SDWSN based Location Aware Routing Protocol

Software Recommended: NetSim Standard v12.2 (32-bit/ 64-bit), Visual Studio 2017/2019
Reference: https://ieeexplore.ieee.org/document/9118046

Follow the instructions specified in the following link to clone/download the project folder from GitHub
using Visual Studio:

https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-
exchange-project-repositories-from-github-

Other tools such as GitHub Desktop, SVN Client, Sourcetree, Git from the command line, or any client you
like to clone the Git repository.

Note: It is recommended not to download the project as an archive (compressed zip) to avoid
incompatibility while importing workspaces into NetSim.

Secure URL for the GitHub repository:

https://github.com/NetSim-TETCOS/SDWSN-based-Location-Aware-Routing-Protocol_v12.2.git

Location Aware Routing (LAR):

Routing for an ad-hoc wireless network is challenging, many routing strategies have been proposed in
the literature. With the availability of affordable Global Position System equipped devices, Location-
Aware Routing provides a promising foundation for developing an efficient and practical solution for
routing in the ad-hoc wireless network.

Most Forward within Fixed Radius R (MFR):

MPFR protocol is a geographic Location-Aware Routing protocol. MFR forwards packets to the neighbor
nodes within a set radius of the current node (not the route source) that makes the most forward
progress (or the least backward progress) along the line drawn from the current node to the destination.
Progress is calculated as the cosine of the distance from the current node to the neighbor node
projected back onto the line from the current node to the destination.

https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-exchange-project-repositories-from-github-
https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-exchange-project-repositories-from-github-

Here,

S(N1): d2 > d1, Next hop = N3

d4 > d3, Next hop = N4
d6 > d5, Next hop « D(N6)

» Route

Projection

Current Node to Dest

Figure: MFR Protocol Implementation

S(N1) is the source node and D(N6) is the destination node.

N2 and N3 are in the transmission radius of S(N1).

So, according to MFR protocol, d1 and d2 are the projected distances of N2 and N3
respectively on the line drawn from the current node i.e., S(N1) and the destination
node D(N6):

d2 > d1, therefore the next route hop node will be N3.

N4, N5 and S(N1) are in the transmission radius of N3. Since S (N1) is already present in
the route list, skip it.

So, according to MFR protocol, d3 and d4 are the projected distances of N5 and N4
respectively on the line drawn from the current node i.e., N3 and the destination node
D(N6):

d4 > d3, therefore the next route hop node will be N4.

N5, D(N6) and N3 are in the transmission radius of N3. Since N3 is already present in
the route list, skip it.

So, according to MFR protocol, d5 and d6 are the projected distances of N5 and D(N6)
respectively on the line drawn from the current node i.e., N4 and the destination node
D(N6):

e d6 > d5, therefore the next route hop node will be D(N6).
e Route according to MFR: S(N1) -> N3 -> N4 -> D(N6).

Real Time Interaction in NetSim:

NetSim allows users to interact with the simulation at runtime via a socket or through a file.
User Interactions make simulation more realistic by allowing command execution to
view/modify certain device parameters during runtime.

Python socket interface:

Python interfacing is a method to interface custom protocols like routing based protocols with
the NetSim engine. In this project, we input NetSimCore.exe with routes generated via our
routing protocol i.e., Most Forward within Fixed Radius R (MFR) which is a geographic location-
aware routing protocol. The interaction between the routing protocol and the NetSimCore.exe
is happening via socket programming.

The Real-Time Interaction has to be turned ‘True’ before running the simulation of the scenario.
This lets the NetSimCore.exe (server) to wait for the client (Python script) to connect using the
socket port. After the connection is established, we compute the routes based on our custom
MFR protocol. These routes are passed as static routes to the NetSimCore.exe server by the
python script.

Python Script:

The Socket programming code and MFR protocol code are together part of mfrProtocol.py python script
file.

mfrProtocol.py:

e This python script reads the device coordinate and device ip address input from a file
device_log.txt having data in the following format:

SINK 76.70 76.71 11.1.1.1

e The protocol script has 4 functions to ultimately find the projected distance _projDist() on the
line drawn from the current node to the destination.

e Reads the device_log.txt file written by NetSim:
with open('device_log.txt','r') as f:

e This python script reads the Application id, Source id and destination id input from a file
Appinfo_log.txt written by NetSim, which hashaving data in the following format:

1 SENSOR_2 SENSOR_3

e Mention the Appinfo_log.txt file name in the python script at File for Appinfo section:
with open(‘Appinfo_log.txt’,'r') as f:
e Inthe Declarations of MFR, change the Transmission range (meters) accordingly:

o Tx=170

Note: The Transmission range is set to 170 based on the channel conditions and device properties for
this example. This may vary if any network other than the one discussed in this example is considered.

Steps:

1. After you unzip the downloaded project folder, Open NetSim Home Page click on Open
Simulation option,

EEI NetSim Home - s
NetSim Standard
Metwork Simulation/Emulation Platform

Version 12.2.26 (64 Bit)

Current workspace: NetSim 12.2.26 64 std default

MNew Simulation Ctrl+N Choose a Network
Intemetwaorks LTE/LTE-A Networks
I Open Simulation Ctri+O I
Pure Aloha VANET
Bxamples Slotted Aloha 5G NR mmWave
G5M Satellite Comm. Networks
COMA

Mabile Adhoc Networks
Wireless Sensor Networks
License Settings Intemet of Things

Cognitive Radio Networks

Exit
Support Learn Documentation Contact us
wers/FACH User Manual Email - sales@tetcos.com
Contact Technical Support Experiments Manual Phaone - +91 767 605 4321

Email - support@tetcos.com

2. Click on Workspace options

Eﬂ MetSim Home

NetSim Standard

Metwork Simulation/Emulation Platform
Version 12,2.26 (64 Bit)

www.tetcos.com

Current workspace: NetSim_12.2.26_64 std_default C‘\
Mew Simulation Ctrl+ N Experiment name Date modified Network type
python_SDM_interface 10-09-2020 Wsn View Results Export T
| Open Simulation Ctrl+0
Cost231_HataSubUrban_10m 05-09-2020 Internetworks View Results Export m
Examples Cost231_hataSubUrban_800m 05-09-2020 Internetworks View Results Export E[
License Settings
Exit
Import Experiment
Support Learn Documentation Contact us
Answers/FAQ Videos User Manual Email - sales@tetcos.com
Contact Technical Support Experiments Manual Technology Libraries Phone - +91 767 605 4321
Email - support@tetcos.com Source Code Help
3. Click on More Options,
[MetSim Home - X
NetSim Standard
Network Simulation/Emulation Platform
Wersion 12.2.26 (64 Bit)
www.tetcos.com
Current workspace: NetSim_12.2.26 64 std_default C\
New Simulation Ctrl+N Experiment name Date modified Network type
python_SDIN_interface 10-09-2020 Wsn View Results Export TiT 0
| Open Simulation Ctrl+0
Cost231_HataSubUrban_10m 05-09-2020 Internetworks View Results Expart il
Examples Cost231_hataSubUrban_800m 05-09-2020 Internetworks View Results Export T
License Settings
Exit
Open code Reset Code Reset Binaries Back
Support Learn Documentation Contact us
Answers/FAC Videos User Manual Email - sales@tetcos.com
Contact Technical Support Experiments Manua Technology Libraries Phone - +91 767 605 4321
Email - support@tetcos.com Source Code Help

4. Click on Import, browse the extracted folder path and go into the WorkSpace_ MFR_LAR
directory. Click on Select folder button and then on OK.

H! Select Folder X

— v o + ThisPC » Desktop » File-Exchange-projectvi2.2 v O O Search File-Exchange-projec...

Organize + New folder = 0

& Downloads # * Mame Date modified ~ Type Size

= Documents # Documentatian 10/13/2020 12:48 PM File folder

=] Pictures * WorkSpace MFR_LAR 10/13/2020 12:48 PM File folder
bin_x64

Simulation
Simulation

Training_ppt
@, OneDrive

& This PC
_J 3D Objects
[Desktop
E] Documents
‘ Downloads
B Music v

Folder: | WorkSpace MFR_LAR

Select Folder Cancel

5. Go to home page, Click on Open Simulation >Workspace options and click on the Open code
button.

[NetSim Home

NetSim Standard
Network Simulation/Emulation Platform
Version 12.2.26 (64 Bit) -

Current workspace: WorkSpace MFR_LAR F\ |
New Simulation Ctrl+N Experiment name Date modified Network type
WITH_SDN 13-10-2020 Wsn View Results Export Tir
| Dpen Simulatien Ctrl+0
Examples

License Settings

Exit
Reset Code Reset Binaries More options Back
Support Learn Documentation Contact us

User Manual Email - sales@tetcos.com

Techn; Phone - +91 767 605 4321
Email - support@tetcos.com So

ical Support

6. Add the code that is highlighted in Application.c file

) Be Em Yo Puea el Db W Aghe Beu Gwon geces (i > 5 s @ - o x
(0-0[B BB T - ey - - b ot wmsonsoegper - | 5Bt 30 (W 2 et R
| il Scopet =] o b tppicabon. bt et e METWORK formal et [ENIDE « e Y LY
char +.

pszAppPath, “device log.txt");

WA » 1), DEVICE POSITION(L = 1)-3X,

G 1) st an)
felose(fp);

H

fpriatf(stderr, “\nApppath: %e°, pEzAPPPATh);

sorintf(f_name, “¥s\\Xs", pszAppPath, “Appinfo_log. txt");

£ = fopen(t_nane, "we);

it ()

f E3LP2

PP_CALL_INFO* info = applnfo[packet->pstruippData-snpplicationld - 1]->appData;
CATION_INFOY appInfo = (ptrAPPLI NFO™)NETWORK- 2appIno;

§ < NETWORK->nApplicationCount; i++)
(¥p, “Xd\ISENSOR_Xd\t SENSOR_%d\n*, appInfoli]-»id, appInfe[i]-»sourceList[0], appInfoli]-»destiist[o]);

feloselfp);

7. Now right click on Solution explorer and select Rebuild.

B De [t Yo Pt Dol Dewg Ter dgwme ok Qe Wedow Leb
HRIERE R I JE R M) B Local Wndow: Debugger « | 3

!

g . e
=i] s

13 o S pegicaion s, Nt Nemor NERAERX Pl e 0T - 5 & g

4

name| BUFSIZ]; "
(F_nome, "%s\\4s", pszAppPath, “device_log.txt"); 3
fp = fopen({_name, ;
if (fp)
For (1 = 0 1 < NETWORK-»nDeviceCount; i++) Bl Depemncies .
forintF(fp, "%s\t%.219\tX 2P\ ths\n", DEVICE_NAME(S 1), DEVICE_POSITION(i + 1)->K, T .
50 MVICE_POSTTIONGE + 1)-5¥, DIVICE_WMAODRESS(E + 1, 1)->str_ip); P F—
51 felose(fp); [y ——
53 3
B setos S Prect
53 Apppath: ¥s”, pszéppPath); o i .
Hs", pszapppath, “apinfo_lug.txt”);
e - ! | - P anx
B X emese b
ALL_INFO* info = applnfo[packet-»pstrunppbata-snipplicacionld - 1]-»appbata; =
ICATION TNFO® appInfo = PPLICATION INFO*JNETWORK ->appInfo; iese e
p Lonc et Desendencies

61 For (i - 95 i < NETWORK-»nApplicat ++)

63 Fprintf(Fp, "%d\1SENSOR_Kd\ ST L =ppinfali]->id,applnfoli]->sourcelist[u], mppinfali]->destlist[8]};

63 felmel s it rowing tabee mers
3 @ o Foldern e Eaplorer

g Dababase rurs

.
15 - o imetena . L e vt e e

8. Upon rebuilding, libApplication.dll will automatically get replaced in the respective bin folders
of the current workspace
Note:
1. Based on whether you are using NetSim 32 bit or 64-bit setup you can configure
Visual studio to build 32 bit or 64 bit DIl files respectively as shown below:

00 Bk D Yew Dot Bud Qobug Rt Agshee Jeck B ik Bk Serch Ol 5 W ez @ - 5 x
@-u@p9-c-

| @0Emon | & Qol 18Wamings |) Obesmages | % | uda - reensense
7 Code Descrtion Puoject

2. While importing the workspace, if the following warning message indicating
Software Version Mismatch is displayed, you can ignore it and proceed.

I;I Warning X

Software Version Mismatch y l

You are importing a workspace from 32 build of NetSim into a 64
build of NetSim. After import, reset binaries for this workspace, and
then rebuild your code if you have made any changes to the source
codes.

oK

9. Go to NetSim home page, click on Open Simulation, Click on WITH_SDN.

[NetSim Home - P4

NetSim Standard

Netwerk Simulatien/Emulation Platform
Version 12.2.26 (64 Bit)

Current workspace: WorkSpace MFR_LAR C\ ‘

New Simulation CirleN Experiment name Date modified Network type

WITH_SDN 13-10-2020 Wsn View Export i)

| Open Simulation c+0

Examples

License Settings

Exit

Workspace options. mport Experiment

Support Learn Documentation Contact us

Email - sales@tetcos.com
Phone - +31 767 605 4321

AQ

ical Support nents Manua

Email - support@tetcos.com

Settings that were done to create the network scenario for Location Aware Routing Protocol:

1. Create a network scenario in WSN (Wireless Sensor Network) with UDP running in the
Transport Layer and DSR in Network Layer.

2. For example, you can create a scenario as shown in the following screenshot:

[0 wen. pace MFR LAR. LSDN
He Seings Hep
- a | Adhoclink 1 Plots
& R s >
il gﬂ cot Trace
Wireless Sensor WSN,_Sink Links applicaion | By Event Trace Run B, Disploy Settings
0 0 ") 0 250 0 0 0 0

\\&g

SENSGR.E !
i SENS0R0

SENSOR 2

SENSOR T

For Application 1:
e Source — Deviceid 2
e Destination — Device id 3

For Application 2:

e Source —Deviceid 12
e Destination — Device id 7

Link Properties (Adhoc Link 1)

Channel Characteristics — Path Loss only
Path Loss model — LOG DISTANCE
Path Loss Exponent- 2
3. Run the Simulation for 500sec.
4. Upon running simulations with this configuration, Route from source to destination as shown
below:
a. Application 1: SENSOR_2(S)->SENSOR_13->SENSOR_3(D)
b. Application 2: SENSOR_12(S)->SENSOR_13->SENSOR_7(D)

Procedure to perform routing using python interface in NetSim:

e For the python interface to interact with NetSim during the simulation, Interactive Simulation
parameters has to be set to 'True' under the Real-Time Interaction tab, before running the
simulation.

[% Run Simulation x
Run time Interaction Static ARP Configuration

Interactive Simulation:

Interactive Simulation True -

File Path

Accept

e This lets the NetSimCore.exe (server) to wait for the client (Python script) to connect using the
socket port. After the connection is established, we compute the routes based on our custom
MPFR protocol. These routes are passed as static routes to the NetSimCore.exe server by the
python script.

e Run simulation for 500 seconds. NetSim Simulation Console starts and waits for client
application to connect as shown below:

B Select C:\Users\Ranveer\Documents\WorkSpace_MFR_LAR\bin\bin_x64\NetSimCare.exe

NetSim.

The MFR protocol and socket client code to connect to NetSimCore.exe is written in
mfrProtocol.py.

Open Command Prompt in the directory where the python codes are present and run the
command python mfrProtocol.py

B Select C:\Windows\System32\cmd.exe

Python interface interacts with NetSim Simulation and routes the packets from source to
destination based on MFR protocol.

Simulation continues and packets are routed from source to destination based on MFR protocol
as shown below:

o Application 1: SENSOR_2(S)->SENSOR_13->SENSOR_3(D)

Analyzing the device route tables in NetSim Results Dashboard

The static route entry for SENSOR _2 specifies the next hop as SENSOR_13 which has the IP 11.1.1.13.

The static route entry for SENSOR_13 specifies the next hop as the destination node SENSOR_3 which

o Application 2: SENSOR_12(S)->SENSOR_13->SENSOR_7(D)

NetSim Results Window contains route tables for each device from which we can identify the

routes updated by the python interface as per MFR protocol. Since the route that is formed is
from SENSOR_2(S) -> SENSOR_13 -> SENSOR_3(D), route entries for packets with destination
11.1.1.3 are added in the nodes SENSOR_2, SENSOR_13, and SENSOR _3 to forward packets to
SENSOR_13 and SENSOR_3 respectively. In the nodes SENSOR_2, SENSOR_13, and SENSOR_3

static route entries added based on MFR protocol by the python socket program can be found
as shown below:

SENSOR_2 Table

O X

SENSOR_2 M Detailed View
Metwork Destination Netmask/Prefix len Gateway Interface Metrics Type
I‘I1.‘I.1.3 255.255.255.255 111113 11.1.1.2 1 STATIC I
11.1.0.0 255.255.0.0 on-link 11.1.1.2 300 LOCAL

224,0.0.1 255.255.255.255 on-link 11112 306 MULTICAST
224,0.0.0 240.0.0.0 on-link 11.1.1.2 306 MULTICAST
255.255.255.255 255.255.255.255 on-link 11.1.1.2 099 BROADCAST
0.0.0.0 0.0.0.0 11.1.1.1 11.1.1.2 999 DEFAULT

SENSOR_13_Table

0O X

SENSOR_13 M Detailed View
Network Destination ~ Metmask/Prefix len Gateway Interface Metrics Type
1117 255.255.255.255 117 111131 STATIC

II1‘I.‘I.‘I.3 255.255.255.255 11.1.1.3 11.1.1.13 1 STATIC |
11.1.00 255.255.0.0 on-link 111113 300 LOCAL
224.0.0.1 255.255.255.255 on-link 11.1.113 306 MULTICAST
224000 240,000 on-link 111113 306 MULTICAST
255.255.255.255 255.255.255.255 on-link 11.1.113 999 BROADCAST
0.0.0.0 0.0.0.0 1.1 11,1112 999 DEFAULT

has the IP 11.1.1.3.

Using NetSim Packet Trace to identify the route taken by packets from the source to the destination:

NetSim Packet trace log file can be obtained by enabling the packet trace option in NetSim GUI before

running the simulation.

Upon running simulation with packet trace enabled, the packet trace log file can be accessed from the

NetSim Results Window using the Open Packet Trace link.

Once the packet trace log file is loaded you can filter a specific packet id in the PACKET_ID column to

view the path that the packet has taken.

Upon filtering Packet with id 4 we can observe the following in the packet trace:

A B c D E F G
PACKET_ID|-T|SEGMENT_ID|~ | PACKET_TYPE| ~ | CONTROL_PACKET_TYPE/APP_NAME|-Y| SOURCE_ID|~ | DESTINATION_ID| ~| TRANSMITTER_ID| ~ | RECEIVER_ID|~
a 0 Sensing Appl_SENSOR_APP SENSOR-2 SENSOR-3 SENSOR-2 SENSOR-13
4l 0/Sensing |Appl_SENSOR_APP |SENSOR-2 | SENSOR-3 SENSOR-13 |SENSOR:3

Result

Case 1: Without SDN

Application_Metrics_Table

Application_Metrics

Application Id Application Name Packet generated Packet received Throughput (Mbps) | Delay{microsec)
1 App1_SENSOR_APP 500 508 0.000406 28775301575
2 App2_SENSOR_APP 500 503 0.000404 28520.851089

O X

[] Detailed View
Iitter{microsec)
18859522288
22156535889

Case 2: With SDN

Application_Metrics_Table

Application_Metrics

Application Id Application Name Packet generated Packet received Throughput (Mbps) | Delay(microsec)
1 App1_SENSOR_APP 500 510 0.000408 25040.325490

2 App2_SENSOR_APP 500 520 0.000416 22638.447308

O X

[] Detailed View
Jitter{microsec)
17987.185069
18235730114

you can see from the Application_Metric table that in case 2, for creating route path the delay is less as

compared in case 1.

