
 SDWSN based Location Aware Routing Protocol
Software Recommended: NetSim Standard v12.2 (32-bit/ 64-bit), Visual Studio 2017/2019

Reference: https://ieeexplore.ieee.org/document/9118046

Follow the instructions specified in the following link to clone/download the project folder from GitHub

using Visual Studio:

https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-

exchange-project-repositories-from-github-

Other tools such as GitHub Desktop, SVN Client, Sourcetree, Git from the command line, or any client you

like to clone the Git repository.

Note: It is recommended not to download the project as an archive (compressed zip) to avoid

incompatibility while importing workspaces into NetSim.

Secure URL for the GitHub repository:

https://github.com/NetSim-TETCOS/SDWSN-based-Location-Aware-Routing-Protocol_v12.2.git

Location Aware Routing (LAR):

Routing for an ad-hoc wireless network is challenging, many routing strategies have been proposed in

the literature. With the availability of affordable Global Position System equipped devices, Location-

Aware Routing provides a promising foundation for developing an efficient and practical solution for

routing in the ad-hoc wireless network.

Most Forward within Fixed Radius R (MFR):

MFR protocol is a geographic Location-Aware Routing protocol. MFR forwards packets to the neighbor

nodes within a set radius of the current node (not the route source) that makes the most forward

progress (or the least backward progress) along the line drawn from the current node to the destination.

Progress is calculated as the cosine of the distance from the current node to the neighbor node

projected back onto the line from the current node to the destination.

https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-exchange-project-repositories-from-github-
https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-exchange-project-repositories-from-github-

Figure: MFR Protocol Implementation

Here,

 S(N1) is the source node and D(N6) is the destination node.

 N2 and N3 are in the transmission radius of S(N1).

 So, according to MFR protocol, d1 and d2 are the projected distances of N2 and N3

respectively on the line drawn from the current node i.e., S(N1) and the destination

node D(N6):

 d2 > d1, therefore the next route hop node will be N3.

 N4, N5 and S(N1) are in the transmission radius of N3. Since S (N1) is already present in

the route list, skip it.

 So, according to MFR protocol, d3 and d4 are the projected distances of N5 and N4

respectively on the line drawn from the current node i.e., N3 and the destination node

D(N6):

 d4 > d3, therefore the next route hop node will be N4.

 N5, D(N6) and N3 are in the transmission radius of N3. Since N3 is already present in

the route list, skip it.

 So, according to MFR protocol, d5 and d6 are the projected distances of N5 and D(N6)

respectively on the line drawn from the current node i.e., N4 and the destination node

D(N6):

 d6 > d5, therefore the next route hop node will be D(N6).

 Route according to MFR: S(N1) -> N3 -> N4 -> D(N6).

Real Time Interaction in NetSim:

NetSim allows users to interact with the simulation at runtime via a socket or through a file.

User Interactions make simulation more realistic by allowing command execution to

view/modify certain device parameters during runtime.

Python socket interface:

Python interfacing is a method to interface custom protocols like routing based protocols with

the NetSim engine. In this project, we input NetSimCore.exe with routes generated via our

routing protocol i.e., Most Forward within Fixed Radius R (MFR) which is a geographic location-

aware routing protocol. The interaction between the routing protocol and the NetSimCore.exe

is happening via socket programming.

The Real-Time Interaction has to be turned ‘True’ before running the simulation of the scenario.

This lets the NetSimCore.exe (server) to wait for the client (Python script) to connect using the

socket port. After the connection is established, we compute the routes based on our custom

MFR protocol. These routes are passed as static routes to the NetSimCore.exe server by the

python script.

Python Script:

The Socket programming code and MFR protocol code are together part of mfrProtocol.py python script

file.

mfrProtocol.py:

 This python script reads the device coordinate and device ip address input from a file

device_log.txt having data in the following format:

 SINK 76.70 76.71 11.1.1.1

 The protocol script has 4 functions to ultimately find the projected distance _projDist() on the

line drawn from the current node to the destination.

 Reads the device_log.txt file written by NetSim:

with open('device_log.txt','r') as f:

 This python script reads the Application id, Source id and destination id input from a file

Appinfo_log.txt written by NetSim, which hashaving data in the following format:

 1 SENSOR_2 SENSOR_3

 Mention the Appinfo_log.txt file name in the python script at File for Appinfo section:

with open(‘Appinfo_log.txt’,'r') as f:

 In the Declarations of MFR, change the Transmission range (meters) accordingly:

o Tx = 170

Note: The Transmission range is set to 170 based on the channel conditions and device properties for

this example. This may vary if any network other than the one discussed in this example is considered.

Steps:

1. After you unzip the downloaded project folder, Open NetSim Home Page click on Open

Simulation option,

2. Click on Workspace options

3. Click on More Options,

4. Click on Import, browse the extracted folder path and go into the WorkSpace_MFR_LAR

directory. Click on Select folder button and then on OK.

5. Go to home page, Click on Open Simulation >Workspace options and click on the Open code

button.

6. Add the code that is highlighted in Application.c file

7. Now right click on Solution explorer and select Rebuild.

8. Upon rebuilding, libApplication.dll will automatically get replaced in the respective bin folders

of the current workspace

Note:

1. Based on whether you are using NetSim 32 bit or 64-bit setup you can configure

Visual studio to build 32 bit or 64 bit Dll files respectively as shown below:

2. While importing the workspace, if the following warning message indicating

Software Version Mismatch is displayed, you can ignore it and proceed.

9. Go to NetSim home page, click on Open Simulation, Click on WITH_SDN.

Settings that were done to create the network scenario for Location Aware Routing Protocol:

1. Create a network scenario in WSN (Wireless Sensor Network) with UDP running in the

Transport Layer and DSR in Network Layer.

2. For example, you can create a scenario as shown in the following screenshot:

For Application 1:

 Source – Device id 2

 Destination – Device id 3

For Application 2:

 Source – Device id 12

 Destination – Device id 7

Link Properties (Adhoc Link 1)

Channel Characteristics – Path Loss only

Path Loss model – LOG DISTANCE

Path Loss Exponent- 2

3. Run the Simulation for 500sec.

4. Upon running simulations with this configuration, Route from source to destination as shown

below:

a. Application 1: SENSOR_2(S)->SENSOR_13->SENSOR_3(D)

b. Application 2: SENSOR_12(S)->SENSOR_13->SENSOR_7(D)

Procedure to perform routing using python interface in NetSim:

 For the python interface to interact with NetSim during the simulation, Interactive Simulation

parameters has to be set to 'True' under the Real-Time Interaction tab, before running the

simulation.

 This lets the NetSimCore.exe (server) to wait for the client (Python script) to connect using the

socket port. After the connection is established, we compute the routes based on our custom

MFR protocol. These routes are passed as static routes to the NetSimCore.exe server by the

python script.

 Run simulation for 500 seconds. NetSim Simulation Console starts and waits for client

application to connect as shown below:

 The MFR protocol and socket client code to connect to NetSimCore.exe is written in

mfrProtocol.py.

 Open Command Prompt in the directory where the python codes are present and run the

command python mfrProtocol.py

 Python interface interacts with NetSim Simulation and routes the packets from source to

destination based on MFR protocol.

 Simulation continues and packets are routed from source to destination based on MFR protocol

as shown below:

o Application 1: SENSOR_2(S)->SENSOR_13->SENSOR_3(D)

o Application 2: SENSOR_12(S)->SENSOR_13->SENSOR_7(D)

Analyzing the device route tables in NetSim Results Dashboard

 NetSim Results Window contains route tables for each device from which we can identify the

routes updated by the python interface as per MFR protocol. Since the route that is formed is

from SENSOR_2(S) -> SENSOR_13 -> SENSOR_3(D), route entries for packets with destination

11.1.1.3 are added in the nodes SENSOR_2, SENSOR_13, and SENSOR_3 to forward packets to

SENSOR_13 and SENSOR_3 respectively. In the nodes SENSOR_2, SENSOR_13, and SENSOR_3

static route entries added based on MFR protocol by the python socket program can be found

as shown below:

The static route entry for SENSOR_2 specifies the next hop as SENSOR_13 which has the IP 11.1.1.13.

The static route entry for SENSOR_13 specifies the next hop as the destination node SENSOR_3 which

has the IP 11.1.1.3.

Using NetSim Packet Trace to identify the route taken by packets from the source to the destination:

NetSim Packet trace log file can be obtained by enabling the packet trace option in NetSim GUI before

running the simulation.

Upon running simulation with packet trace enabled, the packet trace log file can be accessed from the

NetSim Results Window using the Open Packet Trace link.

Once the packet trace log file is loaded you can filter a specific packet id in the PACKET_ID column to

view the path that the packet has taken.

Upon filtering Packet with id 4 we can observe the following in the packet trace:

Result

Case 1: Without SDN

Case 2: With SDN

you can see from the Application_Metric table that in case 2, for creating route path the delay is less as

compared in case 1.

