
Implementing a new Crypto Algorithm – Mysty1

Software Recommended: NetSim Standard v11.0, Visual Studio 2015/2017, Wireshark

Project Download Link:

https://github.com/NetSim-TETCOS/MYSTY1_ENCRYPTION_v11.0/archive/master.zip

1. How to add a new crypto algorithm for encryption, unzip “Addition of Mysty Encryption Algorithm”

project. It would look like

2. Double click on the NetSim.sln file to view the Application codes in Visual Studio 2015.

3. Now expand Application Project and click mysty_run.c file. This file contains the following lines of

code.

#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "application.h"
void misty_run(char* str,int* len)
{
 int n;
 int l=*len;

 unsigned char buf[32];
 unsigned char key[32];

https://github.com/NetSim-TETCOS/MYSTY1_ENCRYPTION_v11.0/archive/master.zip

 for (n = 0; n < *len; n+=16,str+=16,l-=16)
 {
 /* Set the plain-text */
 memcpy(buf, str, min(16,l));

 misty1_main(buf);
 memcpy(str,buf,16);
 }

}

In the mysty_run() function inside the mysty_run.c file we pass the plain text in parts of 16
bytes each time to get it encrypted. This is done because the crypto algorithm expects a 16

byte plaintext as input. Here the variable str contains the packet payload and len corresponds
to the size of payload in bytes.

4. Now double click on the mysty1.c file present in Application project inside the solution explorer

and check the following changes to it.

a) Addition of #include<application.h> and #define uint8 unsigned char to the beginning of

the file(shown in red).

#include <stdlib.h>
#include <string.h>
#include "application.h"
typedef unsigned long u4;
typedef unsigned char byte;
#define MISTY1_KEYSIZE 32
#define uint8 unsigned char

b) Removed inline keyword that is present before the functions fi(), fo(), fl() and flinv().

To

c) Now go to the main() function in the file and check that line #ifdef TESTMAIN was

removed or commented before the main() function and also the associated #endif at the
end of the main() function.

d) main() function was renamed to unsigned char* misty1_main(uint8* input)

e) Commented the declaration of Ciphertext, Modify the declaration of Plaintext variable, as
shown below:

f) Now check the commented lines starting from misty1_keyinit() to misty1_key_destroy()

as shown below:

g) Addition of the following lines of code just above the misty1_key_destroy(ek_e);
statement as shown below:

 // Memcpy is used to equate input which is Char to Plaintext

// which is Unsigned Long

 memcpy(Plaintext,input,2*sizeof(u4));
 memcpy(&Plaintext[2],&input[8],2*sizeof(u4));

 misty1_keyinit(ek_e,Key);
 misty1_encrypt_block(ek_e,Plaintext,&c[0]);
 misty1_encrypt_block(ek_e,&Plaintext[2],&c[2]);

 memcpy(input,c,2*sizeof(u4));
 memcpy(&input[8],&c[2],2*sizeof(u4));

h) Inside the mysty1_main function the above codes were modified to ensure that the

plaintext is properly initialized with the 16 bytes of payload received, for the encryption to

happen.

i) Here, memcpy() is done initially to equate input received as which is char, to the plain

text which is unsigned long.

memcpy(Plaintext,input,2*sizeof(u4));
memcpy(&Plaintext[2],&input[8],2*sizeof(u4));

j) After the calls to misty1_encrypt_block() memcpy() is done to equate the encrypted
cipher text back to the input.

memcpy(input,c,2*sizeof(u4));
memcpy(&input[8],&c[2],2*sizeof(u4));

5. Now double click on the application.c file and make a call to mysty_run() function instead of the

call to aes256, inside the copy_payload() function as shown below (changes are marked in red):

if(info->encryption==Encryption_TEA)
 encryptBlock(real,payload,&key);
 else if(info->encryption==Encryption_AES)
 {
 misty_run(real,payload);
 //aes256(real,payload);
 }
 else if(info->encryption==Encryption_DES)
 des(real,payload);

6. Rebuild Application project and replace the libApplication.dll file in NetSim bin folder i.e.
“C:\Program Files\NetSim Standard\bin”.

7. Open Configuration.netsim file from the zip and make sure that AES encryption is selected in

the application properties.

8. Also Wireshark option has to be set to either Online or Offline in any of the nodes where AES256
encryption is enabled.

9. Now mysty1 codes will be running instead of AES256.

10. You can see the encrypted payload in Wireshark either during simulation if online is set or after
the simulation if offline is set.

11. Setting Wireshark to either online or offline will give you Packet Capture metrics where links to
.pcap files are provided. The number of links available depends on the number of nodes in which
Wireshark is enabled.

