
Dynamic Traffic Light Control in NetSim VANETs

Software Used: NetSim Standard v12.1/v12.2 (32/64 bit), SUMO 1.2.0, Visual Studio 2019

Follow the instructions specified in the following link to clone/download the project folder from

GitHub using Visual Studio:

https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-

file- exchange-project-repositories-from-github-

Other tools such as GitHub Desktop, SVN Client, Sourcetree, Git from the command line, or

any client you like to clone the Git repository.

Note: It is recommended not to download the project as an archive (compressed zip) to avoid

incompatibility while importing workspaces into NetSim.

Secure URL for the GitHub repository:

v12.1: https://github.com/NetSim-

TETCOS/Dynamic_Traffic_Light_control_in_NetSim_VANETs_v12.1.git

v12.2:https://github.com/NetSim-

TETCOS/Dynamic_Traffic_Light_Control_in_NetSim_VANETs_v12.2.git

Note: The cloned project directory will contain the documentation specific to the NetSim version
(v12.1/v12.2).

 Vehicular ad-hoc networks (VANETs): VANETs are created by applying the principles of

mobile ad hoc networks (MANETs), vehicle-to-vehicle and vehicle-to-roadside communication

architectures co-exist in VANETs to provide road safety, navigation, and other roadside

services. VANETs are a key part of the intelligent transportation systems (ITS) framework. In

VANETs, Vehicles and roadside units (RSUs) are the communicating nodes, providing each

other with information, such as safety warnings and traffic information. Both types of nodes are

dedicated short-range communications (DSRC) devices. Roadside unit (RSU).The RSU is a

WAVE device usually fixed along the roadside or in dedicated locations such as at junctions or

near parking spaces.

 Vehicles and RSUs have communication capabilities which allow them to send and receive

network packets. They periodically broadcast traffic safety messages called "Basic Safety

Messages" (BSMs) to all the other vehicles in its communication range In NetSim, users can

model network traffic between vehicles V2V and between vehicle to infrastructure V2I.The BSM

Application class sends and receives the IEEE 1609 WAVE (Wireless Access in Vehicular

Environments) Basic Safety Messages (BSMs). The BSM is a 20-byte packet that is generally

broadcast from every vehicle at a nominal rate of 10 Hz. In NetSim this can be configured as a

broadcast or as a unicast application.

Dynamic Traffic control:

In the urban areas, the traffic light systems are designed in such a way that the waiting time of

the vehicles in the traffic signal is independent of the traffic density in that road. In VANETs the

https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-exchange-project-repositories-from-github-
https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-exchange-project-repositories-from-github-
https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-exchange-project-repositories-from-github-

traffic signal can be modeled to dynamically change the traffic light based on the traffic

congestion in the respective roads. In this example the emergency vehicles are prioritized over

other vehicles and traffic signals are controlled dynamically.

In the VANET example shown below, there are two lanes namely East-West(EW) lane and

North-South(NS) lane. At the intersection of roads there is a traffic signal that is programmed to

allow only the emergency vehicles in the NS lane and has regular traffic in the EW lane. The

vehicles in the scenario are allowed to have two movements which are going straight in the lane

and taking a U-turn at the end of the either of the lanes.

In this scenario, the vehicle movements are detected by the Roadside Unit (RSU).The

Emergency vehicles in the NS lane communicates with the RSU throughout the simulation time.

The vehicles in the EW lane and NS lane have green and red light respectively, except when

RSU triggers the change of traffic light in NS lane from red to green when the emergency

vehicle approaches the intersection of lanes where the traffic signal is present so that it is

allowed to pass through the traffic signal as soon as it arrives .Here the control signals are

passed from RSU in NetSim to the traffic light controller in SUMO through the Traffic Control

Interface (TraCI).

NetSim sumo interface:

NetSim’s VANET module allows users to interface with SUMO which is an open source road

traffic simulation package designed to handle vehicular & road networks. The road traffic

simulation is done by SUMO while NetSim does the network simulation along with RF

propagation modeling in the physical layer. While SUMO Simulates the road traffic conditions

and movements, NetSim Simulates the communication occurring between the Vehicles.

NetSim and SUMO are interfaced using ‘pipes’. A pipe is a section of shared memory that

processes use for communication. SUMO process writes information to pipe, then NetSim

process reads the information from pipe. On running the Simulation, SUMO determines the

positions of vehicles with respect to time as per the road conditions. NetSim reads the

coordinates of vehicles from SUMO (through pipes) in runtime and uses it as input for vehicles

mobility.

Traffic Signal phases:

For this example, four phases of traffic signal are defined in sumo as shown below. Here green

light indicates that vehicles can cross the traffic signal. Red lightindicates that vehicles have to

stop at the traffic signal. Yellow light indicates that the vehicles have to decelerate and finally

stop when traffic signal changes to red.

Phase 0: This phase indicates that NS lane has green light and EW lane has red light for a

duration of 10s.

Phase 1: This phase indicates that NS lane has yellow light and EW lane has red light for a

duration of 6s.

Phase 2: This phase indicates that NS lane has red light and EW lane has green light for a

duration of 31s.

Phase 3: This phase indicates that NS lane has red light and EW lane has yellow light for a

duration of 6s.

In this scenario traffic signal is always in phase 2 until an emergency vehicle in NS lane triggers

the signal change from phase 2 to phase 3.When the duration of phase 3 is completed, the

signal goes to phase 0.

Code Modifications:

Application.c

The following lines of code were added to the Application.c

fn_NetSim_Application_Run()

The code mentioned above is part of the this function. This function is called only when there is

APP-IN event at the RSU when an RSU receives a message from the emergency vehicle. The

location of the emergency vehicle in the NS lane is compared with the location of the RSU. The

threshold value set for comparison takes time required to change the traffic signal from phase 2

to phase 3 into consideration. When the vehicles are near the RSU, the signal change message

is sent from NetSim to sumo via the pipe that is created for the communication between NetSim

and sumo process.

_declspec(dllexport) double *corr(char* id)

This function sends the traffic signal message after comparison, to sumo via the pipe and

returns null values. When there is no change in signal the function returns co-ordinates of the

vehicles in the scenario.

Sumo API:

getPhase()

Returns the index of the current phase in the current program.

setPhase()

Sets the phase of the traffic light to the given. The given index must be valid for the current

program of the traffic light, this means it must be between 0 and the number of phases known to

the current program of the tls - 1.

getIDList()

Returns a list of ids of all vehicles currently running within the scenario

traci.vehicle.getPosition()

Returns the position(two doubles) of the named vehicle (center of the front bumper) within the

last step [m,m]; error value: [-2^30, -2^30].

SumoRun.py

The traffic signal is initially in phase 2. This is done by using the setPhase() API. getPhase() is

used to get the current traffic signal phase. getIDList() is used to get the vehicles in the scenario

and traci.vehicle.getPosition() is used to get their instantaneous location in order to send the

location of the vehicles to the NetSim using win32file.WriteFile().The win32file.ReadFile() is

used to read the message sent from NetSim. When the signal has to be changed, the traffic

signal is changed from phase 2 to phase 3 using the setPhase() API.

Steps

1. The downloaded project folder contains the folders Documentation, Sumo and

Dynamic_Traffic_Control_Workspace directory as shown below

2. Import Dynamic_Traffic_Control_Workspace by going to Open Simulation->Workspace

Options- >More Options in NetSim Home window. Then select Import as shown below:

3. It displays a window where users need to give the path of the workspace folder as

shown below

4. Browse to the Dynamic_Traffic_Control_Workspace folder and click on select folder as

shown below:

5. After this click on OK button in the Import Workspace window.

6. The Imported workspace will be set as the current workspace automatically. To see the

imported workspace, click on Open Simulation->Workspace Options

7. Open the Source codes in Visual Studio by going to Open Simulation-> Workspace

Options and Clicking on Open code button as shown below:

8. Under the Application project in the solution explorer you will be able to see that

Application.c file which contains the source codes related to interactions with Sumo and

controlling the traffic signal in NetSim respectively.

9. Based on whether you are using NetSim 32 bit or 64 bit setup you can configure Visual

studio to build 32 bit or 64 bit Dll files respectively as shown below

10. Right click on the Application in the solution explorer and select Rebuild.

11. Run NetSim as Administrative mode

12. Then Dynamic_Traffic_Control_Workspace comes with a sample configuration that is

already saved. To open this example, go to Open Simulation and click on the

Dynamic_Traffic_Control that is present under the list of experiments as shown below

13. The saved network scenario shown below consists of 6 vehicles, 5 in the EW lane and

one emergency vehicle in the NS lane. The emergency vehicle transmits BSM

Application packets periodically to RSU.

14. The downloaded folder consists of a folder named sumo , this folder contains a

fileSumoRun.py a python script. This file has to be replaced with the original

SumoRun.py file present in the bin folder of NetSim install directory.

15. Run the Scenario by selecting the play and record animation option as shown below

and click OK.. You will observe that as the simulation starts in NetSim, SUMO gets

initialized and there are three windows open during the runtime. NetSim Console shows

the Control messages being sent to sumo, Sumo simulation is seen in other console

where the received control messages are displayed, simultaneously in the Sumo GUI

window the vehicle movement and traffic signal can be seen when zoomed.

Results:

It can be observed that when the control signal is sent from NetSim to Sumo (can be seen in

NetSim console) the Traffic signal changes from phase 2 to phase 3 as soon as the emergency

vehicle arrives in the NS lane(can be seen in Sumo GUI).

1. The Sumo GUI and Sumo console shown below is traffic signal being in phase 2

2. The image shown below is when the lane is zoomed and the traffic signal phase 2 can

be observed

3. The control message being sent from NetSim to Sumo can be seen in the image below.

4. Traffic signal changes from phase 2 to phase 3 indicating that vehicles in the EW lane

have to slow down due to the control message received by NetSim in the sumo console

is shown below.

5. The traffic signal changes from red to green in the NS lane which can be observed in the

traffic signal shown below

Inference:

In this example, a simple scenario with a single emergency vehicle in one of the lanes shows

that the RSU in VANETs can be used to control the traffic signal dynamically by communication

between vehicles and RSUs. Further the real time scenarios can be created based on this

example.

