Secure AODV in MANET

Software Recommended: NetSim Standard v11.0, Microsoft Visual Studio 2015/2017

Project Download Link:

https://github.com/NetSim-TETCOS/SECURE_AODV_vl1.0/archive/master.zip

SAODV is an extension of the AODV routing protocol that can be used to protect the route discovery
mechanism providing security features like integrity and authentication. The reason only route
discowery is secured by AODV is because data messages can be protected using a point-to-point
security protocol like IPSec. SAODV uses a key management system and each node maintains public

keys, encryption keys and decryption keys.

To implement SAODV, we
project. RSA.c file is used to

present in the network.

Steps:

have added Secure AODV.c, RSA.c and Malicious.c files in AODV
generate keys, encrypt and decrypt the data. Users can implement their
own encryption algorithms by changing RSA.c file. Malicious.c file is used to identify malicious nodes

1. After you unzip the file the folder would look like

Code File folder
Configuration_File File folder
Documentation File folder
AQDV File folder
Include File folder
lib File folder
Hﬂ MetSim Microsoft Visual 5... 2EKB
|_'| NetSim.\VC Data Base File 26,372 KB

2. Open the NetSim.slIn file inside the Simulation folder through Visual Studio 2015, 2017

Solution Explorer
@ e-5
Search Solution Explorer (Ctrl+:)

E‘IT'IE]l()

531 Solution 'MetSim' (1 project)
4 [AODV
b =m References
b iz External Dependencies
b+ AODV.c
b [AODV.h
b ++ AODV_CheckRouteFound.c
b +s AODV_RouteErmor.c
b+ FIFOBuffer.c
b ++ GeneralPacketProcessing.c
b ++ HelloMessage.c
b+ RouteMaint.c
b ++ RouteTable.c
b te RREP.c
b+ RREQ.c
bt RSAC
b+ Secure AODV.c

3. Right click on AODV

B secure AODV.c & X Malicious.c

** | B oDV -

(Global Scope)
22 NETSIF_ID rx;

AODV_CONTROL_PACKET ctrlPacketType;

veid® ctrlPacket;

char orgData[BUFSIZ];

long publickey[BUFSIZ];

char DecryptedData[BUFSIZ];

size_t len;
29 ISAODV_CTRL_PACKET,*PSAODV_CTRL_PACKET;
38
31 Etypedef struct stru_mapper
32 {
33 void* ptr;
34 AODV_CONTROL_PACKET type;
35 UINT count;
36 _ele* ele;
37 JMAPPER, *PMAPPER
38 #define MAPPER_ALLOC() (struct stru_mapper®)list_allec(sizeof(struct stru_mapper),offsetof(struct stru_mapper,ele))
EL]
a8 PMAPPER mapper = NULL;
41
4 //Function prototype
a3 static void saodv_encrypt_packet(P
24 static bool saodv_decrypt_packet(P

void rsa_encrypt{char® ms:
void rsa_decrypt(long *msg, int len, i

static void get_saodv_ctrl_packet_type(Net
void get_saodv_ctrl_packet(MetSim_PACKET* packet);

mistatic void open_log()

in Solution Explorer and select rebuild.

> I X

Solution Explorer
@& oo
Search Solution Explorer (Ctr P~

fa] Solution 'MetSim' (1 project)
b [AODV

2 Build
Rebuild
Clean
View

Analyze

Project Only

https://github.com/NetSim-TETCOS/SECURE_AODV_v11.0/archive/master.zip

4. Upon rebuilding, libAODV.dIl will get created in the DLL folder.

5. Now copy the libAODV.dIl from this DLL folder and paste it in NetSim bin folder present in the
NetSim installation directory. The NetSim install directory would look something like
“C:\Program Files\NetSim Standard\bin”.

6. Note that there exists a libAODV.dIl in this bin folder. This is the default file being shipped with
NetSim. The user is replacing this file with the newly built file.

7. Therefore, take care to rename the original libAODV.dIl file, so that it isn’t lost. For example,
you may rename it as libAODV_default.dll

8. Run NetSim and open Configuration.netsim file present inside the zip folder

e,
=ZFP7E
L==22T A, d?ioc Link 1
= - P]
—— . e ! |
= —_— 7 1 7
- ~"T1 s / I
=T ey |
- L 5
. - / |
| 23~ ul g i
NS EE e '
g——-_____ /1/ Wireles S_N)dgle_S |‘I
I TTT— Wirgless_Mode 3 | 7 / |
Wireless Mode_1 | - 7 |
—— -
T L / I
g NN
L Sﬁppr;{-BR_____ /f |
7 l - i
-~ 4 T ! Y3

! /l — L Wireless Node_b

T Wireless_MNode 4
Wireless_Mode_2

9. Run the Simulation

10. Secure AODV logs Secure_AODV.txt file in the bin folder present in NetSim's installed
directory. This can be explained in next section

USE CASES:

1. Secure AODV implementation

Here users can enable Secure AODV (Open AODV.h file)

#ifndef NETSIM AODV H_
#define _NETSIM_AODV_H_
#ifdef _ cplusplus
extern "C" {

#endif

jtdefine SAODV_EMABLE
#define MALICIOUS_EMABLE

A Secure_AODV.c file is added to the AODV project which contains the following important
functions:

* saodv_encrypt packet()

This function is used to encrypt the control packet data

* saodv_decrypt_packet()
This function is used to decrypt the control packet data
« get_rrep_str_data()
This function is used to get the route reply data from AODV_RREP control packet
« get_rreq_str_data()
This function is used to get the route request data from AODV_RREQ control packet
* get_saodv_ctrl packet_type()

This function is used to change the control packet type from AODV (AODV_RREQ,
AODV_RREP) to SAODV (SAODV_RREQ, SAODV_RREP)

« get_saodv_ctrl packet()

This function is called whenever a new control packet is generated
« get_aodv_ctrl_packet()

This function is called while processing the control packets

Comment the line #define MALICIOUS_ENABLE present in AODV.h file. Rebuild the solution
and replace the dlls as explained before and run the simulation.

After simulation of the given Configuration file, open packet animation. In the packet users
can notice SAODV_RREQ and SAODV_RREP control packets.

] NetSim Packet Animation - X
b . E 5323173.766... [] View More v ii
Play Stop Simulation Time Micro Sec Animation Speed Display Settings Table Filters
0 50 00 50 00 50 300 350 400 450 500

50

A 3]Wireless Node 3] g S[Wirsless_Node 3]

10H g 1[Wireless_Node_1] g

SAODV] SACDV_RREQ

SADDV;RREQ

B[Wireless_Node_6]

| | SARRICBEE Rode 4]
I g‘ Z[Wirjehs;,l\ﬂé‘}ﬂwmg? il

PACKET_ID SEGMENT_ID PACKET TYPE CONTROL_PACKET_TYP... SOURCE_ID DESTINATION_ID TRANSMITTERLII
0 N/A Control_Packet SACDV_RREQ NODE-1 Broadcast-0 NODE-3
0 N/A Control Packet SAODV_RREQ NODE-1 Broadcast-0 NODE-2
0 N/A Control Packet SAODV_RREQ NODE-1 Broadcast-0 NODE-2
0 N/A Control Packet SAODV_RREQ NODE-1 Broadcast-0 NODE-2

The SAODV codes also logs certain details in SAODVlog.txt. The format of the log file is such
that each control packet is logged. The first line represents the packet type and the numbering

used in a NetSim internal numbering system where by 30701 is RREQ and 30702 is RREP.
The second line is the message which is encrypted. The third line contains the encrypted

message after running the RSA encryption algorithm. The fourth line is after decryption and if
everything is OK, the 2" and 4t lines must match

Packet Type = 30701
Org Data = 1,0,1,11.1.1.6,0,11.1.1.1,1
Encrypted Data = *_"_*_**i*i*i_v_**i*i*i*_*

Decrypted Data =1,0,1,11.1.1.6,0,11.1.1.1,1

Malicious node implementation

Here users can enable code to malicious node problem. Enable #define
MALICIOUS ENABLE and comment #define SAODV_ENABLE that are present inside
AODV.h file.

@& | -5 & ' i Byl AODV - (Global Scope) -
Search Solution Explorer (Ctr O ~ ;2
fa] Selution ‘NetSim' (1 project) 27 //#define SAODV_ENABLE
4 [l aopv 28 #define MALICIOUS ENABLE

|- =B References 29
P 15 External Dependencies
B +e AODV.c 36 X .

™ maoove 31 #define AODV_ACTIVE_ROUTE_TIMEOUT 3000 MILLISECOND
b+ AODV CheckRouteFoul 32 #define AODV_ALLOWED_HELLO_LOSS 2
b+ AODV RouteError.c 3 #define AODV_BLACKLIST_TIMEOUT AODV_RREQ_RETRIES * AODV_NET_TR
b ++ FIFOBufferc 34 #define AODV_DELETE_PERIOD K * max (AODV_ACTIVE_ROUTE TIME
I ++ GeneralPacketProcessir 35 #define K 5
b+ HelloMessage.c 36 #define AODV_HELLO INTERVAL 1089* MILLISECOND
b+ Malicious.c 37 #define AODV_LOCAL_ADD_TTL 2
b+ RouteMaint.c 38 #define AODV_MAX_REPAIR_TTL 8.3 * AODV_NET_DIAMETER
P *+ RouteTablec 39 #define AODV_MIN_REPAIR_TTL //see note below
b ++ RREP.c 40 #define AQDV_MY_ROUTE_TIMEQUT 2 * ADDV_ACTIVE_ROUTE_TIMEOQUT
bt RREQe a1 #define AODV_NET_DIAMETER 35
E :: E:‘:\U':E MOV 42 #define AODV_NET TRAVERSAL TIME 2 * AQDV_NODE_TRAVERSAL TIME *

- 43 #define AODV_NEXT_HOP_WAIT AODV_NODE_TRAVERSAL_TIME + 10

Malicious node advertises wrong routing information to produce itself as a specific node and
receives whole network traffic.

After receiving whole network traffic it can either modify the packet information or drop them
to make the network complicated

In packet animation, users can notice that malicious node will take all the packets and drops
without forwarding to destination

A file malicious.c is added to the AODV project which contains the following functions:

e IsMaliciousNode ()
This function is used to identify whether a current device is malicious or not in-order
to establish malicious behavior.

* fn_NetSim_AODV_MaliciousRouteAddToTable()
This function is used to add a fake route entry into the route table of the malicious
device with its next hop as the destination.

e fn_NetSim_AODV_MaliciousProcessSourceRouteOption()

This function is used to drop the received packets if the device is malicious, instead of
forwarding the packet to the next hop.

You can set any device as a malicious node and you can have more than one malicious node
in a scenario. Device id's of malicious nodes can be set using malicious_node [] array
present in malicious.c file. Comment the line #define SAODV_ENABLE present in AODV.h
file. Rebuild the solution and replace the dlls as explained before and run the simulation. If we
run simulation without SAODV, we will get zero throughput because malicious node gets all
the packets and drops without forwarding to destination. You can notice this in NetSim packet
animation.

;*‘ 3[Wireless_Node 3] g S[Wirsless_Node 0]
j:lf' 1[Wireless_Node_1]
[

AppIZ

a[Wireless_Mode_a]

Appi-CBR-3

LA

AWireless_Node_4]
1:(‘ 2[Wireless_MNode_2] /];L

“ne” | MALICIOUS NODE

3. Both Secure AODV and Malicious node implementation
Enable the below mentioned lines of code present in AODV.h file.

#define SAODV_ENABLE
#define MALICIOUS_ENABLE

Rebuild the solution and replace the dlls as explained before and run the simulation. Packets
will be transmitted to the destination, since SAODV helps in overcoming the Malicious Node
problem. Route reply RREP from malicious node 4 will not be accepted by Node 1. It takes
the Route reply from node 2 and forms the route.

The SAODV logs certain details in Secure_AODV.txt. The first line represents the packet
type 30701 = RREQ. The second line is the message logged by SAODV when malicious
node tries to decrypt the message

Packet Type = 30702

Encryption and decryption fails. This could be a malicious node

Packet Type = 30702

Encryption and decryption fails. This could be a malicious node
Code modifications done:

Please note that in this project we have added Secure_AODV.c, RSA.c and Malicious.c files

We have added the following macros in AODV.h file

#define SAODV_ENABLE

#define MALICIOUS_ENABLE

Then we have added the following lines of code in enum_AODV_Ctrl_Packet in AODV.h file

//#ifdef SAODV_ENABLE
SAODV_RREQ,
SAODV_RREP,
SAODV_RERR,
//#endif

Then we have added the following function prototypes in AODV.h file

#ifdef SAODV_ENABLE

void get_saodv_ctrl packet(NetSim PACKET* packet);

void get_aodv_ctrl packet(NetSim PACKET* packet);

void saodv_copy packet (NetSim_PACKET* dest, NetSim PACKET*
src);

void saodv_free_packet (NetSim_PACKET* packet);

void remove_from_mapper(void* ptr,bool isfree);
#endif

bool IsMaliciousNode(NETSIM_ID devId);
We have added the following function prototypes in AODV.c file

bool IsMaliciousNode(NETSIM_ID devId);

int fn_NetSim_AODV_MaliciousRouteAddToTable(NetSim_EVENTDETAILS*);
int
fn_NetSim_AODV_MaliciousProcessSourceRouteOption(NetSim_EVENTDETAILS
*)s

Then we hawe added the following lines of code in NETWORK_IN ewent in
fn_NetSim_AODV_Run() function present in AODV.c file

#ifdef SAODV_ENABLE
switch(pstruEventDetails->pPacket->nControlDataType)
{
case SAODV_RREQ:
case SAODV_RREP:
case SAODV_RERR:
get_aodv_ctrl_packet(pstruEventDetails->pPacket);

break;
}
if(pstruEventDetails->pPacket == NULL)
{
return -1; //Decryption fail.
}

ttendif

We have added the following lines of code in AODVctriPacket RREQ and default cases in
NETWORK_IN event to check the current node is malicious or not

if(IsMaliciousNode(pstruEventDetails->nDeviceld))

fn_NetSim_AODV_MaliciousProcessSourceRouteOption(pstruEventDet
ails);

Then we have added the following code in fn_NetSim_AODV_CopyPacket () function present
in AODV.c file

#ifdef SAODV_ENABLE
switch(srcPacket->nControlDataType)
{
case SAODV_RERR:
case SAODV_RREQ:
case SAODV_RREP:
saodv_copy_packet(destPacket,srcPacket);
return 0;
break;
default:
#tendif
return fn_NetSim_AODV_CopyPacket_ F(destPacket, srcPacket);
#ifdef SAODV_ENABLE
break;

}

ttendif

Then we hawve added the following code in int fn_NetSim_AODV_FreePacket () present in the
AODV.c file

#ifdef SAODV_ENABLE
switch(packet->nControlDataType)
{
case SAODV_RERR:
case SAODV_RREQ:
case SAODV_RREP:
saodv_free_packet(packet);
return 0;
break;
default:
remove_from_mapper(packet->pstruNetworkData -
>Packet_RoutingProtocol, true);
return 0;
break;

}
tendif

Then we have added the following function calls in fn_NetSim_AODV_GenerateRREQ (),
fn_NetSim_AODV_RetryRREQ () and fn_NetSim_AODV_ForwardRREQ () functions present
in RREQ.c file

#ifdef SAODV_ENABLE
get_saodv_ctrl packet(packet);

#tendif

Then we have added the following function calls in fn_NetSim_AODV_GenerateRREP(),
fn_NetSim_AODV_ForwardRREP () and fn_NetSim_AODV_GenerateRREPByIntermediate ()
functions present in RREP.c file

#ifdef SAODV_ENABLE
get_saodv_ctrl_packet(packet);
#endif

