
NetSim Multi-Parameter Sweep Program

Software Recommended:

NetSim v12.2 (32/64 bit), DOT NET CORE SDK 3.1, Python 3.7.4

Follow the instructions specified in the following link to clone/download the project folder from

GitHub using Visual Studio:

https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-

file- exchange-project-repositories-from-github-

Other tools such as GitHub Desktop, SVN Client, Sourcetree, Git from the command line, or any

client you like to clone the Git repository.

Note: It is recommended not to download the project as an archive (compressed zip) to avoid

incompatibility while importing workspaces into NetSim.

Secure URL for the GitHub repository:

https://github.com/NetSim-TETCOS/Multi-Parameter-Sweeper_v12.2.git

Introduction:

When users want to sweep one or more parameters, they change their values between

simulation runs, and compare and analyse the performance metrics from each run. NetSim

multi-parameter sweeper enables users to automate the sweep process.

Consider an example, where a user wishes to create and simulate a network scenario for all

possible values of one or more parameters in combination and analyse a set of performance

metrics across the simulation runs. This is be extremely time consuming to do manually using

the NetSim GUI.

The multi-parameter sweep program enables users to automate the sweep process across

multiple input parameters, simulate each run, save each result, and compare specific output

metrics via a spreadsheet software like MS Excel.

The sweep program runs NetSim via its CLI interface.

File Organization

The project directory consists of several binaries which are responsible for different tasks

during a multi-parameter sweep:

https://dotnet.microsoft.com/download/dotnet-core/3.1
https://www.python.org/downloads/windows/
https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-exchange-project-repositories-from-github-
https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-exchange-project-repositories-from-github-
https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-exchange-project-repositories-from-github-

1. input.xml: This file contains the base NetSim network configuration that is to be

simulated. This file is created by copy pasting the Configuration.netsim file that can be

obtained by saving a network configuration in NetSim and renaming it to input.xml.

The values of parameters which are to be varied during each simulation run needs to be

specified as {0}, {1}, {2}, etc. respectively.

For Example, if the X and Y coordinates of a device is to be varied the values can be

modified in the input.xml file as shown below:

2. Script.txt: This file should be updated with the parameter from the output metrics of

NetSim that is to be logged at the end of each simulation run for the purpose of analysis.

At the end of every simulation, NetSim generates a Metrics.xml file which contain the

performance metrics written in a specific format based on which it is loaded in the results

dashboard.

Each Metric is part of a results table which can be accessed using a menu in the results

dashboard.

A NetSim Metrics.xml file is shown below:

For Example, if the application throughput is to be logged for each simulation run then the

scrip file can be updated as shown below:

3. ConfigWriter.exe: This executable takes one or more command line arguments as

input and generated Configuration.netsim file by replacing the arguments in place of the

variable parameters specified in the input.xml file.

If there are two variable parameters specified in the input.xml file ({0} and {1}) then two

arguments need to be passed while calling ConfigWriter.exe.

4. MetricsReader.exe: This executable is responsible for reading the output parameter

from the Metrics.xml file generated after each simulation and logging it to the results file.

Users the Script.txt file to determine which parameter to read from the Metrics file.

If multiple parameters are to be read and logged, then the MetricsReader.exe can be called

multiple times with Script.txt file having information about the parameter to be read each

time.

5. Supporting DLL’s: Some the supporting files such as ConfigWriter.dll,

MetricsReader.dll, NetSimMetricsReader.dll, NetSimXmlReader.dll, etc. which are present in

the project folder are used by other executable such as ConfigWriter.exe and

MetricsReader.exe for various purposes during a multi-parameter sweep.

6. runTest script files: The files runTest.bat, runTest.py are the main script files that can

be used to start a multi-parameter sweep process. Both files differ in the programming

language used for the script.

runTest.bat uses Windows commands that can be executed by the windows command line

interpreter. Batch scripts may get complex as the number of input and output parameters increases.

runTest.py uses python programming language which is less complex and offers more

flexibility as the number of input and output parameters increases.

Users can also write the script to run the multi-parameter sweep process in a preferred

programming language as per the convenience.

The script runs multiple simulation iterations based on the number of parameters to be

varied and the range of values of each parameter.

Running a Multi-Parameter Sweep process:

Example 1: Modifying a single input parameter and logging a single output parameter

Consider the following network 5G network scenario in NetSim, comprising of a Wired Node,

EPC, gNB and a UE.

The network configuration has the initial distance between the gNB and UE as 50 meters

with the gNB located at (1000,200) and UE located at (1000,250).

Multi-Parameter Sweeper is configured to run simulations for different distance between the

gNB and UE by varying the UE Y coordinate value from 250 to 400 in steps of 50 meters.

1. The network scenario is saved and the content of the Configuration.netsim file is

copied to the Multi-Parameter-Sweeper directory and renamed as input.xml.

Refer to the Example 1 directory which is part of the project folder (Multi-Parameter-

Sweeper_v12.2\Examples\Multi-Parameter-Sweeper-Example-1)

The value of the Y coordinate of UE that is to be modified during each simulation run

is updated (“{0}”) in the configuration file as shown below:

2. The Script.txt file is updated with the details of the output parameter to be read from the

Metrics.xml file and added to the result csv log file. In this case the Application throughput is

to be logged for each simulation run.

3. runTest.py/runTest.bat is updated to pass the Y coordinate value during each iteration to

generate Configuration file run simulation and update the result csv log.

The runTest.bat batch script modified for running simulations for different values of Y

coordinates starting from 250 up to 400 in steps of 50 is shown below:

• NETSIM_PATH variable is set to the path of NetSim 32-bit/64-bit binaries in

the install directory or workspace in the system.

• A result.csv file is created and added with headings Y and Throughput(Mbps)

• For loop is set to iteratively run simulations for values starting from 250 to 400

in steps of 50.

• The value of the parameter Y in the current iteration is written to the result log

file for analysis.

• The value of the parameter Y in the current iteration is passed as input to

ConfigWriter executable to generate Configuration.netsim file for each

simulation.

• NetSim simulation is run via CLI mode by passing the apppath, iopath and

license server information

• Configuration file and Metrics file are copied and renamed appending the

value of the parameter in the current iteration.

The runTest.py python script modified for running simulations for different values

of Y coordinates starting from 250 up to 400 in steps of 50 is shown below:

• NETSIM_PATH variable is set to the path of NetSim 32-bit/64-bit binaries in

the install directory or workspace in the system.

• A result.csv file is created and added with headings Y and Throughput(Mbps)

• For loop is set to iteratively run simulations for values starting from 250 to 400

in steps of 50.

• The value of the parameter Y in the current iteration is passed as input to

ConfigWriter executable to generate Configuration.netsim file for each

simulation.

• NetSim simulation is run via CLI mode by passing the apppath, iopath and

license server information.

• The value of the parameter Y in the current iteration is written to the result log

file for analysis.

• Configuration file and Metrics file are copied and renamed appending the

value of the parameter in the current iteration.

4. Multi-Parameter Sweeping process is started by opening command prompt in the directory of

the Multi-Parameter-Sweeping project and starting the batch script or the python script as

shown below:

Batch Script:

Python Script:

This starts the Multi-Parameter-Sweeping process which runs NetSim simulations

iteratively for different values of Y parameter of UE.

At the end of the process the Multi-Parameter-Sweeping folder will have the following

file and folders created:

• Data: The Data directory contains the Configuration.netsim and the

Metrics.xml files associated with each simulation run, renamed including the

value of the parameter in the file name.

• IOPath: Used for storing the Configuration.netsim file and the simulation files

generated during each simulation run.

• Result.csv: This is the output log which contains the parameter varied during

each simulation run and the output parameter associated with each run.

Varying multiple network parameters:

In order to vary multiple network parameters during the multi-parameter sweep process each

parameter in the input.xml file can be modified as {0},{1},{2},{3},…..{n} respectively.

Logging multiple output parameters:

Each output parameter that is to be logged should be part of the Script.txt file. However, the

Script.txt file should contain only the details of one output parameter during the call to

MetricsReader.exe.

To log multiple parameters, MetricsReader.exe can be called multiple times with Script.txt

file having information about different parameter during each call.

For Example, there can be two Script files as shown below:

During each call to MetricsReader each of the Script files (Script1.txt and Script2.txt) can be

renamed to Script.txt and renamed back.

Example 2: Modifying multiple input parameters and logging multiple output

parameter

Consider the following network 5G network scenario in NetSim, comprising of a Wired Node,

EPC, gNB and a UE.

Properties configured in the LTE_NR interface of the gNB is shown in the table below:

Interface(LTE-NR) Properties

Tx_Power(dBM) 40

Downlink_MIMO_Layer_Count 2

Uplink_MIMO_Layer_Count 1

CA_Type Single Band

CA_Configuration n78

CA_Count 1

MU 0

Channel Bandwidth (MHz) 10

PRB Count 52

MCS Table QAM64

CQI Table Table 1

X_Overhead XOH0

DL UL Ratio 4:1

Outdoor Scenario Rural Macro

LOS Mode Standard

Wireless Link Properties

Channel Characteristics No_Pathloss

Wired Link Properties

Link Speed (Mbps) 10000

BER 0

Propagation Delay (µs) 0

Application Properties

Packet Size (Byte) 1460

Inter Arrival Time (µs) 166

Generation Rate (Mbps) 100

Transport Control UDP

Start Time (s) 1

QoS BE

Simulation Parameters

Simulation Time (s) 1.1

Traffic is generated at a rate of 70 Mbps and upon running simulation, the throughput achieved is

59.95 Mbps.

We now find the max throughput for each possible bandwidth, DL MIMO count combination varying

the generation rate based accordingly.

Two more parameters to be taken care include, the PRB Count and Guard Band(KHz) which vary with

respect to the bandwidth.

Input Variables Value Range

Channel Bandwidth (MHz) 10,15,20,25,30,40,50

Downlink_MIMO_Layer_Count 2,4,8

PRB Count 52,79,106,133,160,216,270

Guard Band (KHz) 312.5,382.5,452.5,522.5,592.5,552.5,692.5

Reference Inter Arrival Time (Micro Seconds) 166

Reference Bandwidth 10

Reference DL MIMO Layer Count 2

Inter Arrival Time for each case is calculated based on the Reference IAT Bandwidth and DL MIMO

Layer Count as shown below:

𝐼𝑛𝑡𝑒𝑟 𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑇𝑖𝑚𝑒 (𝑀𝑖𝑐𝑟𝑜 𝑆𝑒𝑐𝑜𝑛𝑑𝑠) =
𝑅𝑒𝑓 𝐼𝐴𝑇

(
𝐶𝑢𝑟𝑟 𝐵𝑊
𝑅𝑒𝑓 𝐵𝑊

) ∗ (
𝐶𝑢𝑟𝑟 𝐷𝐿 𝑀𝐼𝑀𝑂 𝐶𝑜𝑢𝑛𝑡
𝑅𝑒𝑓 𝐷𝐿 𝑀𝐼𝑀𝑂 𝐶𝑜𝑢𝑛𝑡

)

For E.g. In case of Bandwidth of 20 MHz and DL MIMO Count of 4 inter arrival time is

𝐼𝑛𝑡𝑒𝑟 𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑇𝑖𝑚𝑒 (𝑀𝑖𝑐𝑟𝑜 𝑆𝑒𝑐𝑜𝑛𝑑𝑠) =
166

(
20
10

) ∗ (
4
2

)
= 41.5 𝑀𝑏𝑝𝑠

1. The network scenario is saved and the content of the Configuration.netsim file is

copied to the Multi-Parameter-Sweeper directory and renamed as input.xml.

2. Refer to the Example 2 directory which is part of the project folder (Multi-Parameter-

Sweeper_v12.2\Examples\Multi-Parameter-Sweeper-Example-2)

3. In the Input.xml file the value of the input variables are modified as shown in the table

below:

Input Variables

Channel Bandwidth (MHz) {0}

Downlink_MIMO_Layer_Count {1}

Inter Arrival Time (Micro Seconds) {2}

PRB Count {3}

Guard Band (KHz) {4}

4. The python script runTest.py is modified to run simulation for all possible

combinations of Bandwidth and Downlink MIMO Layer Count with the respective

values of Guard Band, PRB Count and the IAT that is calculated.

5. Multiple parameters are read from the Metrics.xml file and logged in the results.csv

file along with the input parameters such as CHANNELBANDWIDTH_MHz,

DOWNLINK_MIMO_LAYER_COUNT, INTER_ARRIVAL_TIME(micro sec)

Output Parameters

Throughput(Mbps)

Data Packets transmitted

6. Two script text files namely Script1.txt and Script2.txt are created with information to

read each of the parameters from the Metrics.xml file.

Script1.txt

Scritp2.txt

7. In the python script runTest.py, MetricsReader is called twice, once to log each

parameter by renaming the script files to Script.txt and back to its original name and

separating the entries with a comma (“,”). The input parameters that were varied

during each simulation run are also logged in the results.csv file.

8. The Input Configuration.netsim and the output Metrics.xml files associated with each

simulation run is renamed including the bandwidth and DL MIMO count values that

were used during each simulation run.

5. Multi-Parameter Sweeping process is started by opening command prompt in the directory of

the Multi-Parameter-Sweeping project and starting the python script as shown below:

Python Script:

This starts the Multi-Parameter-Sweeping process which runs NetSim simulations

iteratively for different combinations of input parameters.

At the end of the process the Multi-Parameter-Sweeping folder will have the following

file and folders created:

• Data: The Data directory contains the Configuration.netsim and the

Metrics.xml files associated with each simulation run, renamed including the

value of the parameter in the file name.

• IOPath: Used for storing the Configuration.netsim file and the simulation files

generated during each simulation run.

• Result.csv: This is the output log which contains the parameter varied during

each simulation run and the output parameter associated with each run.

