PC
_J 30 Objects
[Desktop
25 P —— ¥

1item 1 itemn selected 6.28 KB

12. Open the Source codes in Visual Studio by going to Open Simulation-> Workspace Options and
Clicking on Open code button as shown below:

[NetSim Home
NetSim Standard
MNetwork Simulation/Emulation Platform
Version 12.0.18 (64 Bit)
Current workspace: SOM_Optimization Workspace O\
Mew Simulation Cirl+ N Experiment name Date modified Network type
SOM_Optimization_Example 17-09-2019 WSN View Results Export Ty
| Open Simulation Ctrd+0Q
Examples
License Settings
Reset Code Reset Binaries Mare options Back
Support Learn Documentation Contact us
‘FAC Videos User Manual Email - sales@tetcos.com
t Technical Support Experiments Manual Technology Libraries
Email - support@tetcos.com

Phone - +91 767 605 4321

13. Under the DSR project in the solution explorer you will be able to see that MATLAB_Interface.c

and Som_clustering.c files which contain source codes related to interactions with MATLAB and
handling clustering in NetSim respectively.

14. Based on whether you are using NetSim 32 bit or 64 bit setup you can configure Visual studio to
build 32 bit or 64 bit DI files respectively as shown below:

ﬂ MetSim - Microsoft Visual Studio ¥ | &7 | Quick Launch (Ctrl+) P o O x
File Edit View Project Build Debug Team Tools Test Analyze Window Help kanakmaaya -
. = | i3 -2 W | - - | Debug - xb4 ~ P Local Windows Debugger v| Mo

Win32
x64
Configuration Manager... @ B '| © - a & | ~
Search Solution Explorer (Ctrl+;) P~

Solution Explorer > 1 x

] Solution 'MetSim' (1 project)

-
-
[]

References
External Dependencies
CheckRouteFound.c
DSR.c

DSR.h
Dynamic_Clustering.c
MaintBuffer.c
MATLAB_Interface.c
MNetwork_Layer_Ack.c
PacketProcessing.c
RouteCache.c
RouteError.c
RouteReply.c
RouteRequest.c
SendBuffer.c
SourceRoute.c

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂgﬂﬂg

[J Ready 4 Add to Source Control =
15. Right click on the DSR project in the solution explorer and select Rebuild.

24| MetSim - Microsoft Visual Studio ¥ & | Quicklaunch (Ctrl+Q) P - 8 X

File Edit View Project Buld Debug Team Tools Test Analze Window Help kanakmaaya ~

o0 @29 Q| pebug - B

- B Local Windows Debugger -\ A_iy

SOM_Clustering.c #® X Solution Explorer v ix
Al = DSk i . -| (Global Scope) ~ @ fn_NetSim_som_Clustering_lnit() E QE-| o5&
28 P¥include "main.h Y Search Solution Explorer (Ctre) 2 -
29 #include "DSR.h" . .
S et o o E—
31 #include "../BatteryModel/BatteryModel.h" Rebuild =B References
32 #include "../ZigBee/802_15_4.h" Clean & External Dependencies
33 #define NUMBEROFCLUSTERS 4 View » | ChedkRouteFound.c
Anah . |c DSRe
34 int * ; Pna'ﬁ:o I » DSRh
35 int *ClusterElements; roject Only © MaintBuffer.c
36 int CH[MUMBEROFCLUSTERS]; Retarget Projects C MATLAB Interface.c
37 int CL_SIZE[NUMBEROFCLUSTERS]; Overview € Network_Layer_Ack.c
38 € PacketProcessing.c
. SEEHDUIS © RouteCache.c
39 B New Solution Explorer View ¢ Routebrrore
40 @int fn_NetSin_som_clustering_CheckDestination(NETSIM ID nDeviceld, NETSIM_ID nDei poio. 0 o v lc Routekepiyc
48 e , | RouteRequestc
49 #int fn_NetSim_som_clustering_GetNextHop(MetSim EVENTDETAILS* pstruEvent)etalls)[. C SendBuffer.c
a4 B Class Wizard CHrl+ShifteX | ¢ SO _Clustering.c
95 #int fn_NetSim_som_clustering_IdentifyCluster(int DeviceId) (i) MemsmrEaneegs: c SourceRoute.c
100 £ Set as StartUp Project
101 mint fniNetSimisomiclusteringir'un() Debug b
106 o cut Ctrl+X
107 #int fn_netsim_som_form_clusters(double* cl_id,double* (_size) Paste Ctrl+V
119 X Remove Del
120 slint fn_netsim_assign_cluster_heads(double* dihead) Rename
128 Unload Project
] &lvoid fniNetSimisonLClusterin&Init() Rescan Sclution
€ Open Folder in File Explorer

A Properties Alt+Enter 4 Addto Source Control &

16. Upon successful build modified libDSR.dl file gets automatically updated in the directory containing
NetSim binaries.

Ln 140

17. Run NetSim as Administrative mode.

18. Then SOM_Optimization_Workspace comes with a sample configuration that is already saved. To
open this example, go to Open Simulation and click on the Som_clustering_Example that is present
under the list of experiments as shown below:

| NetSim Home — hos
NetSim Standard
Network Simulation/Emulation Platform
Wersicn 12.0.18 (64 Bit)
Current workspace: SOM_Optimization_ Workspace |O\ Experiment name ‘
New Simulation Ctrl+N Experiment name Date modified Network type
SOM_Optimization_Example 17-08-2019 WSN T
| Open Simulation Ctr+0
Examples
License Settings
Open code ‘ ‘ Reset Cade | | Reset Binaries | | More options Back
Support Learn Documentation Contact us
rs/FAQ Videos User Manual Ernail - sales@tetcos.com
Contact Technical Support Experiments Manual Technology Libraries Phane - +91 767 605 4321
Email - support@tetcos.com Source Code Help

19. The saved network scenario consisting of 64 sensors uniformly distributed in the grid environment
along with a sink node forming a Wireless Sensor Network. Traffic is configured from each sensor
node to the Sink Node.

180 210 240 270 300 (N

1
nsor 7

ireless_Sensor_6 ireless_Ser

>
5
G
‘7 7
A

o L~ 4.7 7
i CANRE T : Gl
— 73/
7 P 7,
reless Sensor 25 w,eress,s“sur,\"" Sensor ;1/ w.yye’;‘,/ Sehsop 2
= /
i /l 4 7y // VAN ¢

xzayv - "

o

reless Sensor 33 Wireless Sensor-347,. i
== 7

z - / A 7
P 7 / % - \ 4 % |4
= /.// 4 x g TR N 725 i 7275 // ' 7 !
% | 22 o SACEE G 720ENBTR A 7MP/, 24 ”// //
L Ko L1 s /4 /i 1 746 % ENAN O,
& ' ie 77/ - > v / / / 4 / /
reless Sensor 41 Sénsor 8Zho LT on e o e 3 Fogleey/Sensor 47 | Vreless Sofsor 48/
A7 8 - [/ / K.
> T/ 1] - / 1
b7 s) p 7 / VAl
o 77 7
18 - bl e / [W Ak "4 // /
L 753 P 5| [
~ 3 g 7

] "

. /-
Wirghess Sensof/50 Widless Skusor 51 Mfrelfss Sensor 52,/ Wireless Sensor
“ 7! / ' 7

% > 7 7
7 7 /
- ‘ // /
v 7/
759 2,760

=Y

reless Sensor 57 Wireless Sensor58 Wireless Sensor 59 Wireless Sensor 60 Wireless Sensor 61 Wireless Sensor 62 | Wireless_Sensor 63 | Wireless_Sensor_64

24(

20. Run the Scenario. You will observe that as the scenario starts and MATLAB plots the graph for the
cluster that is formed currently and also Neural Network Training Window opens up which has
several options as discussed next.

12. There are two algorithms implemented to find the best clusters and cluster heads which uses SOM
with distance as metric and other is modified version of the first algorithm where a function of both
remaining power and the distance from cluster head is minimized over all the sensors in the cluster to
get the cluster head with least distance from geometrical centroid of cluster and maximum remaining
power.

Algorithm:

Initially, cluster is evaluated using SOM which uses distance as metric. The cluster to which each
sensor belongs to is known. Now, cluster head is chosen as the sensor for which the objective function
which constitutes remaining power and the distance from geometrical centroid of cluster to the sensor,
is minimized.

After this cluster is recalculated and each sensor is assigned to the cluster whose cluster head is closest
to it. Cluster heads and then the cluster is computed iteratively.

SOM using distance as a metric to identify the cluster head (Clustering_Method = 1)

The clusters would be created so as to minimize the sum of distance between the sensor and the
sensor which is cluster head. The remaining power in each sensor isn’t taken into account in this
algorithm.

4 Figure 1 - O X
File Edit View Inset Tools Desktop Window Help L

Odde M| AROBDEL- 2|0 aO

750

700

650

Energy Consumed {mJ)

600
200

200
100 150
100

50 550

Sensor Y position 0 o Sensor X position

Fig: plot for power consumption

64 sensors are placed evenly on x-y plane and each sensor is given a fixed amount of initial power
(100 in this case). The number of clusters has been fixed to 4.

The z axis represents the power consumed while the sensors are placed on the X, y plane.

It can be seen from the plot, there are 4 peaks in the plot corresponding to 4 sensors that will be
selected as the cluster heads. Since the sensors are static, there are same cluster heads and cluster
during the whole simulation period.

Nntraintool GUI will appear like shown below.

It has several Menu buttons like SOM Topology, SOM Neighbor connections, SOM Neighbor distances,
SOM Input Planes, SOM Sample Hits, SOM Weight Positions.

SOM Topology- The plot would represent a rectangular grid in this case.

SOM Neighbor distances — It shows the distance of sensors from cluster centers as computed using
distance function and the neighborhood of each cluster centers are shaded in different colors.

SOM Weight Positions- The cluster centers are shown at their weight vector (using them as position
vector) along with all the sensors in the WSN.

4\ Neural Network Training (nntraintool) = X

Neural Network

Input Layer Output

|
. 2 . ; .
Algorithms
Training: Batch Weight/Bias Rules (trainbu)
Performance: Mean Squared Error (mise)
Derivative: Default (defaultderiv)
Progress
Epoch: 0 200 iterations 200
Time: 0:00:00
Plots
| SOM Topology 1
SOM Neighbor Connections (plotsomnc)
SOM Neighbor Distances {plotsomnd)
SOM Input Planes (plotsomplanes)
SOM Sample Hits (plotsombhits)
SOM Weight Positions {(plotsompos)
Plot Interval: ' 1 epochs

v Maximum epoch reached.

® Stop Training @ Cancel

Clicking on Weight Positions you would get the following plot.

4\ Neural Network Training SOM Weight Positions (plotsompaos), Epoch 20... - O x

File Edit View Insert Tools Desktop Window Help]

SOM Weight Positions
250

200

——
-

150

Weight 2

100 |

50 ——__l

0 50 100 150 200 250
Weight 1

Here the four points in blue shows the final weight positions of the trained neural network.

The green points are the sensors whose position vectors were used as input to the neural network
while training. Weightl and Weight2 are corresponding to x coordinate and y coordinate of the position
vectors of input.

Modified SOM using power and distance as metric for electing cluster head(Clustering_Method = 2)

Algorithm- SOM library of MATLAB is used to find the cluster id of each sensor and the sensor for which
the objective function (composed of power and distance from cluster center) is minimum is chosen as
cluster head.

The power consumption obtained using this is close to that of kmeans in the uniform placement of
sensors but it might differ in case of complex distribution of placement of sensors.

In the initial phase the plot resembles the previous one. But after some time, since the power associated
with cluster heads would decrease fast and so, there would be new cluster head whose distance from
geometrical centroid of cluster is considerably low and power is also high. Hence as the time passes,
it can be observed that the power is consumed by all the sensors at approximately the same rate.

There are no peaks in this plot unlike the previous one because modified SOM takes into account the
power level of each sensor and thus each sensor will be appointed as the cluster head in its respective
cluster.

File log.txt is created in the MATLAB root directory where the SOM_optimization.m file was placed. It
contains the location of cluster heads and the sensor no which is cluster head from the start of
simulation.

4 Figure1 - a X
File Edit View

DEEde (M RAODEL-|E|0B =@

Insert Tools Desktop Window Help ~

610

800 60

E oo 590
o
Q
£
2

2 400 580
[=]
()
>

@ 200

g 570
[=4
w

0
200 0
150 200
100 =50 ==l
50 100
e m
Sensor Y position 0 Sensor X position

Fig: plot for power consumption of sensors.

Case 3: Recalculating clusters iteratively after getting cluster using SOM initially.

