Secure AODV in MANET

Software Recommended: NetSim Standard v11.1 (32/64-bit), Microsoft Visual Studio 2015/2017

Follow the instructions specified in the following link to clone/download the project folder from GitHub
using Visual Studio:
https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-

exchange-project-repositories-from-github-

Other tools such as GitHub Desktop, SVN Client, Sourcetree, Git from the command line, or any client
you like to clone the Git repository.

Note: It is recommended not to download the project as an archive (compressed zip) to avoid
incompatibility while importing workspaces into NetSim.

Secure URL for the GitHub repository:
https://github.com/NetSim-TETCOS/Secure_AODV_Project_v11.1.git
Introduction:

SAODV is an extension of the AODV routing protocol that can be used to protect the route discovery
mechanism providing security features like integrity and authentication. The reason only route
discovery is secured by AODV is because data messages can be protected using a point-to-point
security protocol like IPSec. SAODV uses a key management system and each node maintains public
keys, encryption keys and decryption keys.

To implement SAODV, we have added Secure AODV.c, RSA.c and Malicious.c files in AODV
project. RSA.c file is used to generate keys, encrypt and decrypt the data. Users can implement their
own encryption algorithms by changing RSA.c file. Malicious.c file is used to identify malicious nodes
present in the network.

Steps:

1. The downloaded project folder contains the folders Documentation and
Secure_AODV_Workspace directory as shown below:
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2. Import Secure_ AODV_Workspace by going to Open Simulation->Workspace Options->More
Options in NetSim Home window. Then select Import as shown below:
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3. ltdisplays a window where users need to give the path of the workspace folder and click on
OK as shown below:
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4. Browse to the Secure_ AODV_Workspace folder and click on select folder as shown below:
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After this click on OK button in the Import Workspace window.

While importing the workspace, if the following warning message indicating Software Version
Mismatch is displayed, you can ignore it and proceed.
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7. The Imported workspace will be set as the current workspace automatically. To see the

imported workspace, click on Open Simulation->Workspace Options->More Options as
shown below:
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8. Open the Source codes in Visual Studio by going to Open Simulation-> Workspace Options
and Clicking on Open code button as shown below:
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9. Under the AODV project in the solution explorer you will be able to see that Malicious.c and
Secure_AODV.c files which contain source codes which implements SAODV in NetSim

respectively.



10. Based on whether you are using NetSim 32 bit or 64 bit setup you can configure Visual studio

to build 32 bit or 64 bit DIl files respectively as shown below:
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11. Right click on the AODV project in the solution explorer and select Rebuild.
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Upon successful build modified libAODV.dIl file gets automatically updated in the directory
containing NetSim binaries.

13. Then Secure_AODV_Workspace comes with a sample configuration that is already saved. To
open this example, go to Open Simulation and click on the Secure_ AODV_Example that is

present under the list of experiments as shown below:
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14. Secure AODV logs Secure_AODV.txt file in the bin folder present in NetSim’s installed
directory. This can be explained in next section

USE CASES:

1. Secure AODV implementation

Here users can enable Secure AODV (Open AODV.h file)

#ifndef MNETSIM AODV H_
#define NETSIM AODV H_
#ifdef _ cplusplus
extern "C" {

#endif

1

1

! |kdefine SAODV_ENABLE

| #define MALICIOUS_ENABLE

A Secure_AODV.c file is added to the AODV project which contains the following important
functions:

* saodv_encrypt_packet()

This function is used to encrypt the control packet data

* saodv_decrypt_packet()
This function is used to decrypt the control packet data
» get_rrep_str_data()
This function is used to get the route reply data from AODV_RREP control packet

« get rreq_str_data()



This function is used to get the route request data from AODV_RREQ control packet

* get _saodv_ctrl packet_type()

This function is used to change the control packet type from AODV (AODV_RREQ,
AODV_RREP) to SAODV (SAODV_RREQ, SAODV_RREP)

 get_saodv_ctrl_packet()

This function is called whenever a new control packet is generated
 get_aodv_ctrl packet()

This function is called while processing the control packets

Comment the line #define MALICIOUS ENABLE present in AODV.h file. Rebuild the solution
and replace the dlls as explained before and run the simulation.

After simulation of the given Configuration file, open packet animation. In the packet users
can notice SAODV_RREQ and SAODV_RREP control packets.
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0 N/A Control_Packet SACDV_RREQ NODE-1 Broadcast-0 NODE-3
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The SAODV codes also logs certain details in SAODVlog.txt. The format of the log file is such
that each control packet is logged. The first line represents the packet type and the numbering
used in a NetSim internal numbering system where by 30701 is RREQ and 30702 is RREP.
The second line is the message which is encrypted. The third line contains the encrypted
message after running the RSA encryption algorithm. The fourth line is after decryption and if
everything is OK, the 2" and 4™ lines must match

Packet Type = 30701
Org Data=1,0,1,11.1.1.6,0,11.1.1.1,1
Encrypted Data = *_"_*_**i*i*i_v_**i*i*i*_*

Decrypted Data=1,0,1,11.1.1.6,0,11.1.1.1,1



2.

Malicious node implementation

Here users can enable code to malicious node problem. Enable #define
MALICIOUS ENABLE and comment #define SAODV_ENABLE that are present inside
AODV.h file.
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Malicious node advertises wrong routing information to produce itself as a specific node and
receives whole network traffic.

After receiving whole network traffic it can either modify the packet information or drop them
to make the network complicated

In packet animation, users can notice that malicious node will take all the packets and drops
without forwarding to destination

A file malicious.c is added to the AODV project which contains the following functions:

e IsMaliciousNode ()

This function is used to identify whether a current device is malicious or not in-order
to establish malicious behavior.

e fn_NetSim_AODV_MaliciousRouteAddToTable()
This function is used to add a fake route entry into the route table of the malicious
device with its next hop as the destination.

e fn_NetSim_AODV_MaliciousProcessSourceRouteOption()
This function is used to drop the received packets if the device is malicious, instead of
forwarding the packet to the next hop.

You can set any device as a malicious node and you can have more than one malicious node
in a scenario. Device id’s of malicious nodes can be set using malicious_node [ ] array
present in malicious.c file. Comment the line #define SAODV_ENABLE present in AODV.h
file. Rebuild the solution and replace the dlls as explained before and run the simulation. If we
run simulation without SAODV, we will get zero throughput because malicious node gets all
the packets and drops without forwarding to destination. You can notice this in NetSim packet
animation.
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3. Both Secure AODV and Malicious node implementation
Enable the below mentioned lines of code present in AODV.h file.

#define SAODV_ENABLE
#define MALICIOUS_ENABLE

Rebuild the solution and replace the dlls as explained before and run the simulation. Packets
will be transmitted to the destination, since SAODV helps in overcoming the Malicious Node
problem. Route reply RREP from malicious node 4 will not be accepted by Node 1. It takes
the Route reply from node 2 and forms the route.

The SAODV logs certain details in Secure_AODV.txt. The first line represents the packet
type 30701 = RREQ. The second line is the message logged by SAODV when malicious
node tries to decrypt the message

Packet Type = 30702

Encryption and decryption fails. This could be a malicious node

Packet Type = 30702

Encryption and decryption fails. This could be a malicious node
Code modifications done:

Please note that in this project we have added Secure_ AODV.c, RSA.c and Malicious.c files

We have added the following macros in AODV.h file

#define SAODV_ENABLE
#define MALICIOUS_ENABLE

Then we have added the following lines of code in enum_AODV_Ctrl_Packet in AODV.h file

//#ifdef SAODV_ENABLE
SAODV_RREQ,
SAODV_RREP,
SAODV_RERR,
//#endif



Then we have added the following function prototypes in AODV.h file

#ifdef SAODV_ENABLE

void get_saodv_ctrl_packet(NetSim_ PACKET* packet);

void get_aodv_ctrl_packet(NetSim PACKET* packet);

void saodv_copy_packet(NetSim_PACKET* dest, NetSim_ PACKET*
src);

void saodv_free_packet(NetSim_PACKET* packet);

void remove_from_mapper(void* ptr,bool isfree);
#endif

bool IsMaliciousNode(NETSIM ID devId);
We have added the following function prototypes in AODV.c file

bool IsMaliciousNode(NETSIM_ID devId);

int fn_NetSim_AODV_MaliciousRouteAddToTable(NetSim_EVENTDETAILS*);
int
fn_NetSim_AODV_MaliciousProcessSourceRouteOption(NetSim_EVENTDETAILS

*)s

Then we have added the following lines of code in NETWORK_IN event in
fn_NetSim_AODV_Run() function present in AODV.c file

#ifdef SAODV_ENABLE
switch(pstruEventDetails->pPacket->nControlDataType)
{
case SAODV_RREQ:
case SAODV_RREP:
case SAODV_RERR:
get_aodv_ctrl packet(pstruEventDetails->pPacket);

break;
}
if(pstruEventDetails->pPacket == NULL)
{
return -1; //Decryption fail.
}

t#tendif

We have added the following lines of code in AODVctrIPacket RREQ and default cases in
NETWORK _IN event to check the current node is malicious or not

if(IsMaliciousNode(pstruEventDetails->nDeviceld))

fn_NetSim_AODV_MaliciousProcessSourceRouteOption(pstruEventDet
ails);

Then we have added the following code in fn_NetSim_AODV_CopyPacket () function present
in AODV.c file

#ifdef SAODV_ENABLE

switch(srcPacket->nControlDataType)

{

case SAODV_RERR:

case SAODV_RREQ:

case SAODV_RREP:
saodv_copy_packet(destPacket,srcPacket);
return 9;
break;



default:
#endif

return fn_NetSim_AODV_CopyPacket_ F(destPacket,srcPacket);
#ifdef SAODV_ENABLE

break;

}
#tendif

Then we have added the following code in int fn_NetSim_AODV_FreePacket () present in the
AODV.c file

#ifdef SAODV_ENABLE
switch(packet->nControlDataType)
{
case SAODV_RERR:
case SAODV_RREQ:
case SAODV_RREP:
saodv_free_packet(packet);
return 9;
break;
default:
remove_from_mapper (packet->pstruNetworkData-
>Packet_RoutingProtocol, true);
return 9;
break;

¥
t#tendif

Then we have added the following function calls in fn_NetSim_AODV_GenerateRREQ (),
fn_NetSim_AODV_RetryRREQ () and fn_NetSim_AODV_ForwardRREQ () functions present
in RREQ.c file

#ifdef SAODV_ENABLE
get_saodv_ctrl_packet(packet);
#endif

Then we have added the following function calls in fn_NetSim_AODV_GenerateRREP(),
fn_NetSim_AODV_ForwardRREP () and fn_NetSim_AODV_GenerateRREPByIntermediate ()
functions present in RREP.c file

#ifdef SAODV_ENABLE
get_saodv_ctrl packet(packet);
#tendif



