Secure AODV in MANET

Software Recommended: NetSim Standard v11.1 (32/64-bit), Microsoft Visual Studio 2015/2017

Follow the instructions specified in the following link to clone/download the project folder from GitHub
using Visual Studio:
https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-

exchange-project-repositories-from-github-

Other tools such as GitHub Desktop, SVN Client, Sourcetree, Git from the command line, or any client
you like to clone the Git repository.

Note: It is recommended not to download the project as an archive (compressed zip) to avoid
incompatibility while importing workspaces into NetSim.

Secure URL for the GitHub repository:
https://github.com/NetSim-TETCOS/Secure_AODV_Project_v11.1.git
Introduction:

SAODV is an extension of the AODV routing protocol that can be used to protect the route discovery
mechanism providing security features like integrity and authentication. The reason only route
discovery is secured by AODV is because data messages can be protected using a point-to-point
security protocol like IPSec. SAODV uses a key management system and each node maintains public
keys, encryption keys and decryption keys.

To implement SAODV, we have added Secure AODV.c, RSA.c and Malicious.c files in AODV
project. RSA.c file is used to generate keys, encrypt and decrypt the data. Users can implement their
own encryption algorithms by changing RSA.c file. Malicious.c file is used to identify malicious nodes
present in the network.

Steps:

1. The downloaded project folder contains the folders Documentation and
Secure_AODV_Workspace directory as shown below:

[] B - | Secure AODV Project V11.1

File Home Share View 0
‘J 7 Moveto - 3¢ Delete = T_I \/ 58
W F |-
Pinto Quick Copy Faste Copy to Rename New Froperties Select
access 7] ') folder < £ =
Clipboard Jrganize Mew Open
« = v 4 » File_.. » Secure AODV_Project_... v Search Secure_AODV_Project_... 0
.
o) MName ~ Date modified Type
3+ Quick access
Documentaion 27-03-2019 15:25 File folder
@ OneDrive Secure_AODY_Workspace 27-03-2019 15:28 File folder
Attachments
Documents
v £ >
2 items =

2. Import Secure_ AODV_Workspace by going to Open Simulation->Workspace Options->More
Options in NetSim Home window. Then select Import as shown below:

https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-exchange-project-repositories-from-github-
https://tetcos.freshdesk.com/support/solutions/articles/14000099351-how-to-clone-netsim-file-exchange-project-repositories-from-github-

[T NetSim Home

NetSim Standard
Network Simulation/Emulation Platform
Version 11.1.11 (64 Bit)

Current workspace: NetSim_11.1.11_64.std_default

Mew Simulation CorleN Workspace name Location Description
NetSim_11.1.11_64 st default C:AUsers\TETCOS-PC NetSim default Workspace Export T
| Open Simulation 0
Examples

License Settings

New I Import I Back

Documentation Contact us
Email - sales@tetcos.com
Phone - +91 767 605 4321

Learn

Support

User Manual
Technology Libraries
Source Code Help

Q Videos
Experiments Manual

cal Suppert
Email - support@tetcos.com

3. ltdisplays a window where users need to give the path of the workspace folder and click on
OK as shown below:
m Import Werkspace

et

Analyse the content of your folder or archive file to find projects and impaort
them. Browse the respective Workspace folder and import it as a current
working Workspace. This will import all the folders experiments.

Impaort from

4. Browse to the Secure_ AODV_Workspace folder and click on select folder as shown below:

Organize - Mew folder E2

@ Onelrive

Attachments

Documents

Pictures

[This PC
_J 30 Objects
[Desktop
Documents
; Downloads
J') Music
[Pictures

g Videos

<« Secure_A.. * Secure AODV Workspace v 0 Search Secure_ADDV_Worksp...

. Marme Date modified Type

bin 22-03-2019 09:11 File folder

lcons 22-03- 112 File folder

1
Secure AQDV_Example 22-03-20 12 File folder
1

src 22-03-20 112 File folder

v £

Folder: | Secure AQDV_Workspace

Select Folder Cancel

After this click on OK button in the Import Workspace window.

While importing the workspace, if the following warning message indicating Software Version
Mismatch is displayed, you can ignore it and proceed.

m Warning
Software Version Mismatch

You are importing a workspace from 64 build of MetSim into a 32
build of MetSim. After import, reset binaries for this workspace, and
then rebuild your code if you have made any changes to the source

codes.

X

OK

7. The Imported workspace will be set as the current workspace automatically. To see the

imported workspace, click on Open Simulation->Workspace Options->More Options as
shown below:

N NetSim Home

NetSim Standard

MNetwork Simulation/Emulation Platform

Version 11.1.11 (64 Bit)

Current workspace: Secure AODV_Workspace

www.tetcos.com

Answers/FAQ
Contact Technical Support
Email - support@tetcos.com

Mew Simulation Cirl+N Waorkspace name Location Description
Secure_AQDV_Workspace CAUsers\NetSim\Desktop\File_Excha.. - Export i}
Open Simulati Ctrd+0
| Open Simulation " MetSim_11.1.11_64_std_default C:\Users\MetSim Metsim default Workspace Export i}
Examples
License Settings
Mew Import Back
Support Learn Documentation Contact us
Videos User Manual Email - sales@tetcos.com
Phone - +91 767 605 4321

Experiments Manual
Source Code Help

Technology Libraries

8. Open the Source codes in Visual Studio by going to Open Simulation-> Workspace Options
and Clicking on Open code button as shown below:

Email - support@tetcos.com

N NetSim Home
NetSim Standard
Network Simulation/Emulation Platform
Version 11.1.17 (84 Bit)
www.tetcos.com
Current workspace: Secure AODV Workspace D\ ‘
Mew Simulation Ctrl+N Experiment name ¥ Date modified Network type
Secure_AQDV_Example 27-03-2019 MANET View Results Export Tl
| Open Simulation Ctrl+0
Examples
License Settings
Reset Code Reset Binaries More options Back
Support Learn Documentation Contact us
Ar s/FAQ Videos User Manual Email - sales@tetcos.com
Contact Technical Support Experiments Manual Technology Libraries Phone - +91 767 605 4321
Source Code Help

9. Under the AODV project in the solution explorer you will be able to see that Malicious.c and
Secure_AODV.c files which contain source codes which implements SAODV in NetSim

respectively.

10. Based on whether you are using NetSim 32 bit or 64 bit setup you can configure Visual studio

to build 32 bit or 64 bit DIl files respectively as shown below:

4] NetSim - Microsoft Visual Studio X0 & | Quick Launch (CtihQ) Pl- 8 x
File Edit View Project Build Debug Tesm Tools Test Anslyze Window Help ThaMas SaNithosH ~
|- | - | Debug - Win32 = P Local Windows Debugger - | 57 _

Win32

s Solution Explorer TEx

Erimre e e @ii-lo-5 9B K=
Search Solution Explorer (Ctrl+) p-

7 Solution 'NetSim' (1 project)
4[] AODV

b =m References

b 15 Edernal Dependencies
< AODV.c
[AODV.h
AQDV_CheckRouteFound.c
AQDV_RouteError.c
FIFOBuffer.c

n

GeneralPacketProcessing.c
HelloMessage.c
Malicious.c

RouteMaint.c
RouteTable.c

RREP.c

RREQ.c

RSA.

b
3
b
3
3
b
b
3
b
b
3
b
3
3 Secure AODV.c

ARAAAANNAAARA

Qutput

Show output from:

[N Output

4 Add to Source Control =

11. Right click on the AODV project in the solution explorer and select Rebuild.

4| NetSim - Microsoft Visual Studio
File

A d P - =

ThoMa$ SaithesH -

& | Quick Launch (Ctrl+Q) x

Edit View Project Build

[-2 |

Debug
- | Debug - 64

Team Tools Test Analyze Window Help

-~ P Local Windows Debugger - | 571 _

Solution Explorer - B x
@iti-lo-s 9B K=
Search Solution Explorer (Ctrl+;) P~

3 Build

ution 'NetSim' (1 project)

Rebuild =8 References
Clean & External Dependencies
View » | C AODV.c
et » | AGDV.h
© AODV_CheckRouteFound.c

Qutput
Show output from: CMake

ey output

12.

o 3: N

Project Only
Retarget Projects

Scope to This

New Solution Explorer View
Build Dependencies

Add

Class Wizard...

Manage NuGet Packages...
Set as StartUp Project
Debug

Source Control

Cut

Paste

Remove

Rename

Unload Project

Rescan Solution

Open Folder in File Explorer

Properties

Ctrl+ Shift+ X

Crl+ X
Crl+V
Del

Alt+Enter

AODV_RouteError.c
FIFOBuffer.c

HelloMessage.c
Malicious.c
RouteMaint.c
RouteTable.c
RREP.c

RREQ.c

RSA.c
Secure AODV.c

ARAARNANARNAA

1 Addt

GeneralPacketProcessing.c

0 Source Control «

Upon successful build modified libAODV.dIl file gets automatically updated in the directory
containing NetSim binaries.

13. Then Secure_AODV_Workspace comes with a sample configuration that is already saved. To
open this example, go to Open Simulation and click on the Secure_ AODV_Example that is

present under the list of experiments as shown below:

[T% NetSim Home - X

NetSim Standard

Metwork Simulation/Emulation Platform
Version 11.1.11 (32 Bit)

Current workspace: Secure_ AODV_Werkspace C\ |

New Simulation Ctrl+N Experiment name Date modified Network type

Secure ACDV_Example 27-03-2019 MANET View Results Export T
Open Simulation Ctr+0

Examples

License Settings

Workspace options.. mport Experiment

Support Learn Documentation Contact us

User Manual Email - sales@tetcos.com
Phane - +91 767 605 4321

nical Support iments Manual

Email - support@tetcos.com

14. Secure AODV logs Secure_AODV.txt file in the bin folder present in NetSim’s installed
directory. This can be explained in next section

USE CASES:

1. Secure AODV implementation

Here users can enable Secure AODV (Open AODV.h file)

#ifndef MNETSIM AODV H_
#define NETSIM AODV H_
#ifdef _ cplusplus
extern "C" {

#endif

1

1

! |kdefine SAODV_ENABLE

| #define MALICIOUS_ENABLE

A Secure_AODV.c file is added to the AODV project which contains the following important
functions:

* saodv_encrypt_packet()

This function is used to encrypt the control packet data

* saodv_decrypt_packet()
This function is used to decrypt the control packet data
» get_rrep_str_data()
This function is used to get the route reply data from AODV_RREP control packet

« get rreq_str_data()

This function is used to get the route request data from AODV_RREQ control packet

* get _saodv_ctrl packet_type()

This function is used to change the control packet type from AODV (AODV_RREQ,
AODV_RREP) to SAODV (SAODV_RREQ, SAODV_RREP)

 get_saodv_ctrl_packet()

This function is called whenever a new control packet is generated
 get_aodv_ctrl packet()

This function is called while processing the control packets

Comment the line #define MALICIOUS ENABLE present in AODV.h file. Rebuild the solution
and replace the dlls as explained before and run the simulation.

After simulation of the given Configuration file, open packet animation. In the packet users
can notice SAODV_RREQ and SAODV_RREP control packets.

B NetSim Packet Animation

> L R 5323173.766... L View Mare ¥ ﬁ?

Play Stop Simulation Time Micro Sec Animation Speed Display Settings Table Filters

A 3Wireless Node 3] g SlWireless Node 3]

J:C 1[Wireless_Node_1] ;
= =

=
SAODV| RREQ

B[Wireless_Node_6]

SAREGRE Rode 4]
g zmim\ess,hﬂé‘}cwﬂﬁ il

PACKET_ID SEGMENT_ID PACKET TYPE CONTROL_PACKET_TYP... SOURCE_ID DESTINATION_ID TRANSMITTERII
0 N/A Control_Packet SACDV_RREQ NODE-1 Broadcast-0 NODE-3
0 N/A Control Packet SAODV_RREQ NODE-1 Broadcast-0 NODE-2
0 N/A Control Packet SAODV_RREQ NODE-1 Broadcast-0 NODE-2
0 N/A Control Packet SAODV_RREQ NODE-1 Broadcast-0 NODE-2

The SAODV codes also logs certain details in SAODVlog.txt. The format of the log file is such
that each control packet is logged. The first line represents the packet type and the numbering
used in a NetSim internal numbering system where by 30701 is RREQ and 30702 is RREP.
The second line is the message which is encrypted. The third line contains the encrypted
message after running the RSA encryption algorithm. The fourth line is after decryption and if
everything is OK, the 2" and 4™ lines must match

Packet Type = 30701
Org Data=1,0,1,11.1.1.6,0,11.1.1.1,1
Encrypted Data = *_"_*_**i*i*i_v_**i*i*i*_*

Decrypted Data=1,0,1,11.1.1.6,0,11.1.1.1,1

2.

Malicious node implementation

Here users can enable code to malicious node problem. Enable #define
MALICIOUS ENABLE and comment #define SAODV_ENABLE that are present inside
AODV.h file.

e | -5 ' f Bl AODV - (Global Scope) -
Search Solution Explorer (Ctr 2 ~ f;
£
fa] Selution ‘NetSim' (L project) 27 //#define SAODV_ENABLE
4 [l Aopv 28 #define MALICIOUS_ENABLE
I =B References 29
I 13 External Dependencies
b+ AODV.c 30 o
II 31 ‘fdef:!.ﬂe AOQDV_ACTIVE_ROUTE_TIMEOUT 3008= MILLISECOND
b 45 ADDV CheckRouteFou 32 #define AODV_ALLOWED HELLO_LOSS 2
b+ AODV RouteError.c 33 #define AODV_BLACKLIST_TIMEQUT AQDV_RREQ_RETRIES * AODV_NET_TR
b 44 FIFOBufferc 34 #define AODV_DELETE_PERTOD K * max (AODV_ACTIVE_ROUTE_TIME
I #+ GeneralPacketProcessiy 35 #define K 5
b+ HelloMessage.c 36 #define AODV_HELLO_TNTERVAL 18@@* MILLISECOND
b+ Malicious.c 37 #define AODV_LOCAL_ADD_TTL 2
P *+ RouteMaint.c 38 #define AODV_MAX_REPATR_TTL ©.3 * AODV_NET_DIAMETER
b #+ RouteTable.c 39 #define AODV_MIN_REPAIR_TTL //see note below
P+ RREP.c 20 #define AODV_MY_ROUTE_TIMEOUT 2 * AODV_ACTIVE_ROUTE_TIMEOUT
b T+ RREQ.c 2 #define AODV_NET_DIAMETER 35
E : z::::e AoDve 42 #define AODV_NET_TRAVERSAL_TIME 2 * ADDV_NODE_TRAVERSAL_TIME *
- 43 #tdefine AODV_NEXT_HOP_WAIT AQDV_NODE_TRAVERSAL_TIME + 10

Malicious node advertises wrong routing information to produce itself as a specific node and
receives whole network traffic.

After receiving whole network traffic it can either modify the packet information or drop them
to make the network complicated

In packet animation, users can notice that malicious node will take all the packets and drops
without forwarding to destination

A file malicious.c is added to the AODV project which contains the following functions:

e IsMaliciousNode ()

This function is used to identify whether a current device is malicious or not in-order
to establish malicious behavior.

e fn_NetSim_AODV_MaliciousRouteAddToTable()
This function is used to add a fake route entry into the route table of the malicious
device with its next hop as the destination.

e fn_NetSim_AODV_MaliciousProcessSourceRouteOption()
This function is used to drop the received packets if the device is malicious, instead of
forwarding the packet to the next hop.

You can set any device as a malicious node and you can have more than one malicious node
in a scenario. Device id’s of malicious nodes can be set using malicious_node [] array
present in malicious.c file. Comment the line #define SAODV_ENABLE present in AODV.h
file. Rebuild the solution and replace the dlls as explained before and run the simulation. If we
run simulation without SAODV, we will get zero throughput because malicious node gets all
the packets and drops without forwarding to destination. You can notice this in NetSim packet
animation.

g 3[Wireless_Mode_3] g 3MWireless Node 3]
g’ 1[Wireless_Node_1]

AppTZ

App1:CBR-3 a{Wireless_Mode_a]

® " 4 Wireless_Node 4]

Ef 2[Wireless_Mode_7] EL i

“e” | MALICIOUS NODE

3. Both Secure AODV and Malicious node implementation
Enable the below mentioned lines of code present in AODV.h file.

#define SAODV_ENABLE
#define MALICIOUS_ENABLE

Rebuild the solution and replace the dlls as explained before and run the simulation. Packets
will be transmitted to the destination, since SAODV helps in overcoming the Malicious Node
problem. Route reply RREP from malicious node 4 will not be accepted by Node 1. It takes
the Route reply from node 2 and forms the route.

The SAODV logs certain details in Secure_AODV.txt. The first line represents the packet
type 30701 = RREQ. The second line is the message logged by SAODV when malicious
node tries to decrypt the message

Packet Type = 30702

Encryption and decryption fails. This could be a malicious node

Packet Type = 30702

Encryption and decryption fails. This could be a malicious node
Code modifications done:

Please note that in this project we have added Secure_ AODV.c, RSA.c and Malicious.c files

We have added the following macros in AODV.h file

#define SAODV_ENABLE
#define MALICIOUS_ENABLE

Then we have added the following lines of code in enum_AODV_Ctrl_Packet in AODV.h file

//#ifdef SAODV_ENABLE
SAODV_RREQ,
SAODV_RREP,
SAODV_RERR,
//#endif

Then we have added the following function prototypes in AODV.h file

#ifdef SAODV_ENABLE

void get_saodv_ctrl_packet(NetSim_ PACKET* packet);

void get_aodv_ctrl_packet(NetSim PACKET* packet);

void saodv_copy_packet(NetSim_PACKET* dest, NetSim_ PACKET*
src);

void saodv_free_packet(NetSim_PACKET* packet);

void remove_from_mapper(void* ptr,bool isfree);
#endif

bool IsMaliciousNode(NETSIM ID devId);
We have added the following function prototypes in AODV.c file

bool IsMaliciousNode(NETSIM_ID devId);

int fn_NetSim_AODV_MaliciousRouteAddToTable(NetSim_EVENTDETAILS*);
int
fn_NetSim_AODV_MaliciousProcessSourceRouteOption(NetSim_EVENTDETAILS

*)s

Then we have added the following lines of code in NETWORK_IN event in
fn_NetSim_AODV_Run() function present in AODV.c file

#ifdef SAODV_ENABLE
switch(pstruEventDetails->pPacket->nControlDataType)
{
case SAODV_RREQ:
case SAODV_RREP:
case SAODV_RERR:
get_aodv_ctrl packet(pstruEventDetails->pPacket);

break;
}
if(pstruEventDetails->pPacket == NULL)
{
return -1; //Decryption fail.
}

t#tendif

We have added the following lines of code in AODVctrIPacket RREQ and default cases in
NETWORK _IN event to check the current node is malicious or not

if(IsMaliciousNode(pstruEventDetails->nDeviceld))

fn_NetSim_AODV_MaliciousProcessSourceRouteOption(pstruEventDet
ails);

Then we have added the following code in fn_NetSim_AODV_CopyPacket () function present
in AODV.c file

#ifdef SAODV_ENABLE

switch(srcPacket->nControlDataType)

{

case SAODV_RERR:

case SAODV_RREQ:

case SAODV_RREP:
saodv_copy_packet(destPacket,srcPacket);
return 9;
break;

default:
#endif

return fn_NetSim_AODV_CopyPacket_ F(destPacket,srcPacket);
#ifdef SAODV_ENABLE

break;

}
#tendif

Then we have added the following code in int fn_NetSim_AODV_FreePacket () present in the
AODV.c file

#ifdef SAODV_ENABLE
switch(packet->nControlDataType)
{
case SAODV_RERR:
case SAODV_RREQ:
case SAODV_RREP:
saodv_free_packet(packet);
return 9;
break;
default:
remove_from_mapper (packet->pstruNetworkData-
>Packet_RoutingProtocol, true);
return 9;
break;

¥
t#tendif

Then we have added the following function calls in fn_NetSim_AODV_GenerateRREQ (),
fn_NetSim_AODV_RetryRREQ () and fn_NetSim_AODV_ForwardRREQ () functions present
in RREQ.c file

#ifdef SAODV_ENABLE
get_saodv_ctrl_packet(packet);
#endif

Then we have added the following function calls in fn_NetSim_AODV_GenerateRREP(),
fn_NetSim_AODV_ForwardRREP () and fn_NetSim_AODV_GenerateRREPByIntermediate ()
functions present in RREP.c file

#ifdef SAODV_ENABLE
get_saodv_ctrl packet(packet);
#tendif

