Dynamic Clustering in WSN

Software Recommended: NetSim Standard v11.0, Visual Studio 2015/2017, MATLAB
Project Download Link:

https://github.com/NetSim-TETCOS/Dynamic_Clustering _v11.0/archive/master.zip

Clustering in WSN:

Clustering is the process partitioning a group of sensor into small numbers of clusters. In
environments where the sensors are mobile clusters cannot be static. Like cluster heads in each
cluster are elected dynamically, the members in each cluster also need to be dynamically identified.
Therefore the size of each cluster is not fixed and can vary depending on the position of the sensors.

Dynamic Clustering helps in efficiently grouping sensors into clusters dynamically. There is no fixed
cluster size and the sensors are divided into the required number of clusters with members of each
cluster calculated dynamically.

Clustering using k-means algorithm:

kmeans(X,k) partitions the points in the n-by-p data matrix X into k clusters. This iterative partitioning
minimizes the sum, ower all clusters, of the within-cluster sums of point-to-cluster-centroid distances.
Rows of X correspond to points, columns correspond to variables. kmeans returns an n-by-1 vector
IDX containing the cluster indices of each point. By default, kmeans uses squared Euclidean
distances. When X is a vector, kmeans treats it as an n-by-1 data matrix, regardless of its orientation.

The sensor positions and number of clusters,

X - a matrix containing the x, y coordinates of the sensors in the scenario

k- the number of clusters

are passed to k-means algorithm.

[IDX,C] = kmeans(Xk)

IDX — Contains the cluster id’s of each sensor (i.e) the cluster to which the sensor belongs.
C — Centroids of each cluster

Clustering using Fuzzy C-Means Algorithm:

Fuzzy c-means (FCM) is a data clustering technique in which a dataset is grouped into n clusters with
ewvery data point in the dataset belonging to every cluster to a certain degree. For example, a certain
data point that lies close to the center of a cluster will have a high degree of belonging or membership
to that cluster and another data point that lies far away from the center of a cluster will have a low
degree of belonging or membership to that cluster.

Cluster head election based on distance from Centroid:

After grouping the sensors into different clusters, the cluster heads are determined based on the
distance between the sensor and the centroid of the cluster to which it belongs.

The sensor which is closer to the centroid will be elected as the cluster head. Here the position values
(i.e. value of x-coordinate and y-coordinate) of each sensor are passing from NetSim to MATLAB as a
sole parameter.

https://github.com/NetSim-TETCOS/Dynamic_Clustering_v11.0/archive/master.zip

Cluster head election based on distance and power:

After grouping the sensors into different clusters, the cluster heads are determined based on the
distance between the sensor and the remaining power of each sensor. Afterthat the sensors are
assigned in respective cluster.

The sensor which is closer to the centroid and has the more power than other sensor will be elected
as the cluster head. Here the position values (i.e. value of x-coordinate and y-coordinate) of each
sensor and power are passing from NetSim to MATLAB as a sole parameter.

Dynamic Clustering in NetSim with MATLAB Interfacing:

Dynamic Clustering is implemented in NetSim by Interfacing with MATLAB for the purpose of
mathematical calculation. The sensor coordinates are fed as input to MATLAB and k-means algorithm
that is implemented in MATLAB is used to dynamically perform clustering of the sensors into n
number of clusters.

In addition to clustering we also determine the cluster head of each cluster mathematically in
MATLAB. The distance of each sensor from the centroid of the cluster to which it belongs is
calculated. Then the sensor which has the least distance is elected as the cluster head.

From MATLAB we get the cluster id of each sensor, cluster heads of each cluster and the size of
each cluster.

All the above steps are performed periodically which can be defined as per the implementation. Each
time the cluster members and the cluster heads are determined based on the current position and
they are not fixed.

The codes required for the mathematical calculations done in MATLAB are written to a clustering.m
file as shown below:

% Copyright (C) 2016
% TETCOS, Bangalore. India
%

R RRRERRRER L

unction [A,B,C] = clustering(x _cls, power, max_energy)
% changed clustering function. Hew paramter power: column vector of
% remaining power for each device

% s_count is sensor_count

% Clustering Methed = 1 KMeans using distance
% 2
% =3 KMeans usin
X 4

Means using distance
d power
Means using distance and power

Clustering_Method = 1;

% save dynamic_clustering.mat

%ichange here for different algorithm

if{Clustering Method — 1 || Clustering Method == 3)
[10X,C]= k_means(x,num_cls);

else
[1DX,C]= fuzzy(x,num_cls);

The clustering.m file can be run in four different modes cluster head election.

A Dynamic_Clustering.c file is added to the DSR project which contains the following functions:

4| NetSim - Microsoft Visual Studie
File Edit View Project Build Debug Tesm Tools Test Analyze Window Help

‘e-o|@-2 M| 90 | Debug - e P Local Windows Debugger ~ | 51 _ita 2| 5 2| W
g P T MATLAB Interface.c
g B0 -] (Global Scope) -
28 #include "DSR.h"
29 #include "List.h"
30 #include "../BatteryModel/BatteryModel h"
31 #include "../ZigBee/802_15_4.h"|
32 #define NUMBEROFCLUSTERS 4
33
34 int *ClusterElements;
35 int CH[NUMBEROFCLUSTERS];
36 int CL_SIZE[NUMBEROFCLUSTERS];

93 ®int fn_Netsim_dynamic_clustering_IdentifyCluster(int Devicerd)[{ ... J |

99 mint fniNetSimidynamicicluster'ingkr*un()

185 #int fn_netsim_dynamic_form_clusters(double* c1_id, double* c1_size)[{ ... J |
117 #int fn_netsim_assign_cluster_heads(double* clil'eaf)

126 Evoid fn_NetSim Dynamic_Clustering Init()[{ ... } |

121% -~ 4
Output

[] Read Ln 31 Col 32 Ch 32

fn_NetSim_dynamic_clustering_CheckDe stination()

38 =int fn_NetSim_dynamic_clustering_CheckDestination(NETSIM_ID nDeviceld, NETSIM_ID n)er_'_natlafd)_

47 wint fn_NetSim_dynamic_clustering GetNextHop(NetSim EVENTDETAILS* pstrufventDetails)[[... J |

X | & Quick Launch (Ctr+Q) Pl -

F X

kanakmaaya -

Solution Explorer
@E-lo-5a@m|o s
Search Solution Explorer (Ctrl+;)

71 Solution 'NetSim' (1 project)
4 [DSR

8 References

5 External Dependencies
¢ CheckRouteFound.c
¢ DSRe

B DSRh
Dynamic_Clustering.c
MaintBuffer.c
MATLAB Interface.c
Network_Layer_Ack.c
PacketProcessing.c
RouteCache.c

a

RouteErmor.c
RouteReply.c
RouteRequest.c
SendBuffer.c

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 SourceRoute.c

AnAaRAAANAAN

-0 x

o~

4 Add to Source Control =

This function is used to determine whether the current device is the destination.

fn_NetSim_dynamic_clustering_GetNextHop ()

This function statically defines the routes within the cluster and from cluster to sinknode. It

returns the next hop based on the static routing that is defined.

fn_NetSim_dynamic_clustering_ldentifyCluster()

This function returns the cluster id of the cluster to which a sensor belongs.

fn_NetSim_dynamic_clustering_run()

This function makes a call to MATLAB interfacing function and passes the inputs from NetSim

(i.e) the sensor coordinates, number of clusters and the sensor count.

fn_netsim_dynamic_form_clusters()

This function assigns each sensor to its respective clusters based on the cluster id’s obtained

from MATLAB.

fn_netsim_assign_cluster_heads()

This function assigns the cluster heads for each cluster based on the cluster head id’s

obtained from MATLAB.
fn_NetSim_Dynamic_Clustering_Init()
This function initializes all parameter values.

Static Routing:

Static Routing is defined in such a way that the sensors in the cluster send the packets to the cluster
head. The cluster head then directly sends the packets to the destination (sinknode).

If the current sensor is the source device and if it is not a cluster head then its next hop is its cluster

head.

If the current sensor is the source device and if it is a cluster head then its next hop is the destination

(i.e) the sinknode.

If the current sensor is not the source then the packet is sent to the destination (i.e) the sinknode.

NOTE:

To run this code 64- bit version of MATLAB must be installed in your system.

Steps:

5.

Open the Code folder and double click on the NetSim.sIn file to open the project in visual

studio.

Under the DSR project in the solution explorer double click on the MATLAB_Interface.c file.

Place clustering.m present in the code folder inside the root directory of MATLAB. For
Example: “C:\Program Files\MATLAB\R2016a”.

Create a user variable with the name of MATLAB_PATH and provide the path of the

installation directory of user's respective MATLAB version.

i

Edit Uszer Yariable

Variable name:

Variable value:

-

(]

MATLAE_PATH

:\Program Files\MATLAB\R.2016a

[oK][Cancel]

Make sure that the following directory is in the PATH(Environment variable)
<Path where MATLAB is installed>\bin\win64

P

Edit System Variable

Variable name:

Variable value:

-

=

Path

Files \MATLABR 20 163 Yhin wint<4 108>t f

[oK][Cancel]

Note: If the machine has more than one MATLAB installed, the directory for the target
platform must be ahead of any other MATLAB directory (for instance, when compiling a 64-bit
application, the directory in the MATLAB 64-bit installation must be the first one on the

PATH).

Right click on the DSR project in the solution explorer and select Rebuild.

l(G\DbaIS(DpaJ -

++ CheckRouteFound.c
++ DSR.c

[A DSR.h

++ Dynamic_Clustering.c
++ MaintBuffer.c

++ MATLAB Interface.c
++ MNetwork_Layer_Ack.c
++ PacketProcessing.c
++ RouteCache.c

++ RouteError.c

++ RouteReply.c

++ RouteRequest.c

++ SendBuffer.c

++ SourceRoute.c

Y T TRV YYYYVYY Y Y YW

=
ki

Scope to This

Mew Solution Explorer View
Show on Code Map

Profile Guided Optimization
Build Dependencies

Add

* Class Wizard...

Manage NuGet Packages...

Set as StartUp Project
Debug

Solution Explorer ~| % Build
@ -5 F@|I_ Rebuild
Search Solution Explarer (Ctrl+:) Clean
R Solution 'NetSim' (2 projects) View 4
4 [DSR Analyze 3
=-B References Project Only 4
= External Dependencies Retarget SDK Version

Bl;

ering_CheckDestination({NETSIM_ID nDeviceIld, NETSIM_ID 13E£til'2ii:”\lf)[

» pring_GetNextHop(NetSim EVENTDETAILS® psir.E--eriDeiai'_z)

Ctrl+Shift+X pring_IdentifyCluster(int DeviceId)[{ ...) |
ering_run((3]
» rlusters{double* cl_id, double* cl_size)[{ ... } |

7. Copy the newly built ibDSR.dIl from the DLL folder inside the Code Directory.

8. Replace the DLL’s in the bin folder inside NetSim Installation Directory, after renaming the
original libDSR.dII

9. Run NetSim as Administrative mode.

10. Open the sample Configuration.netsim file present in the Config_File folder of this project

o_ . 0 60 _ 0 _ 120 150 180 210 240 270 300 M
o | 3 i i i1

. " a 1 1 Tan 1 7. b 1 1 7 -
Wireless\Sensor 1 Wirelels Sensor.2 Wireldss Sensor 3~ Wirdless Sensor 4 Wireless Sensor5 Wireless_Sensor_6 ireless_Sensor 7/ Wireless_Sensoz 8-

|

0% - 5 T\ = .g;\{‘z ——1 13—

: = k.. S
reless Sensor 9 Wireles\ensor 10 Wireleks Sensok 11 Wir eé\s'_ Sensor_12- ‘]mele;L ansbr 13
e i S -
Y
\

e Q0] _SENSXFRIABEN: 4AB]

602 IL—=""1 2 Wo==" g 30 =
2 - S
ireless_Sensor=iZ_ Wireless_Sehsar_T8 i fire| c 5

== _ i sENsoRasen e nBeN e //
90 | g5 v‘)v’ < 2 K»“ g Vi 7% 5
m'\~\x\‘ — ﬁ 4 e 73/
i e Ry O R e \\ =TT
ireless_Sensor 25 Wireless_Sensor_26 ipifireiesaa - ¢ Sensor. _}9 w.rsje’;s_s,ensc_ 5/
i % /77
W | A/ f

7 Lo /
29 | Wireléss Sengprd0 | /[
72 W

i o 7 /o
oLl /7 /7

AP AR A
i OWingless Senst 47 \/}i(:e:e;;_g;ésar_ua/
/ / ¥,

/ / / /
/
7 / i
/ A VA
3 el x5 ¥/ 56 /
7 v) 4> / o / : /
IS P /cv / y: g /
reless_Sensor 49/ Wisleés Sensoy/s0 Widless Sgnsor 51 Miirelfss Sensor 52,/ Wireless_Sensor 5 Wireless_Senbr/54 | Wireles\ensor 55 | Wireless Sénsor 56
-, e 7 2\ Z R
7 y / V% v / /
Z -, / | / / /
- > o s 7 / /
' P / | / / / /
& 40 W% Al 17t Rupt 7 N /
45 /33 /59 1760 2/ 61 / 62 =/ & o
Y = = £) 2] -]

reless_Sensor 57 Wireless_Sensor.58 Wireless_Sensor 59 Wireless_Sensor 60 Wireless Sensor 61 Wireless_Sensor 62 | Wireless_Sensor_63 | Wireless_Sensor_64

11. Run the Scenario. You will obsene that as the scenario starts and MATLAB plots the graph
for the cluster that is formed currently.

Analysis:

A total of 64 sensors are placed ewenly on the grid environment and each sensor is set to have
equal initial energy.

At the end of the simulation, NetSim provides Battery Model Metrics which provides detailed

information related to energy consumption in each sensor node with respect to transmission,
reception, idle mode, sleep mode etc as shown below:

Battery model_Table agx

Batter model | Detailed View
Device Name Initial energy(mJ) Consumed energy(mJ) Remaining Energy(mJ) Transmitting energy(mJ) Receiving energy(mJ) Idle energy(mJ)
WIRELESS_SENSOR_1 5480.000000 558.318835 5921.681165 20.038487 0.000000 538.280348 ~
WIRELESS_SENSOR_2 6480.000000 556.923016 5923.076984 18593404 0.000000 538329613
WIRELESS_SENSOR_3 6480.000000 558504845 5921.495055 20.231165 0.000000 538.273780
WIRELESS_SENSOR_4 6480.000000 557.202180 5922.797820 18882420 0.000000 538319760
WIRELESS_SENSOR_5 6480.000000 556457743 5923.542257 18.111709 0.000000 538.346034
WIRELESS_SENSOR_6 6480.000000 557.853562 5922.146438 19.556793 0.000000 538.296770
WIRELESS_SENSOR_7 6480.000000 557481344 5922.518656 19.171437 0.000000 538.300907
WIRELESS_SENSOR_8 6480.000000 555.806361 5924193639 17437337 0.000000 538.369024
WIRELESS_SENSOR_9 6480.000000 557.574399 5922425601 19.267776 0.000000 538.306623
ln‘.l'IRFI FSS SENSOR 10 /480.000000 (209.0622 76 5R50.337724 35.163A491 58.5A3004 535.934502 5 i

This information can also be obtained at different points of simulation time either to log or to send to
other external tools. The battery information and the position coordinates are passed to MATLAB

periodically for clustering (number of cluster is set to 4), cluster head election and to obtain energy
consumption plots.

Cluster head election using distance alone as a parameter:

Running simulations with Clustering Method set to 1 and 2 in the clustering.m file will provide
energy consumption plots for kmeans and fuzzy c-means algorithms respectively as shown

below:
|4 Figure 1 -] x |4 Figure 1 — O X
File Edit View lnsert Tools Desktop Window Help > File Edit View Insert Tools Desktop Window Help >

DEde | k|RV0PEL- S0 O DEde | k|RV0PEL- S0 O

1000

950

1200

)

2 M
e o
e o

900

2 @ @
2 2 2
S & o

N
Energy Consumed {mJ)

Energy Consumed {

150 200
100

100
100

50

Sensor Y position U] Sensor X position Sensor Y position 0 o Sensor X position

As it is seen from the plot, there are 4 peaks in the plot corresponding to higher energy
consumption in the nodes in the center of the cluster, as they always become the cluster heads.
This is because distance is used as a parameter for electing the cluster heads.

Cluster head election using distance and remaining energy as parameters:

Running simulations with Clustering Method set to 3 and 4 in the clustering.m file will provide

energy consumption plots for kmeans and fuzzy c-means algorithms respectively as shown
below:

4 Figure 1
File Edit View Insert Tools Desktop Window Help

DEde kA UBEL B 0H =0

4 Figure 1

File Edit View Insert Tools Desktop Window Help

DEgde | M| AAROUDEL-S|0E =D

630
600

g

620

800
£ 590 = 610
3 600 5 &0
600
£ 580 5
@ 400 2 400
5 5 590
[$) (5}
o 570 >
E E’ 200 580
w w
0 % 0 570
200 200
560
150 200 550 150 200
100 150 100 150
© 100 100 &0
» 50 540 20 50
Sensor Y position 0 o Sensor X position Sensor Y position 0 o

Sensor X position

In the initial phase the plot resembles the previous one. However as the time passes, it can be
obsernved that the power is consumed by all the sensors at approximately the same rate.

There are no sharp peaks in this plot unlike the previous one because modified K-means takes
into account the power level of each sensor and thus sensors other than those in the center of the
cluster will also get a chance to be elected as the cluster head in its respective cluster.

