
Wireless Energy Harvesting for the Internet of Things

Software Used: NetSim Standard v11.1 (32/64-bit), Visual Studio 2017/2019

Follow the instructions specified in the following link to clone/download the project folder from GitHub

using Visual Studio:

https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-

exchange-project-repositories-from-github-

Other tools such as GitHub Desktop, SVN Client, Sourcetree, Git from the command line, or any client

you like to clone the Git repository.

Note: It is recommended not to download the project as an archive (compressed zip) to avoid

incompatibility while importing workspaces into NetSim.

Secure URL for the GitHub repository:

https://github.com/NetSim-TETCOS/Energy-Harvesting-in-IoT.git

Introduction:

Among different energy harvesting methods, such as vibration, light, and thermal energy extraction,

wireless energy harvesting (WEH) has proven to be one of the most promising solutions by virtue of

its simplicity, ease of implementation, and availability. This recent technology trend in energy

harvesting provides a fundamental method to prolong battery longevity. While harvesting from the

aforementioned environmental sources is dependent on the presence of the corresponding energy

source, RF energy harvesting provides key benefits in terms of being wireless, readily available in the

form of transmitted energy (TV/radio broadcasters, mobile base stations and handheld radios), low

cost, and small form factor implementation.

A WEH-enabled sensor device usually consists of an antenna, a transceiver, a WEH unit, a power

management unit (PMU), a sensor/processor unit, and possibly an onboard battery. The available

harvested power, PH, is given by a Friis equation and is directly proportional to the transmitted power,

PT, path loss, PL, transmitter antenna gain, GT, receiver antenna gain, GR, power conversion

efficiency of the converter, PCEH, and the square of the wavelength, l, and is inversely proportional to

the square of the communication distance, r, between the source and the device.

The communication energy consists of ELS (listening energy), ERX (receiver energy), and ETX

(transmitter energy). The computation energy includes EPR (processing energy) and ESN (sensing

energy). To capture the energy distribution among the aforementioned energy consumers, weighting

coefficients aLS > aTX > aRX > aPR > aSN are assigned to them. The total

average energy consumption ED = aLS ELS + aTX ETX + aRX ERX + aPR EPR + aSN ESN. EB is

the total energy stored in the battery, and EH is the available harvested energy per active duty cycle.

We assume constant energy consumptions for receiver, processor, and sensor. However, the energy

consumption of the transmitter (ETX) is directly proportional to rij 2, where rij is the distance between

the originating device j and the sink node i (in ring topology) or the sink node/sensor device (in

multihop topology).The harvested energy EH is inversely proportional to rij
 2 (here j is the sink node

and rij = rji).

IEEE Ref Paper:

Wireless Energy Harvesting for the Internet of Things
P. Kamalinejad C. Mahapatra ; Z. Sheng ; S. Mirabbasi ; V. C. M. Leung ; Y. L. Guan
IEEE COMMUNICATIONS MAGAZINE · JUNE 2015

https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-exchange-project-repositories-from-github-
https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-exchange-project-repositories-from-github-

The code given below is for an example implementation of WEH whereby energy is harvested
based on the received signal power. The Steps to be followed for Implementation in NetSim
are:

1. The downloaded project folder contains the folders Documentation and

WSN_Energy_Harvesting_Workspace directory as shown below:

2. Import WSN_Energy_Harvesting_Workspace by going to Open Simulation->Workspace

Options->More Options in NetSim Home window. Then select Import as shown below:

3. It displays a window where users need to give the path of the workspace folder and click on

OK as shown below:

4. Browse to the WSN_Energy_Harvesting_Workspace folder and click on select folder as

shown below:

5. After this click on OK button in the Import Workspace window.

6. While importing the workspace, if the following warning message indicating Software Version

Mismatch is displayed, you can ignore it and proceed.

7. The Imported workspace will be set as the current workspace automatically. To see the

imported workspace, click on Open Simulation->Workspace Options->More Options as

shown below:

8. Open the Source codes in Visual Studio by going to Open Simulation-> Workspace Options

and Clicking on Open code button as shown below:

9. Expand BatteryModel Project and double click on the BatteryModel.h file to open it. The

following changes(highlighted in red) were done to the code:
_declspec(dllexport) void battery_animation();
_declspec(dllexport) void battery_metrics(PMETRICSWRITER metricsWriter);

_declspec(dllexport) double battery_get_remaining_energy(ptrBATTERY battery);
_declspec(dllexport) int battery_energy_harvesting(ptrBATTERY battery, double
eh_energy);
_declspec(dllexport) double battery_get_consumed_energy(ptrBATTERY battery, int
mode);

10. Now double click on the BatteryModel.c file to open the file. The following
changes(highlighted in red) were done to the code:
_declspec(dllexport) double battery_get_remaining_energy(ptrBATTERY battery)
{
 return battery->remainingEnergy;
}

_declspec(dllexport) int battery_energy_harvesting(ptrBATTERY battery, double
eh_energy)
{
 battery->remainingEnergy += eh_energy_mJ;

}

11. Expand ZigBee project and double click on the ChangeRadioState.c file to open it. At the end
of ChangeRadioState.c file the following lines of code are added:

#define EH_FRACTION 0.1
// EH_FRACTION is the fraction of the received signal energy that can be
// captured and harvested by the sensor.
int calculate_eh(NETSIM_ID dev1, NETSIM_ID dev2)
{
 double rx_pwr = GET_RX_POWER_mw(dev1, dev2, pstruEventDetails-
>dEventTime);
 double eh_energy= EH_FRACTION * rx_pwr;
 ptrBATTERY battery = WSN_PHY(dev2)->battery;
 if(battery)
 battery_energy_harvesting(battery, eh_energy);
}

12. The function call shown in red is added to 802_15_4.c file

case UPDATE_MEDIUM:
{
 double dtime=pstruEventDetails->dEventTime;
 NETSIM_ID nLink_Id, nConnectionID, nConnectionPortID, nLoop;
 NETSIM_ID nTransmitterID;
 nTransmitterID = pstruEventDetails->nDeviceId;
 ZIGBEE_CHANGERADIOSTATE(nTransmitterID, WSN_PHY(nTransmitterID)-
>nRadioState, RX_ON_IDLE);
 if(WSN_PHY(nTransmitterID)->nRadioState != RX_OFF)
 WSN_MAC(nTransmitterID)->nNodeStatus = IDLE;
 nLink_Id = fn_NetSim_Stack_GetConnectedDevice(pstruEventDetails-
>nDeviceId,pstruEventDetails->nInterfaceId,&nConnectionID,&nConnectionPortID);
 for(nLoop=1; nLoop<=NETWORK->ppstruNetSimLinks[nLink_Id-1]-
>puniDevList.pstruMP2MP.nConnectedDeviceCount; nLoop++)
 {
 NETSIM_ID ncon = NETWORK->ppstruNetSimLinks[nLink_Id-1]-
>puniDevList.pstruMP2MP.anDevIds[nLoop-1];
 if(ncon != pstruEventDetails->nDeviceId)
 {
 calculate_eh(nTransmitterID, nLoop);

WSN_PHY(ncon)->dTotalReceivedPower -=
GET_RX_POWER_mw(nTransmitterID,ncon,pstruEventDetails->dEventTime);
 if(WSN_PHY(ncon)->dTotalReceivedPower < WSN_PHY(ncon)-
>dReceiverSensivity)
 WSN_PHY(ncon)->dTotalReceivedPower = 0;
 }
 }

This completes the code modifications for for energy harvesting.

13. Based on whether you are using NetSim 32 bit or 64 bit setup you can configure Visual studio
to build 32 bit or 64 bit Dll files respectively as shown below:

14. Right click on the Solution in the solution explorer and select Rebuild.

15. Upon successful build modified libZigBee.dll and BatteryModel.dll file gets automatically
updated in the directory containing NetSim binaries.

16. Then WSN_Energy_Harvesting_Workspace comes with a sample configuration that is
already saved. To open this example, go to Open Simulation and click on the
WSN_Energy_Harvesting_Example that is present under the list of experiments as shown
below:

COMPARATIVE ANALYSIS:

1. Create a network scenario in IoT with say 16 sensors, a 6LoWPAN Gateway, a Router and a
Wired Node as shown below:

2. Configure traffic in the network by setting a few applications between some of the sensor

nodes to the Wired Node using the Application Icon, as shown below:

3. Disable Energy Harvesting in the Sensor nodes by setting the EnergyHarvesting parameter to

OFF in the Interface(ZigBee) Properties of the sensor nodes as shown below:

4. Run Simulation for say 100 seconds and save the simulation results. In NetSim Simulation

Results Window, the Battery model table provides detailed metrics related to energy
consumed by each sensor node. The column Remaining energy can be used to compare
simulations with and without energy harvesting code modification.

WITH ENERGY HARVESTNG

1. Now re-run the network simulation for 100 seconds and save the simulation results. You can
use the table remaining energy column present in the Battery model table which is part of
NetSim Simulation Results window to compare simulations with and without wireless energy
harvesting.

Now on comparing the custom IOT metrics we can observe that Energy Harvesting increases
sensors’ working capability. Simulations can be performed for different values of EH Fraction which
may vary as per the efficiency of the Energy Harvesting unit.

