
Secure AODV in MANET

Software Recommended: NetSim Standard v11.0, Microsoft Visual Studio 2015/2017

Project Download Link:

https://github.com/NetSim-TETCOS/SECURE_AODV_v11.0/archive/master.zip

SAODV is an extension of the AODV routing protocol that can be used to protect the route discovery

mechanism providing security features like integrity and authentication. The reason only route

discovery is secured by AODV is because data messages can be protected using a point -to-point

security protocol like IPSec. SAODV uses a key management system and each node maintains public

keys, encryption keys and decryption keys.

To implement SAODV, we have added Secure AODV.c, RSA.c and Malicious.c files in AODV

project. RSA.c file is used to generate keys, encrypt and decrypt the data. Users can implement their
own encryption algorithms by changing RSA.c file. Malicious.c file is used to ident ify malicious nodes
present in the network.

Steps:

1. After you unzip the file the folder would look like

2. Open the NetSim.sln file inside the Simulation folder through Visual Studio 2015, 2017

3. Right click on AODV in Solution Explorer and select rebuild.

https://github.com/NetSim-TETCOS/SECURE_AODV_v11.0/archive/master.zip

4. Upon rebuilding, libAODV.dll will get created in the DLL folder.

5. Now copy the libAODV.dll from this DLL folder and paste it in NetSim bin folder present in the

NetSim installation directory. The NetSim install directory would look something like

“C:\Program Files\NetSim Standard\bin”.

6. Note that there exists a libAODV.dll in this bin folder. This is the default file being shipped with

NetSim. The user is replacing this file with the newly built file.

7. Therefore, take care to rename the original libAODV.dll file, so that it isn’t lost. For example,

you may rename it as libAODV_default.dll

8. Run NetSim and open Configuration.netsim file present inside the zip folder

9. Run the Simulation

10. Secure AODV logs Secure_AODV.txt file in the bin folder present in NetSim’s installed

directory. This can be explained in next section

USE CASES:

1. Secure AODV implementation

Here users can enable Secure AODV (Open AODV.h file)

A Secure_AODV.c file is added to the AODV project which contains the following important

functions:

• saodv_encrypt_packet()

This function is used to encrypt the control packet data

• saodv_decrypt_packet()

This function is used to decrypt the control packet data

• get_rrep_str_data()

This function is used to get the route reply data from AODV_RREP control packet

• get_rreq_str_data()

This function is used to get the route request data from AODV_RREQ control packet

• get_saodv_ctrl_packet_type()

This function is used to change the control packet type from AODV (AODV_RREQ,

AODV_RREP) to SAODV (SAODV_RREQ, SAODV_RREP)

• get_saodv_ctrl_packet()

This function is called whenever a new control packet is generated

• get_aodv_ctrl_packet()

This function is called while processing the control packets

Comment the line #define MALICIOUS_ENABLE present in AODV.h file. Rebuild the solution
and replace the dlls as explained before and run the simulation.

After simulation of the given Configuration file, open packet animation. In the packet users
can notice SAODV_RREQ and SAODV_RREP control packets.

The SAODV codes also logs certain details in SAODVlog.txt. The format of the log file is such
that each control packet is logged. The first line represents the packet type and the numbering

used in a NetSim internal numbering system where by 30701 is RREQ and 30702 is RREP.
The second line is the message which is encrypted. The third line contains the encrypted

message after running the RSA encryption algorithm. The fourth line is after decryption and if
everything is OK, the 2nd and 4th lines must match

...

Packet Type = 30701

Org Data = 1,0,1,11.1.1.6,0,11.1.1.1,1

Encrypted Data = *-Ÿ-*-**¡*¡*¡-Ÿ-**¡*¡*¡*-*

Decrypted Data = 1,0,1,11.1.1.6,0,11.1.1.1,1

..

2. Malicious node implementation

Here users can enable code to malicious node problem. Enable #define

MALICIOUS_ENABLE and comment #define SAODV_ENABLE that are present inside

AODV.h file.

Malicious node advertises wrong routing information to produce itself as a specific node and

receives whole network traffic.

After receiving whole network traffic it can either modify the packet information or drop them

to make the network complicated

In packet animation, users can notice that malicious node will take all the packets and drops

without forwarding to destination

A file malicious.c is added to the AODV project which contains the following functions:

• IsMaliciousNode ()

This function is used to identify whether a current device is malicious or not in-order

to establish malicious behavior.

• fn_NetSim_AODV_MaliciousRouteAddToTable()

This function is used to add a fake route entry into the route table of the malicious

device with its next hop as the destination.

• fn_NetSim_AODV_MaliciousProcessSourceRouteOption()

This function is used to drop the received packets if the device is malicious, instead of

forwarding the packet to the next hop.

You can set any device as a malicious node and you can have more than one malicious node
in a scenario. Device id’s of malicious nodes can be set using malicious_node [] array
present in malicious.c file. Comment the line #define SAODV_ENABLE present in AODV.h

file. Rebuild the solution and replace the dlls as explained before and run the simulation. If we
run simulation without SAODV, we will get zero throughput because malicious node gets all
the packets and drops without forwarding to destination. You can notice this in NetSim packet

animation.

3. Both Secure AODV and Malicious node implementation

Enable the below mentioned lines of code present in AODV.h file.

#define SAODV_ENABLE
#define MALICIOUS_ENABLE

Rebuild the solution and replace the dlls as explained before and run the simulation. Packets
will be transmitted to the destination, since SAODV helps in overcoming the Malicious Node
problem. Route reply RREP from malicious node 4 will not be accepted by Node 1. It takes
the Route reply from node 2 and forms the route.

The SAODV logs certain details in Secure_AODV.txt. The first line represents the packet
type 30701 = RREQ. The second line is the message logged by SAODV when malicious
node tries to decrypt the message

...

Packet Type = 30702

Encryption and decryption fails. This could be a malicious node

...

Packet Type = 30702

Encryption and decryption fails. This could be a malicious node

...

Code modifications done:

Please note that in this project we have added Secure_AODV.c, RSA.c and Malicious.c files

We have added the following macros in AODV.h file

#define SAODV_ENABLE

MALICIOUS NODE

#define MALICIOUS_ENABLE

Then we have added the following lines of code in enum_AODV_Ctrl_Packet in AODV.h file

//#ifdef SAODV_ENABLE
 SAODV_RREQ,
 SAODV_RREP,
 SAODV_RERR,
//#endif

Then we have added the following function prototypes in AODV.h file

#ifdef SAODV_ENABLE
 void get_saodv_ctrl_packet(NetSim_PACKET* packet);
 void get_aodv_ctrl_packet(NetSim_PACKET* packet);
 void saodv_copy_packet(NetSim_PACKET* dest, NetSim_PACKET*
src);
 void saodv_free_packet(NetSim_PACKET* packet);
 void remove_from_mapper(void* ptr,bool isfree);
#endif

 bool IsMaliciousNode(NETSIM_ID devId);

We have added the following function prototypes in AODV.c file

bool IsMaliciousNode(NETSIM_ID devId);
int fn_NetSim_AODV_MaliciousRouteAddToTable(NetSim_EVENTDETAILS*);
int
fn_NetSim_AODV_MaliciousProcessSourceRouteOption(NetSim_EVENTDETAILS
*);

Then we have added the following lines of code in NETWORK_IN event in

fn_NetSim_AODV_Run() function present in AODV.c file

#ifdef SAODV_ENABLE
 switch(pstruEventDetails->pPacket->nControlDataType)
 {
 case SAODV_RREQ:
 case SAODV_RREP:
 case SAODV_RERR:
 get_aodv_ctrl_packet(pstruEventDetails->pPacket);
 break;
 }
 if(pstruEventDetails->pPacket == NULL)
 {
 return -1; //Decryption fail.
 }
#endif

We have added the following lines of code in AODVctrlPacket_RREQ and default cases in
NETWORK_IN event to check the current node is malicious or not

if(IsMaliciousNode(pstruEventDetails->nDeviceId))

 fn_NetSim_AODV_MaliciousProcessSourceRouteOption(pstruEventDet
ails);

Then we have added the following code in fn_NetSim_AODV_CopyPacket () function present
in AODV.c file

#ifdef SAODV_ENABLE
 switch(srcPacket->nControlDataType)
 {
 case SAODV_RERR:
 case SAODV_RREQ:
 case SAODV_RREP:
 saodv_copy_packet(destPacket,srcPacket);
 return 0;
 break;
 default:
#endif
 return fn_NetSim_AODV_CopyPacket_F(destPacket,srcPacket);
#ifdef SAODV_ENABLE
 break;
 }
#endif

Then we have added the following code in int fn_NetSim_AODV_FreePacket () present in the
AODV.c file

#ifdef SAODV_ENABLE
 switch(packet->nControlDataType)
 {
 case SAODV_RERR:
 case SAODV_RREQ:
 case SAODV_RREP:
 saodv_free_packet(packet);
 return 0;
 break;
 default:
 remove_from_mapper(packet->pstruNetworkData-
>Packet_RoutingProtocol, true);
 return 0;
 break;
 }
#endif

Then we have added the following function calls in fn_NetSim_AODV_GenerateRREQ (),

fn_NetSim_AODV_RetryRREQ () and fn_NetSim_AODV_ForwardRREQ () functions present
in RREQ.c file

#ifdef SAODV_ENABLE
 get_saodv_ctrl_packet(packet);
#endif

Then we have added the following function calls in fn_NetSim_AODV_GenerateRREP(),
fn_NetSim_AODV_ForwardRREP () and fn_NetSim_AODV_GenerateRREPByIntermediate ()
functions present in RREP.c file

#ifdef SAODV_ENABLE
 get_saodv_ctrl_packet(packet);
#endif

