Create and detect a Primary User Emulation (PUE) Attack
in Cognitive Radio Networks

Software Recommended: NetSim Standard v11.0 (64-bit), Visual Studio 2015, 2017
Project Download Link: https://github.com/NetSim-TETCOS/PUEA_v11.0/archive/master.zip

Cognitive Radio (CR) is a promising technology that can alleviate the spectrum shortage problem by
enabling unlicensed users equipped with CRs to coexist with incumbent users in licensed spectrum bands
while causing no interference to incumbent communications. Spectrum sensing is one of the essential
mechanisms of CRs and its operational aspects are being investigated actively.

In a hostile environment, an attacker may modify the air interface of a CR to mimic a primary user
signal’s characteristics, thereby causing legitimate secondary users to erroneously identify the attacker as
a primary user. We coin the term primary user emulation (PUE) attack to refer to this attack. There is a
realistic possibility of PUE attacks since CRs are highly reconfigurable due to their software-based air
interface.

We create a PUE attack by adding two incumbents in the scenario in NetSim. One of the incumbents
represents a “real” primary user while the second represents a “Malicious” primary user.

Our next goal is to detect the PUEA by the secondary users. For example purposes we have set the
detection time as proportional to the distance of the secondary users from the malicious primary user.

The code given below is for an example implementation of PUE Attack.

Steps:
1) Open the Code folder inside the extracted Primary User Emulation Attack folder.

2) Go to CognitiveRadio project — Open SpectrumManager.c. Inside the SpectrumManager.c file,
the code to be modified is commented as PUE Attack code. Do the required modifications.

;gt.:».\"utl-on-é:-p-luorar - J]l X SpectrumManager.c # X
| @& | o5 ** | & CognitiveRadic - (Global Scope) -
| Search Solution Explorer (Ctr O ~
4] Selution 'NetSim' (1 project)
4 [%] CognitiveRadio
b =m References
B 5 External Dependencies

Fstruct stru_882_22 SSFOutput* fn_MetSim_CR_CPE_SSF(struct stru_8@2_22_ SSFInput* input,NETSIM_

struct stru_862_22 SSFOutput* output = (struct stru_862_22 SSFOutput®)fnpAllocateMemory (1l
unsigned int nLoop;

P+ 802 22.c double dDistance;
b [@ 802.22h int Additional_delay;
[DCE] : int Detection_time;
b ++ DSFrame.c int nflag = 0;
static FILE *fp_CR=NULL; ‘f Code for PUE Attack
b+ DSMAR.C P 3 ffpemiesto
B e Dowc double p = fn_Net5im_Utilities_GenerateRandomNo(&DEVICE(nDevId)->ulSeed[8],
b [Dsch &DEVICE(nDevId)->ulSeed[1])/NETSIM_RAND_MAX;
P *++ FCH.c if(p<(double)input->nMaxProbabilityOfFalseAlram/10@.0)

P ++ Fragmentation.c nflag = 1;
b+ Incumbent.c
b ++ OFDMA.C

P *+ PacketForward.c

/i Code for PUE Attack

388

389 if(1Fp_CR)

v¢ ¥ Propegalionhodelc 318 £p_CR=fopen("CR_Detect.txt”,"u");

b ++ SCH.c 311

b m SpectrumManager.c | 312 71 End

b SpectrumManager.h 313

P+ UCDc 314 -] for{nLoop=8;nLoop<input->nIncumbentCount;nLoop++)

P+ USFramec 315

B+ USMAP.c 316 = if(input->pstrulncumbent[nLoop]->nIncumbentStatus == IncumbentStatus_OPERATIOAL)
317 be

318 dDistance = fn_NetSim_Utilities CalculateDistance(DEVICE POSITION(nDevId),input->

https://github.com/NetSim-TETCOS/PUEA_v11.0/archive/master.zip

Solution Explorer B socctrumManagernc # X
@ o5 a "B CognitieRadio -] (Global Scope) %
Search Solution Explorer (Ctr O+ 302 double p = fn_Netsim Utilities_GenerateRandomdo(8DEVICE(nDevId)->ulsesd[e],
303 &DEVICE(nDevTd)->ulSeed[1])/NETSIM_RAND_HAX;
a1 Solution ‘NetSim' (1 project) 304 1 (p<(double) input->nHaxProbabilityOfFalseAlran/169.8)
4[] CognitiveRadic & e
b =B References 306
b 1 Bxternal Dependencies 307 /4 Code for PUE Attack
b o B0222c 308
b [80222 309 1F(1Fp_CR)
b 310 #p_CR=fopen("CR_Detect. txt”,"u");
P+ DSFramec 2 s
b+ DSMAP.C by e
b *+ DSxe 3 for{nLoog=0;nLoop<input->nIncumbentCount;nLoop++)
b R DSch o {
b+ FCH 36 | $#(input->pstrulncumbent[nLoop]->nIncurbentStatus == IncumbentStatus_OPERATIOAL)
b+ Fragmentation.c 317 <
b ++ Incumbent.c 318 dDistance = fn_NetSim_Utilities_CalculsteDistance(DEVICE_POSITION(nDevId),input-spstrulncumbent[nloop]->position);
b *+ OFDMAc 319 @ if(eDistance <= input->pstrulncumbent [nloop]->dKespOutDistance)
b *4 PacketForward.c 322 { s
b #+ PropagationModel.c &
Lol | 323 | 4} wesswewess PUE Attack project code start
a2 71 dbistance is the distance between CR CPE ond incumbent and is got From above
b [A SpectrumManagerh 325 Additional_delay = dDistance / 18;
b+ UCDc EFCIN 7/ Ve have 1y set 18 as the velocity of the signal based on which
b+ USFramec 327 /1 the additional delay is got. If you incresse this you will see a lower
b s USMAP.c 328 /# delay and vice versa
320
330 Detection_time = pstruEventDetsils->dEventTime + Adaitional_delay;
331 fprintf(fp_CR,"Tine to detect incumbent %d by CPEXd is %d microseconds \n",nLoop+1,nDevId,Detection_time);
332 FFLush(Fp_CR);
333
334 71 Eorsinvias Project code end
335
336 ™

3) Now Rebuild Cognitive Radio project.

4) Copy the libCognitiveRadio.dll from DLL folder and replace it in bin path i.e “C:\Program
File\NetSim Standard\bin”.

5) Now create your scenario in NetSim or you can open the Configuration.netsim file that is attached
to this zip file.

Bl N
7 Base_Sta\t'Qn_'l
2 = ~
Y
7
\
4 N
%
71 ™~

e
S ' ~ AppI_CBR
CR_CPE_2 CRICPE 3

6) In CR-Base_Station_1/INTERFACE_1 (COGNITIVE_RADIO) Incumbent properties, Set the
Incumbent count as 2
7) In the Incumbent properties, you can set the values as shown below:
In malicious (Incumbent_1), Operational _Time(s) — 4, Operational interval — 10
In Incumbent (Incumbent_2), Operational _Time(s) — 9, Operational interval — 9
Change the value of Keep Distance = 500m in both incumbent and ensure that the distance between
the CPE and Incumbent is <500. This ensures that the incumbent is detected. If the incumbent is
beyond the keep out distance then it is not detected.

The timing diagram is as follows:

Malicious --- Os to 10s (OFF), 10s to 14s (ON), 14s to 24s (OFF), 24s to 28s (ON) ... and so on
Incumbent --- Os to 9 s (OFF), 9s to 18s (ON), 18s to 27s (OFF), 27s to 36s (ON) ... and so on

8) In physical layer, change the IFQP_Bitmap to 1000000000000000

!',}: Cr_Bs O X
Cr Bs ¥ DATALINE_LAYER

OMN_Duration(s) ‘ 4 | &

ra T
GENERAL OFF_Duration(s) ‘ 1p ‘
119
: ITr

INTERFACE 1 (COGNITIVE_RADIC) Keepout:Distance(m} ‘ 3o ‘

Oper_Distribution ‘ Censtant hd ‘

]
INCUMBENTZ2

Name Incumbent 2

D 2

X_Co_Ordinate ‘ 50 ‘

Y_Co Ordinate ‘ 100 ‘

Z_Co_Ordinate 0

Oper_Freq_Start{MHz) ‘ 54 ‘

Oper_Freq_End(MHz) ‘ a0 |

o T

OM_Duration(s) ‘ el ‘

OFF_Duration(s) ‘ a ‘

Keepout_Distance{m) ‘ 200 |

» PHYSICAL LAYER
oK Reset

9) Now run the simulation 50 Sec.
10) You can see the delay in the CR_Detect.txt file inside bin folder. This additional delay has been
set by the following code,
Additional_delay = dDistance / 10;
(You can also change the values as 10/100/1000 and analyse different variation in delay.)

A file “CR_Detect.txt” will be created in the bin folder with the following contents:

| CR_Detect.tut - Notepad . O >

File Edit Format View Help
Fime to detect incumbent
Time to detect incumbent
Time to detect incumbent
Time to detect incumbent
Time to detect incumbent
Time to detect incumbent
Time to detect incumbent
Time to detect incumbent

by CPE2 is 9129741 microseconds
by CPE3 is 9129761 microseconds
by CPE2 is 24849741 microseconds
by CPE3 is 24849761 microseconds
by CPE2 is 38129741 microseconds
by CPE3 is 38129761 microseconds
by CPE2 is 45889741 microseconds
by CPE3 is 45889761 microseconds

Pt Pod = B2 2 2 R R

This is a simple implementation of creating and detecting a PUE Attack by making modifications to
primary user detection in CR.

