
Implementing a new Crypto Algorithm – Mysty1

Software Recommended: NetSim Standard v12.1/v12.2 (32/64-bit), Visual Studio 2017/2019,

Wireshark

Follow the instructions specified in the following link to clone/download the project folder from GitHub

using Visual Studio:

https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-

exchange-project-repositories-from-github-

Other tools such as GitHub Desktop, SVN Client, Sourcetree, Git from the command line, or any client

you like to clone the Git repository.

Note: It is recommended not to download the project as an archive (compressed zip) to avoid

incompatibility while importing workspaces into NetSim.

Secure URL for the GitHub repository:

v12.1: https://github.com/NetSim-TETCOS/MISTY_ENCRYPTION_v12.1.git

v12.2: https://github.com/NetSim-TETCOS/MISTY_ENCRYPTION_v12.2.git

Note: The cloned project directory will contain the documentation specific to the NetSim version

(v12.1/v12.2).

1. After you unzip the downloaded project folder, Open NetSim Home Page click on Open

Simulation option,

https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-exchange-project-repositories-from-github-
https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-exchange-project-repositories-from-github-

2. Click on Workspace options

3. Click on More Options,

4. Click on Import, browse the extracted folder path and go into

MISTY_ENCRYPTION_WorkSpace directory. Click on Select folder button and then on OK.

5. While importing the workspace, if the following warning message indicating Software Version

Mismatch is displayed, you can ignore it and proceed.

6. Go to home page, Click on Open Simulation → Workspace options → Open code

7. Based on whether you are using NetSim 32 bit or 64 bit setup you can configure Visual studio to

build 32 bit or 64 bit Dll files respectively as shown below:

8. Now expand Application Project and click mysty_run.c file. This file contains the following lines of

code

#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "application.h"

void misty_run(char* str, int* len)
{
 int n;
 int l = *len;

 unsigned char buf[32];
 unsigned char key[32];

 for (n = 0; n < *len; n += 16, str += 16, l -= 16)
 {
 /* Set the plain-text */
 memcpy(buf, str, min(16, l));

 misty1_main(buf);
 memcpy(str, buf, 16);
 }

}

In the mysty_run() function inside the mysty_run.c file we pass the plain text in parts of 16 bytes
each time to get it encrypted. This is done because the crypto algorithm accepts a 16 byte
plaintext as input. Here the variable str contains the packet payload and len corresponds to the
size of payload in bytes.

9. Modifications that were done to the source codes of misty1.c file in the Application project is

explained below:

a) Addition of #include<application.h> and #define uint8 unsigned char to the beginning of the

misty1.c file(shown in red).

i. #include <stdlib.h>
ii. #include <string.h>

iii. #include "application.h"
iv. typedef unsigned long u4;
v. typedef unsigned char byte;

vi. #define MISTY1_KEYSIZE 32
vii. #define uint8 unsigned char

b) Removed inline keyword that is present before the functions fi(), fo(), fl() and flinv().

To

c) Now go to the main() function in the file and check that line #ifdef TESTMAIN was removed or

commented before the main() function and also the associated #endif at the end of the main()

function.

d) main() function was renamed to unsigned char* misty1_main(uint8* input)

e) Commented the declaration of Cipher text, Modify the declaration of Plaintext variable, as

shown below:

f) Now check the commented lines starting from misty1_keyinit() to misty1_key_destroy() as

shown below:

g) Addition of the following lines of code just above the misty1_key_destroy(ek_e); statement as

shown below:

 // Memcpy is used to equate input which is Char to Plaintext

// which is Unsigned Long

 memcpy(Plaintext,input,2*sizeof(u4));
 memcpy(&Plaintext[2],&input[8],2*sizeof(u4));

 misty1_keyinit(ek_e,Key);
 misty1_encrypt_block(ek_e,Plaintext,&c[0]);
 misty1_encrypt_block(ek_e,&Plaintext[2],&c[2]);

 memcpy(input,c,2*sizeof(u4));
 memcpy(&input[8],&c[2],2*sizeof(u4));

h) Inside the mysty1_main function the above codes were modified to ensure that the plaintext is

properly initialized with the 16 bytes of payload received, for the encryption to happen.

i) Here, memcpy() is done initially to equate input received as which is char, to the plain text which

is unsigned long.

memcpy(Plaintext,input,2*sizeof(u4));
memcpy(&Plaintext[2],&input[8],2*sizeof(u4));

j) After the calls to misty1_encrypt_block() memcpy() is done to equate the encrypted cipher text

back to the input.

memcpy(input,c,2*sizeof(u4));
memcpy(&input[8],&c[2],2*sizeof(u4));

10. Now double click on the application.c file and make a call to mysty_run() function instead of the

call to aes256, inside the copy_payload() function as shown below (changes are marked in red):

if(info->encryption==Encryption_TEA)
 encryptBlock(real,payload,&key);
 else if(info->encryption==Encryption_AES)
 {
 misty_run(real,payload);

 //aes256(real,payload);
 }
 else if(info->encryption==Encryption_DES)
 des(real,payload);

11. Right click on Solution in Solution Explorer and select rebuild solution
12. Upon rebuilding, libApplication.dll will get created in the bin_x86/ bin_x64 folder.

Note: While using NetSim 64-bit setup, users need to change solution platform as x64

13. Open Configuration.netsim file from the zip and make sure that AES encryption is selected in the
application properties.

14. Also Wireshark option has to be set to either Online or Offline in any of the nodes where AES256
encryption is enabled.

15. Now mysty1 codes will be running instead of AES256.

16. You can see the encrypted payload in Wireshark either during simulation if online is set or after

the simulation if offline is set.

17. Setting Wireshark to either online or offline will give you Packet Capture metrics where links to
.pcap files are provided. The number of links available depends on the number of nodes in which
Wireshark is enabled.

