Simulation of WSN in NetSim Clustering using Self-Organizing Map
Neural Network

Software Recommended: NetSim Standard v11.0, Visual Studio 2015/2017, MATLAB 2016a
Project Download Link:

https://github.com/NetSim-TETCOS/WSN_SOM_OPTIMIZATION _vl11.0/archive/master.zip

Objective

The goal of this project is to maximize the life time of a Wireless Sensor network using Self Organizing Map
(SOM) based Neural Network algorithms for cluster head selection.

Introduction

We define the lifetime of a WSN as the time at which the power of half the sensors reach zero (also called
half-life of Network). Initially all sensors start with a fixed amount of energy. Subsequently energy is
consumed during transmission, reception and idle states. Packets are transmitted from sensors to their
cluster head sensor and then it is forwarded to sink node through other cluster heads. The selection of the
cluster heads is done using SOM.

All MAC / PHY layer simulations are carried using NetSim while the cluster head selection using SOM
algorithm is done using MATLAB.

Self-Organizing Map based Neural Network

We would be using a 2 Dimensional SOM to get a k sized cluster from n sensors located in 2D space using
distance as a metric for clustering.

$60

0 OOLC
304

Fig 1. A neural network of k 2D lattice points where red points represent the lattice points (nodes) and the
green points (neuron) represent the input layer. The connections between the red and green points
represent the links

https://github.com/NetSim-TETCOS/WSN_SOM_OPTIMIZATION_v11.0/archive/master.zip

As shown in the abowe figure, a neural network is created from k 2D lattice points (also known as nodes)
each of which is connected with the input layer. Each link has an associated weight. As the input vectors
are 2D points here, there are 2 neurons in input layer of neural network. Each node has a topological
position (x coordinate and y coordinate) and also a weight vector of 2 dimensions (one weight for each
dimension).

So, with input vectors and weight vectors, the SOM algorithm explained below, orders the weight vectors
in a way that represents similarities with input vectors.

There are following steps of the algorithm:

1. Each node weights are randomly initialized.

2. Choose an input vector and find that node whose weight vector is closest to the chosen point.
The most common method to calculate distance is finding the Euclidean distance. This node is
called BMU (Best matching unit).

3. The neighborhood of BMU is defined as all the nodes lying within its radius of influence. The no of
neighbors decreases ower time because Radius of influence is decreased ower time.

4. The weight vector associated with neighbor node (and BMU too) is updated using following
equation —
iw (@)=jw (@-1)+a(p(a)-jw(q-1))
Where p(q) is the input vector chosen and iw(g-1) is the weight vector associated with node i and
iw(qg) is the updated value of weight vector.

5. Repeat from step 2 till the iteration limit has been reached.
The abowve procedure is repeated for large no of iterations (chosen as 200 in our example)

There would be k output nodes in the neural network where each output node is associated with some
pattern or cluster in the input point.

Each point would be passed through network and suppose ith output node has highest value, then this
point belongs to the cluster i.

The topology function of the k nodes and the distance function used to evaluate distance between sensor
and node can be chosen from a given set of values as below.

Topology

The neurons in the layer of an SOFM are arranged originally in physical positions according to a topology
function. The function gridtop, hextop, or randtop can arrange the neurons in a grid, hexagonal, or random

topology.
1. The gridtop topology starts with neurons in a rectangular grid of dimensions which you may specify.

Suppose you want to classify n points into k clusters. Then, you can start with k neurons arranged in
rectangular grid of dimensions [k1 k2] such that k1*k2=k.

e.g.-
pos = gridtop([2, 3])

pos =

Suppose you had chosen dimensions to be [3, 2], then you would get following configuration of neurons

pos = gridtop([3, 2])

pos =

2. In hextop topology, neurons are initially arranged in a hexagonal pattern.
e.g. A 2-by-3 pattern of hextop neurons is generated as follows:
pos = hextop([2, 3])
pos =
0 1.0000 0.5000 1.5000 0 1.0000
0 0 0.8660 0.8660 1.7321 1.7321
Hextop is the default pattern for SOM networks generated by selforgmap
3. The randtop function creates neurons in a random pattern in the specified dimensions.

Pos=randtop ([2, 3]);

Pos =
0 0.42 0.29 0.87 0.07 0.43
0 0.01 0.26 0.48 1.32 1.33

Distance functions

Distances between neurons are calculated from their positions with a distance function. There are four
distance functions, dist, boxdist, linkdist, and mandist

The link distance from one neuron is just the number of links, or steps that must be taken to get to the
neuron under consideration.

The dist is Euclidean distance from neuron to a point.

The mandist calculates the Manhattan distance between points.

Creating a Self-Organizing Map Neural Network (selforgmap) -

SOM is created using selforgmap function whose syntax is as given below.

Selforgmap (dimensions, cowersteps, initNeighbour, topologyFunction, distanceFunction)
Where the parameters can take following value-

1. dimensions is a row vector of dimension sizes of the initial neurons. Default value= [8 8].
2. cowersteps is number of training steps to cover the whole input dataset initially(Default=100)
3. initNeighbour is the size of initial neighbourhood.(default =3)

4. topologyFunction is the initial topology of neurons (default =’hextop’)

5. distanceFunction is neuron distance function (default="linkdist’)

Suppose you want to cluster n points located in 2D space into k clusters based on Euclidean distance-

https://in.mathworks.com/help/nnet/ref/dist.html
https://in.mathworks.com/help/nnet/ref/boxdist.html
https://in.mathworks.com/help/nnet/ref/linkdist.html
https://in.mathworks.com/help/nnet/ref/mandist.html

Let x be a matrix with dimension 2*n which contains the coordinate of points.

net = selforgmap([2 k/2], 100, 3, , ‘gridtop’, dist’);

You can set the no of iterations the neural network will train using
net.trainParam.epochs=1000;

Network is trained using train (network, dataset) as

net = train(net, x);

To get the cluster id of the points by passing them as input to the learnt neural network -
y=net(x);

y would be a 4*n matrix. The ith column of y would be the output for the ith point and all the entries in the
column would be zero except one which is the cluster to which that points belong or more precisely the
node which is the cluster head of the ith point.

To get cluster-id in range (1, k)-
IDX=vec2ind(y);
Where IDX is a n length vector.

Now we hawe to get the geometrical centroid of each cluster which can be obtained by iterating through all
the points that belong to that cluster and finding mean of their position vectors.

On running the above code, a GUI nntraintool appears in which there are seweral \isualizations of the
network that is learnt like SOM topology, SOM neighbor connection, SOM neighbor distances, SOM input
planes, SOM sample hits, SOM Weight positions.

Interfacing WSN Simulation in NetSim with SOM algorithm running in MATLAB:

Dynamic Clustering is implemented in NetSim by Interfacing with MATLAB for the purpose of running the
SOM algorithm. The sensor coordinates are fed as input to MATLAB and Self Organizing map neural
network algorithm that is implemented in MATLAB is used to dynamically perform clustering of the sensors
into n number of clusters.

In addition to clustering we also determine the cluster head of each cluster mathematically in MATLAB. The
distance of each sensor from the centroid of the cluster to which it belongs is calculated. Then the sensor
which has the least distance is elected as the cluster head.

From MATLAB we get the cluster id of each sensor, cluster heads of each cluster and the size of each
cluster.

All the above steps are performed periodically which can be defined as per the implementation. Each time
the cluster members and the cluster heads are determined based on the current position and they are not
fixed.

The codes required for the mathematical calculations done in MATLAB are written to a clustering.m file
and user need to place this file inside the root directory of MATLAB.

For Eg: “C:\Program Files\MATLAB\R2016a”.

"] som_optimization.m - Notepad - X

File Edit Format Yiew Help
B e e i e e e -~

% Copyright (C) 2017 %
% TETCOS, Bangalore. India %
% %
% Tetcos owns the intellectusl property rights in the Product and its content. %
% The copying, redistribution, reselling or publication of any or all of the %
% Product or its content without express prior written consent of Tetcos is %
% prohibited. Ownership and / or any other right relating to the software and all %
% intellectual property rights therein shall remain at all times with Tetcos. %
% %
% Author: Rahul %
B oo %
function [A,B,C] = som_optimization(x,scount,num_cls,power,max_energy)

% power: column vector of remaining power for each device
% s_count is sensor_count
% num_cls is number of clusters into which the sensors are grouped

% The following code is for clustering using Self-Organizing Map Neural Network

% Clustering_Method =1 SOM using distance

% Clustering Method =2 SOM using distance and remaining power

% Clustering_Method =3 SOM and then iterative update of cluster heads
Clustering_Method = 3; %change here for different algorithm

save som_clustering.mat
%parameters that can be varied
%selforgmap(dimension vector, coversteps , initial no of neighbor, initial topolegyFnc,distanceFnc)

neural_net = selforgmap([2 num_cls/2],100, 3,'gridtop','dist');
% Set epochs which works best for your setting
neural_net.trainParam.epochs = 200;

neural_net= train(neural_net,x.');

output_net = neural_net(x.');
IDX=vec2ind(output_net); v

A SOM_Clustering.c file is added to the DSR project which contains the following functions:

4] Netsim - Microsoft Visual Studio ¢ & | QuickLaunch (Ctl-0) Pl- B x
File Edit View Project Build Debug Team Tools Test Analyze Window Help kanakmaaya ~
fe-0 @2 B9 - Q- Debug - s - P Local Windows Debugger - | 57 _7 ¥ (- | o

[DSR -| (Global Scope) -1 @ fn_NetSim_som_Clustering_Init() - WeE-®-59
s W =
28 main.h Nl Search Solution Explorer (Ctrl+;) 2 -
29 "DSR.h" B
. e . fa] Solution ‘NetSim' (1 project)
30 #include "List.h 4 DSR
31 #include "../BatteryModel/BatteryModel.h” b =B References
22 i ude "../ZigBee/802_15_4.h" b i External Dependencies
33 #define NUMBEROFCLUSTERS 4 P € CheckRouteFound.c
34 b C DSRc
. b B DSRh
35 int *ClusterElements; > € MaintBufferc
36 int CH[NUMBEROFCLUSTERS]; b ¢ MATLAB Interface.c
37 int CL_SIZE[NUMBEROFCLUSTERS]; b € Network Layer Ack.c
b ¢ PacketProcessing.c
38 9
39 b € RouteCachec
- - . — . . b € Routerror.
40 #int fn_NetSim_som_clustering_CheckDestination(NETSIM ID nDeviceld, NETSIM_ID r'Destlna—_lor'Id) b c RZ:;R:;;‘((
48 b € RoutsRequestc
a9 #int fn_NetSim_som_clustering_GetNextHop(NetSim EVENTDETAILS* pstr‘l,Eu-ent)Eiails) b € SendBuffer.c
94 b ¢ SOM Clustering.c
95 #int fn_NetSim_som_clustering_IdentifyCluster(int De\fi(eld) b ¢ SourceRoutec
100 a2
101 #=int fniNetSimisomiclusteringﬁr‘un()
106
107 #int fn_netsim_som_form_clusters(double* cl_id,double* c_size) [... }
119
120 #int fn_netsim_assign_cluster_heads(double* cl_head)| { ... }
128
129 #void fn_NetSim_som_Clustering Init() { ... }
-
127% - 4 »

fn_NetSim_dynamic_clustering_CheckDe stination()
This function is used to determine whether the current device is the destination.

fn_NetSim_dynamic_clustering_GetNextHop ()
This function statically defines the routes within the cluster and from cluster to sinknode. It returns
the next hop based on the static routing that is defined.

fn_NetSim_dynamic_clustering_ldentifyCluster()
This function returns the cluster id of the cluster to which a sensor belongs.

fn_NetSim_som_clustering_run() - This function makes a call to MATLAB interfacing function and passes
the inputs from NetSim (i.e) the sensor coordinates, number of clusters and the sensor count.

fn_netsim_som_form_clusters() - This function assigns each sensor to its respective clusters based on
the cluster id’s obtained from MATLAB.

fn_netsim_assign_cluster_heads() - This function assigns the cluster heads for each cluster based on
the cluster head id’s obtained from MATLAB.

fn_NetSim_som_Clustering_Init() - This function initializes all parameter values.
Static Routing:

Static Routing is defined in such a way that the sensors in the cluster send the packets to the cluster head.
The cluster head then directly sends the packets to the destination (sinknode).

If the current sensor is the source device and if it is not a cluster head then its next hop is its cluster head.

If the current sensor is the source device and if it is a cluster head then its next hop is the destination (i.e)
the sinknode.

If the current sensor is not the source then the packet is sent to the destination (i.e) the sinknode.

NOTE:
To run this code 32- bit version of MATLAB must be installed in your system.

Steps to run SOM Clustering Code in NetSim:
1. Open the project folder and double click on the NetSim.slIn file to open the project in visual studio.

2. Create a user variable with the name of MATLAB_PATH and provide the path of the installation

directory of user’s respective MATLAB version.

I =

Edit User Variable ==

Variable name: MATLAE_PATH

Variable value: :\Program Files\MATLAB\R.20 163

[Ok] | Cancel |

3. Make sure that the following directory is in the PATH(Environment variable)
<Path where MATLAB is installed>\bin\win64

{:J\‘,_J |‘Bi + Control Pa

System Properties

Computer Name

Contrel Panel Home Advanced | System Protection | Remote

i [

“You must be logged on as an Administrator to make most of these changes.

I&I
]
-]
I@I

Device Manager

. Performance
Remote settings
isual effects, processor scheduling, memory usage, and virtual memory

System protection

Advanced system settings

User Profiles
Desktop settings related to your logon

Startup and Recovery
System startup, system faiure, and debugging information

Environment Variables...

Environment Variables

Edit System Variable

Variable name: 2ath

Variable value: IC:\Program Files\MATLABR. 20 16abinwinG: |

System variables

Variable Value m
Path C:\Windows\system32;C: \Windows;C:\... []
PATHEXT ,COM; .EXE; BAT;.CMD; VES; VBE; JS;. ..

PROCESSOR._A...
PROCESSOR._ID...

AMDE4
Intel&4 Family & Model 23 Stepping 10, ... ™

New.. |[Edt. |[Delete |

Note: If the machine has more than one MATLAB installed, the directory for the target platform must be
ahead of any other MATLAB directory (for instance, when compiling a 64-bit application, the directory in

the MATLAB 64-bit installation must be the first one on the PATH).

4. Right click on the DSR project in the solution explorer and select Rebuild.

24| MetSim - Microsoft Visual Studio

¥ & | QuickLaunch (Ctrl+Q) Pl B x

File Edit View Project Build Debug Team Tools Test Analyze Window Help kanakmazya -
f@-0 [8-2 8|9 -Q | Debug | 6t - P Local Windows Debugger ~ | 51 _¥ bg
OM_Clustering.c + X Selution Explorer - Ax
[l DSR -| (Global Scope) - | @ fn_NetSim_som_Clustering_Init(- Se- -5 "
s " : " +
28 —#‘mclude main.h =N Search Solution Explorer (Ctrl+;) 0 ~
29 #include "DSR.h" = : X
B | #include List b Os [—
31 #include "../BatteryModel/BatteryModel.h" Rebuild =B References
32 #include "../ZigBee/802_15_4.h" Clean & External Dependencies
33 #define NUMBEROFCLUSTERS 4 View » | C CheckRouteFound.c
34 Analyze » EDSRK
. DSR.h
35 }nt *ClusterElements; Crg=Eity " |c MaintButter.c
36 int CH[MUMBEROFCLUSTERS]; Retarget Projects C MATLAB Interface.c
37 int CL_SIZE[NUMBEROFCLUSTERS]; Overview € Network Layer Ack.c
38 € PacketProcessing.c
. Scopeto This € RouteCache.c
39 New Solution Explorer View It RoutsErmarc
49 sint fn_NetSim_som clustering_CheckDestination(NETSIM ID nDeviceld, NETSIM ID nDef i D v | RouteReply.c
48 add , |c RouteRequestc
49 & int fn_MNetSim_som_clustering_GetNextHop(MetSim_EVENTDETAILS* pstr‘uEUent)Etails)[. € SendBuffer.c
04 g% Class Wizard... CtrlsShiftsX | ¢ 5QM_Clustering.c
a5 #int fn_NetSim_som_clustering_TdentifyCluster(int DeviceId) () ComgeteEaibar € SowrceRoutec
100 L} Setas StartUp Project
101 @int fn_NetSim_som_clustering_run()[{ ... ;| Debug ’
106 A cut Ctrl+X
107 #int fn_netsim_som_form_clusters(double* cl id,double* cisize) Paste Ctrl+V
119 X Remove Del
120 slint fn_netsim_assign_cluster_heads(double* clihead) Rename
128

& void fn_NetSim_st_Cluster‘ing_Init()

Ln 140

Unload Project
Rescan Solution

Open Folder in File Explorer

Properties Alt~Enter

4 Add to Source Control «

5. Copy the newly built libDSR.dIl and libZigBee.dll from the DLL folder inside project Directory.

6. Replace the DLL’s in the bin folder inside NetSim Installation Directory, after renaming the original
libDSR.dIl and libZigBee.dll.

7. Run NetSim as Administrative mode.

8. Create a Network Scenario in WSN (for eg. 64 sensors) and make sure that the velocity of the

sensors is set to 0. Also, set the initial power to be 1000. This property will be available in the
Global Properties of the sensor nodes.

60 90 120

£

4
=)
| Bil*
Wirgless Sensor 4 Wireless_Sensor_5
| [
\ [
\
|

\
WirelesS\sensor_1 Wireless_Sensor_2 w.relhfs_sﬂsor_s

pe

A L MR A AW g [
- UBRN, ML, WY S
reless Seczor 9. Wielesiensor 10 Wrelehe Sensok 11 Wirdjeds Sensor 12 Weles Se
e
- -

ireless_Sensor=17_ Wireless_Sehsor_18
-

N
N
Ny
3
é‘\ %\\\‘\
N

i
XD 4 77 [l
AR /,//}/ A il

wgdy@ggm. _}9‘ wirgse sesoghsos” A /]

707 AN iR AR
% 47 77 VAW SRV AY)
% / & /

-
reless Sensor 41 Wréfess Sensor_ 4274, pWirg
e d

18 e | 14|y paw /
7 7 7
7 157 \| 75 /\(v A w55 | x|/
i / ‘ o A Eﬁ fin / i
reless_Sensor 49 w.;uss_Sens/_so relgss Sensor 52,/ Areless Sersor 53 Wireless Semiogid | WielesSendor 55 Wieless Shor 55
| \ v
- [S| / / /
[1 \ 7 / 4 A
| / \ /) 4 /
2 e H7f 7 NV 7 ’
2457 i/so %{61 ‘}i/ 62 2/ & e

ireless_Sensor 57 Wireless_Sensor 58 Wireless_Sensor 59 Wireless_Sensor_60 Wireless_Sensor_ 61 Wireless_Sensor_62 | Wireless_Sensor_63 | Wireless_Sensor_64

9. Run the Scenario. You will obsene that as the scenario starts and MATLAB plots the graph for the
cluster that is formed currently and also nntrail GUI opens up which has seweral options as
discussed next.

12. There are two algorithms implemented to find the best clusters and cluster heads which uses SOM
with distance as metric and other is modified version of the first algorithm where a function of both
remaining power and the distance from cluster head is minimized over all the sensors in the cluster to
get the cluster head with least distance from geometrical centroid of cluster and maximum remaining
power.

SOM using distance as a metric to identify the cluster head (Clustering_Method = 1)

The clusters would be created so as to minimize the sum of distance between the sensor and the
sensor which is cluster head. The remaining power in each sensor isn’'t taken into account in this
algorithm.

|4\ Figure 1 - [m} >
File Edit View |Inset Tools Desktep Window Help k]

DEde | h|RAOBERAL-2|0EH a0

750

800

600

400

200 -

Energy Consumed {mdJ)

200

200
100 150
100

50
Sensor Y position 0 o Sensor X position

Fig: plot for power consumption

64 sensors are placed evenly on x-y plane and each sensor is given a fixed amount of initial power
(100 in this case). The number of clusters has been fixed to 4.

The z axis represents the power consumed while the sensors are placed on the X, y plane.

It can be seen from the plot, there are 4 peaks in the plot corresponding to 4 sensors that will be
selected as the cluster heads. Since the sensors are static, there are same cluster heads and cluster
during the whole simulation period.

Nntraintool GUI will appear like shown below.

It has several Menu buttons like SOM Topology, SOM Neighbor connections, SOM Neighbor distances,
SOM Input Planes, SOM Sample Hits, SOM Weight Positions.

SOM Topology- The plot would represent a rectangular grid in this case.

SOM Neighbor distances — It shows the distance of sensors from cluster centers as computed using
distance function and the neighborhood of each cluster centers are shaded in different colors.

SOM Weight Positions- The cluster centers are shown at their weight vector (using them as position
vector) along with all the sensors in the WSN.

4\ Neural Network Training (nntraintcol)

Neural Network

Input

Layer

2 4 4
Algorithms
Training: Batch Weight/Bias Rules (trainbu)
Performance: Mean Squared Error (mse)
Derivative: Default (defaultderiv)
Progress
Epoch: 0 200 iterations 1 200
Time: 0:00:00
Plots
SOM Topology (plotsomtop)

SOM Neighﬁor Cbnnedibns
SOM Neighbor Distances
SOM Input Planes
SOM Sample Hits
SOM Weight Positions

Plot Interval: '

v Maximum epoch reached.

(plotsomnc)
(plotsomnd)
(plotsomplanes)

(plotsombhits)

: (plotsompos)

1 epochs

° Cancel

° Stop Training

Clicking on Weight Positions you would get the following plot.

{4 Neural Network Training SOM Weight Positions (plotsompos), Epoch 20...

File Edit View |Insert Tools Desktop Window Help
SOM Weight Positions
250 T T . v
.
200 b
o~ 180 b
=
[=] -
o
=
100 b
.
L b]
50 J S
0
0 50 100 150 200 250
Weight 1

Here the three points in blue shows the final weight positions of the trained neural network.

The green points are the sensors whose position vectors were used as input to the neural network
while training. Weightl and Weight2 are corresponding to x coordinate and y coordinate of the position
vectors of input.

Modified SOM using power and distance as metric for electing cluster head(Clustering_Method = 2)

Algorithm- SOM library of MATLAB is used to find the cluster id of each sensor and the sensor for which

the objective function (composed of power and distance from cluster center) is minimum is chosen as
cluster head.

The power consumption obtained using this is close to that of kmeans in the uniform placement of
sensors but it might differ in case of complex distribution of placement of sensors.

In the initial phase the plot resembles the previous one. But after some time, since the power associated
with cluster heads would decrease fast and so, there would be new cluster head whose distance from
geometrical centroid of cluster is considerably low and power is also high. Hence as the time passes,
it can be observed that the power is consumed by all the sensors at approximately the same rate.

There are no peaks in this plot unlike the previous one because modified SOM takes into account the

power level of each sensor and thus each sensor will be appointed as the cluster head in its respective
cluster.

File log.txt is created in DSR folder which contains the location of cluster heads and the sensor no
which is cluster head from the start of simulation.

File time.txt in bin folder contains the time from which the sensor power starts becoming zero and the
no of sensors with zero power and subsequently which has been shown in the table at end of document.

4 Figure 1 - a X
File Edit View Insert Tools Desktop Window Help k]

DEde || ARARNDEL-|S|0E| =D

610
800 600
= 600 590
hel
400 560
200
.

Energy Consume

200
100 150
50 100

Sensor Y position 0 o

50
Sensor X position

Fig: plot for power consumption of sensors.

Case 3: Recalculating clusters iteratively after getting cluster using SOM initially.

Algorithm:

Initially, cluster is evaluated using SOM which uses distance as metric. The cluster to which each sensor
belongs to is known. Now, cluster head is chosen as the sensor for which the objective function which
constitutes remaining power and the distance from geometrical centroid of cluster to the sensor, is
minimized.

After this cluster is recalculated and each sensor is assigned to the cluster whose cluster head is closest
to it. Cluster heads and then the cluster is computed iteratively.

