
 © TETCOS LLP. All rights reserved

Ver 13.0 Page 1 of 281

NetSim®
Accelerate Network R & D

User Manual

A Network Simulation & Emulation Software

By

© TETCOS LLP. All rights reserved

Ver 13.0 Page 2 of 281

The information contained in this document represents the current view of TETCOS LLP on

the issues discussed as of the date of publication. Because TETCOS LLP must respond to

changing market conditions, it should not be interpreted to be a commitment on the part of

TETCOS LLP, and TETCOS LLP cannot guarantee the accuracy of any information presented

after the date of publication.

This manual is for informational purposes only.

The publisher has taken care in the preparation of this document but makes no expressed or

implied warranty of any kind and assumes no responsibility for errors or omissions. No liability

is assumed for incidental or consequential damages in connection with or arising out of the

use of the information contained herein.

Warning! DO NOT COPY

Copyright in the whole and every part of this manual belongs to TETCOS LLP and may not be

used, sold, transferred, copied or reproduced in whole or in part in any manner or in any media

to any person, without the prior written consent of TETCOS LLP. If you use this manual you

do so at your own risk and on the understanding that TETCOS LLP shall not be liable for any

loss or damage of any kind.

TETCOS LLP may have patents, patent applications, trademarks, copyrights, or other

intellectual property rights covering subject matter in this document. Except as expressly

provided in any written license agreement from TETCOS LLP, the furnishing of this document

does not give you any license to these patents, trademarks, copyrights, or other intellectual

property. Unless otherwise noted, the example companies, organizations, products, domain

names, e-mail addresses, logos, people, places, and events depicted herein are fictitious, and

no association with any real company, organization, product, domain name, email address,

logo, person, place, or event is intended or should be inferred.

Rev 13.0 (V), March 2021, TETCOS LLP. All rights reserved.

All trademarks are property of their respective owner.

Contact us at

TETCOS LLP

214, 39th A Cross, 7th Main, 5th Block Jayanagar,

Bangalore - 560 041, Karnataka, INDIA.

Phone: +91 80 26630624

E-Mail: sales@tetcos.com

Visit: www.tetcos.com

mailto:sales@tetcos.com
http://www.tetcos.com/

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 3 of 281

Table of Contents

1 NetSim – Introduction .. 10

1.1 Introduction to modeling and simulation of networks ... 10

1.2 Versions of NetSim – Academic, Standard & Pro .. 10

1.3 Components (Technology Libraries) in Pro and Standard versions 12

2 Installation and License Server Set-up ... 14

2.1 System Requirements ... 14

2.1.1 NetSim Client (installs locally) .. 14

2.1.2 License Server (for running Host-ID/ Dongle locked floating licenses, not
applicable for node locked licenses) .. 14

2.2 Installing NetSim ... 14

2.2.1 Silent installation .. 38

2.2.2 Import Compatible Workspaces ... 39

2.3 Setting up License Server ... 41

2.3.1 Installing NetSim RLM Dongle Driver Software (Dongle Based Licenses) 41

2.3.2 Running NetSim License Server .. 43

2.3.3 Running NetSim Software .. 44

3 NetSim GUI .. 45

3.1 Menus in the NetSim Home Screen ... 45

3.1.1 Creating “New” Simulations .. 49

3.1.2 Environment Settings ... 50

3.2 Modeling and Simulating a simple network .. 53

3.2.1 Creating a Network scenario .. 53

3.2.2 Configuring devices and links in the scenario ... 55

3.2.3 Display Settings ... 56

3.2.4 Copy/Paste .. 57

3.2.5 Modeling Application Traffic ... 59

3.2.6 Logging Packet/ Event Trace ... 60

3.2.7 Run Simulation ... 60

3.2.8 ACL Configuration .. 61

3.3 Saving & Opening experiments and Printing results .. 65

3.3.1 Opening Saved Experiments: ... 65

3.3.2 Saving an Experiment .. 66

3.4 NetSim Keyboard Shortcuts .. 66

3.5 NetSim Interactive Simulation .. 67

© TETCOS LLP. All rights reserved

Ver 13.0 Page 4 of 281

3.5.1 Simulation specific (Not applicable for file based interactive simulation) ... 70

3.5.2 Ping Command .. 70

3.5.3 Route Commands .. 72

4 Workspaces and Experiments ... 74

4.1 What is an Experiment and what is a workspace in NetSim? 74

4.2 How does a user create and save an experiment in workspace? 75

4.3 Should each user have a workspace? ... 80

4.4 How does a user export an experiment? ... 80

4.5 How does a user delete an Experiment in a workspace? 81

4.6 How does a user create a new workspace? .. 81

4.7 How does a user switch between workspaces? ... 83

4.8 How does a user export a workspace? .. 84

4.9 How does a user import a workspace? .. 88

4.10 How does a user import an experiment? ... 89

4.11 How does a user delete a workspace? .. 90

4.12 How does a user open and modify source codes? .. 91

4.13 Can I use NetSim's default code for my experiments? ... 92

5 Simulating different networks in NetSim .. 93

5.1 Internetworks ... 94

5.1.1 Internetworks Examples ... 94

5.1.2 Internetwork Documentation .. 94

5.2 Legacy Networks ... 94

5.2.1 Legacy Networks Examples ... 95

5.2.2 Legacy Network Documentation ... 95

5.3 Cellular Networks .. 95

5.3.1 Cellular Networks Examples .. 96

5.3.2 Cellular Networks Documentation .. 96

5.4 Advanced Routing ... 96

5.4.1 Advanced Routing Examples ... 96

5.4.2 Advanced Routing Documentation ... 97

5.5 MANETs .. 97

5.5.1 MANET Examples .. 97

5.5.2 MANET Documentation ... 97

5.6 Wireless Sensor Networks (WSN) ... 98

5.6.1 Wireless Sensor Networks (WSN) Examples ... 98

5.6.2 WSN Library Documentation .. 98

5.7 Internet of Things .. 99

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 5 of 281

5.7.1 Internet of Things (IOT) Examples ... 99

5.7.2 IOT Library Documentation .. 99

5.8 Software Defined Networks (SDN) .. 99

5.8.1 Software Defined Networks (SDN) Examples ... 100

5.8.2 SDN Library Documentation ... 100

5.9 Cognitive Radio ... 100

5.9.1 Cognitive Radio Examples ... 101

5.9.2 Cognitive Radio Library Documentation ... 101

5.10 LTE ... 101

5.10.1 LTE Examples .. 101

5.10.2 LTE Library Documentation .. 102

5.11 5G NR ... 102

5.11.1 5G NR Examples ... 102

5.11.2 5G NR Library Documentation ... 102

5.12 VANETs .. 103

5.12.1 VANET Examples .. 103

5.12.2 VANET Library Documentation .. 103

5.13 Satellite Communication .. 103

5.13.1 Satellite Communication Examples .. 104

5.13.2 Satellite Communication Documentation .. 104

5.14 TDMA Radio Networks .. 104

5.14.1 TDMA Radio Network Examples .. 104

5.14.2 TDMA Radio Network Library Documentation .. 105

6 Applications (Network Traffic Generator) ... 106

6.1 Common properties for all applications .. 107

6.2 Application Types .. 110

6.3 Network Traffic Generation Rate for Different Applications 120

6.4 Priority and QoS of Applications .. 122

6.5 Capture real applications and simulate in NetSim .. 122

6.6 Modelling Poisson arrivals in NetSim ... 123

6.7 Application Configuration – Special Conditions .. 124

7 Running Simulation via Command Line Interface .. 125

7.1 Running NetSim via CLI .. 125

7.1.1 Running in CLI Mode when using floating licenses 126

7.1.2 Running in CLI Mode when using node-locked or cloud licenses 127

7.1.3 Quick edit for copy pastes in CLI mode .. 128

7.2 Understanding the Configuration.netsim file .. 129

© TETCOS LLP. All rights reserved

Ver 13.0 Page 6 of 281

7.2.1 How to use Visual Studio to edit the Configuration file? 129

7.2.2 Sections of Configuration file .. 130

7.2.3 Sample Configuration file ... 131

7.2.4 Configuration.xsd file .. 131

8 Outputs: Results, Plots and Data Files ... 132

8.1 Result Window and Plots Windows ... 132

8.1.1 Application and Link Throughput Plots ... 132

8.1.2 Buffer Occupancy Plot ... 133

8.1.3 TCP Congestion Window Plot .. 135

8.1.4 Notes on plots .. 136

8.1.5 Link metrics .. 136

8.1.6 Queue Metrics .. 137

8.1.7 Protocol Metrics ... 138

8.1.8 Device Metrics ... 138

8.1.9 Cellular Metrics .. 138

8.1.10 Channel metrics ... 139

8.1.11 Sensor metrics ... 139

8.1.12 Battery Model ... 140

8.1.13 CR metrics ... 141

8.1.14 Application Metrics ... 142

8.1.15 IP Metrics ... 143

8.1.16 Advanced Metrics .. 143

8.1.17 Notes on metrics .. 144

8.1.18 The different results files written at the end of simulation 144

8.2 Export to .csv... 145

8.3 Packet Animation .. 147

8.3.1 Packet animation Table .. 148

8.3.2 Packet animation – Display Settings .. 149

8.3.3 Example on how to use NetSim packet animation feature: 149

8.3.4 How to record and save Packet animation as a Video file 152

8.4 Packet Trace ... 154

8.4.1 How to set filters to NetSim trace file .. 155

8.4.2 Observing packet flow in the Network through packet trace file 156

8.4.3 Analysing Packet Trace using Pivot Tables .. 157

8.4.4 Packet Transmitted / Received Analysis .. 160

8.4.5 Delay analysis .. 163

8.4.6 Throughput analysis ... 168

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 7 of 281

8.4.7 Plotting with Pivot Charts ... 169

8.4.8 Packet Trace Fields ... 172

8.5 Event Trace (only in Standard/Pro Version) ... 174

8.5.1 NetSim Network Stack and Discrete Event Simulation working 174

8.5.2 Event Trace.. 175

8.5.3 Calculation of Delay and Application throughput from event trace 177

8.6 Packet Capture & analysis using Wireshark .. 185

8.6.1 Enabling Wireshark Capture in a node for packet capture 185

8.6.2 Viewing captured packets .. 186

8.6.3 Filtering captured packets .. 187

8.6.4 Analyzing packets in Wireshark.. 187

8.6.5 Window Scaling ... 188

9 Writing Custom Code in NetSim .. 192

9.1 Writing your own code ... 192

9.1.1 Microsoft Visual Studio 2019 Installation Settings 192

9.1.2 Modifying code ... 193

9.1.3 Building Dlls ... 195

9.1.4 Running Simulation .. 196

9.1.5 Source Code Dependencies .. 197

9.1.6 Enabling Additional Security Checks .. 198

9.2 Implementing your code - Examples .. 200

9.2.1 Hello World Program .. 200

9.2.2 Introducing Node Failure in MANET ... 201

9.3 Debugging your code .. 203

9.3.1 Via GUI .. 203

9.3.2 Via CLI ... 211

9.3.3 Co-relating with Event Trace .. 213

9.3.4 Viewing & Accessing variables ... 216

9.3.5 Print to console window in NetSim ... 223

9.4 Creating a new packet and adding a new event in NetSim 224

9.5 NetSim API’s ... 230

10 Advanced Features .. 233

10.1 Random Number Generator and Seed Values .. 233

10.2 Interfacing MATLAB with NetSim (Std/Pro versions) ... 233

10.2.1 Implement Weibull Distribution of MATLAB without using .m file 235

10.2.2 Debug and understand communication between NetSim and MATLAB . 244

© TETCOS LLP. All rights reserved

Ver 13.0 Page 8 of 281

10.2.3 Implement Weibull Distribution of MATLAB in NetSim using .m file: 247

10.2.4 Plot a histogram in MATLAB per a Weibull distribution (using .m file)..... 249

10.3 Interfacing tail with NetSim .. 253

10.4 Adding Custom Performance Metrics .. 257

10.5 Simulation Time and its relation to Real Time (Wall clock) 261

10.6 Adding Custom Plots ... 262

10.6.1 Plotting SNR for each UE-gNB pair in 5G NR .. 262

10.7 Environment Variables in NetSim .. 268

10.8 Best practices for running large scale simulations ... 269

10.9 Batch experimentation and automated simulations .. 270

11 NetSim Emulator... 271

11.1 Introduction ... 271

11.1.1 Simulating and Analyzing Emulation Examples 271

12 Troubleshooting in NetSim .. 272

12.1 CLI mode ... 272

12.2 I/O warning displayed in CLI mode .. 272

12.2.1 Connection refused at server<-111> error displayed 272

12.2.2 Unable to load license config dll(126) ... 273

12.2.3 “Error in getting License” error in CLI mode ... 273

12.2.4 Unable to load license config dll displayed ... 274

12.3 Configuration.netsim.. 275

12.3.1 Invalid attribute in configuration file attributes ... 275

12.3.2 Error in tags in configuration file attributes ... 275

12.3.3 Error lines in configuration.xsd in the Configuration file 276

12.4 Simulation terminates and “NetSim Backend has stopped working” displayed .. 277

12.5 Monitor screen resolution is less than 1024X768 ... 277

12.6 Licensing ... 278

12.6.1 No License for product (-1) error .. 278

12.7 Troubleshooting VANET simulations that interface with SUMO 278

12.7.1 Guide for Sumo .. 278

12.7.2 Guide for Python .. 279

12.7.3 VANET Simulation ... 280

12.7.4 Python .. 280

12.7.5 NetSim Core Protocol Library ... 280

13 NetSim Videos .. 281

14 R&D projects in NetSim ... 281

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 9 of 281

15 NetSim FAQ/Knowledgebase ... 281

© TETCOS LLP. All rights reserved

Ver 13.0 Page 10 of 281

1 NetSim – Introduction

1.1 Introduction to modeling and simulation of networks

A network simulator enables users to virtually create a network comprising of devices, links,

applications etc., and study the behavior and performance of the Network.

Some example applications of network simulators are:

▪ Protocol performance analysis

▪ Application modeling and analysis

▪ Network design and planning

▪ Research and development of new networking technologies

▪ Test and Verification

The typical steps followed when simulating any network are:

▪ Building the model: Create a network with devices, links, applications etc.

▪ Running the simulation: Run the discrete event simulation (DES) and log different

performance metrics.

▪ Visualizing the simulation: Use the packet animator to view the flow of packets.

▪ Analyzing the results: Examine output performance metrics such as throughput,

delay, loss etc. at multiple levels - network, link, queue, application etc.

▪ Developing your own protocol / algorithm: Extend existing algorithms by

modifying the simulator’s source C code.

1.2 Versions of NetSim – Academic, Standard & Pro

NetSim is used by people from different areas such as industry, defense, and academics to

design, simulate, analyze and verify the performance of different networks.

NetSim comes in three versions: Academic, Standard and Pro. The academic version is used

for lab experimentation and teaching. The standard version is used for R & D at educations

institutions while NetSim Pro version addresses the needs of defense and industry. The

standard and pro versions are available as components in NetSim v13.0 from which users can

choose and assemble. A comparison of the features in the three versions are tabulated below

Table 1-1.

http://tetcos.com/netsim_comp.html

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 11 of 281

Features Academic Standard Pro

Technology Coverage

Internetworks Y Y Y

Legacy & Cellular Networks Y Y Y

Mobile Adhoc networks Y Y Y

Software Defined Networks Y Y Y

Wireless Sensor Networks Y Y Y

Internet of Things Y Y Y

Cognitive Radio Networks Y Y Y

LTE Networks Y Y Y

5G NR N Y Y

VANET N Y Y

Satellite Communication Networks N Y Y
Performance Reporting
Performance metrics available for Network and
Sub-networks

Y Y Y

Packet Animator
Used to animate the packet flow in network

Y Y Y

Packet Trace
Available in tab ordered .txt format for easy
post processing

Y Y Y

Event Trace
Available in tab ordered .txt format for easy
post processing

N Y Y

Protocol Library Source Codes with
Documentation
Protocol C source codes and appropriate
header files with extensive documentation

N Y Y

External Interfacing
Interfacing with SUMO

N
Y Y MATLAB N

Wireshark Y

Integrated debugging
Users can write their own code, link their code
to NetSim and debug using Visual Studio

N Y Y

Plots
Allows users to plot the value of a parameter
over simulation time

Y Y Y

Simulation Scale 100 Nodes 500 Nodes
~ 10,0000
Nodes

Custom Coding and Modeling Support N N Y
Emulator (Add on)
Connect to real hardware running live
application

N Y Y

TDMA Radio Networks (Add On)
TDMA and DTDMA

N N Y

Target Users and Segment
Educational
(Lab
Experimentation)

Educational
(Research)

Commercial
(Industrial
and
Defense)

Table 1-1: A comparison of the features of NetSim Academic, Standard and Pro versions

© TETCOS LLP. All rights reserved

Ver 13.0 Page 12 of 281

1.3 Components (Technology Libraries) in Pro and

Standard versions

Users can choose and assemble components (technology libraries) in NetSim Standard and

Pro versions as shown Table 1-2.

Component No Networks / Protocols Supported
Reference
International
Standards

Component 1
(Base. Required
for all
components)

Internetworks
Ethernet - Fast & Gigabit, ARP, Routing - RIP, OSPF,
WLAN - 802.11 a / b / g /p / n / ac & e,
Propagation models - HATA Urban / Suburban,
COST 231 HATA urban / Suburban, Indoor Home /
Office / Factory, Friis Free Space, Log Distance.
Shadowing - Constant, Lognormal. Fading - Rayleigh,
Nakagami
IPv4, Firewalls, Queuing - Round Robin, FIFO,
Priority, WFQ,
TCP, - Old Tahoe, Tahoe, Reno, New Reno, BIC,
CUBIC, Window Scaling, SACK
UDP
Common Modules
Traffic Generator: Voice, Video, FTP, Database,
HTTP, Email, P2P, Custom, CBR.
Virtual Network Stack,
Simulation Kernel,
Command Line Interface
Command Line Interpreter
Metrics Engine with packet and event trace
Plot Generator
Packet Animator,
Packet Encryption
External Interfaces: MATLAB, Wireshark

IEEE 802.3

IEEE 802.11
a/b/g/n/ac/p/e

RFCs 2453, 2328,
826, 793, 2001 and
768

Component 2

Legacy & Cellular Networks
Aloha – (Pure & Slotted)
GSM
CDMA

3GPP, ETSI, IMT-MC,
IS-95 A/B, IxRTT, 1x-
EV-Do, 3xRTT

Component 3

Advanced Routing
Multicast Routing - IGMP, PIM, Access Control Lists,
Detailed Layer 3 switch mode, Virtual LAN (VLAN),
Public IP, Network Address Translation (NAT)

IETF RFC’s 1771 &
3121

Component 4
Mobile Adhoc Networks
MANET - DSR, AODV, OLSR, ZRP

IETF RFC 4728, 3561,
3626

Component 5

Software Defined Network (SDN)

Based on Open Flow
v1.3

Component 6
(Component 4
required)

Internet of things (IOT) with RPL protocol
Wireless Sensor Networks (WSN)

IEEE 802.15.4 MAC,
MANET in L3
RFC 6550

Component 7
Cognitive Radio Networks
WRAN

IEEE 802.22

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 13 of 281

Component 8 Long-Term Evolution Networks: LTE 3GPP

Component 9
(Component 4
required)

VANETs: IEEE 1609 WAVE, Basic Safety Message
(BSM) protocol per J2735 DSRC, Interface with
SUMO for road traffic simulation

IEEE 1609

Component 10
(Components 3
and 8 required)

5G NR :3GPP 38 Series. Full Stack covering SDAP,
PDCP, RLC – UM, TM, MAC, PHY – FR1 and FR2,
mmWave propagation.

3GPP 38.xxx

Component 11
(Component 3
required)

Satellite Communication Networks: Geo
Stationary Satellite. Forward link TDMA in Ku Band
and Return link MF-TDMA in Ka band per DVB S2.
Markov Loo Fading model. Device models for
Satellite, Satellite Gateway, and Satellite User
Terminals

DVB S2

TDMA Radio
Networks Add
on (Pro version
only)

TDMA Radio Networks
TDMA Link 16, Dynamic TDMA, Frequencies – HF,
VHF, UHF Bands,
Frequency Hopping

Network
Emulator
Add On

Network Emulator
Connect real hardware running live applications to
NetSim Simulator. IP based, data plane, flow through
emulator.

Table 1-2: Different Components (Technology Libraries) in Pro and Standard versions of NetSim

© TETCOS LLP. All rights reserved

Ver 13.0 Page 14 of 281

2 Installation and License Server Set-up

2.1 System Requirements

2.1.1 NetSim Client (installs locally)

▪ Hardware: i3 equivalent or above, RAM: 4 GB (Min). 8GB Recommended.

▪ Monitor resolution: Min - 1024*768, Max - 1920*1080. Optional Scale and layout

setting: 100%

▪ Operating system: 64 bit. Win 8 or Win 10, Language English

▪ Software: MS Office, Adobe Reader

▪ Development Tools: Visual Studio

o NetSim v8 / v8.1 / v8.3 / v9 / v9.1: Microsoft Visual Studio 2010 (or higher)

o NetSim v10 / v11 / v11.1: Microsoft Visual Studio 2015 (or higher)

o NetSim v12 / v12.1 / v12.2 / v13.0: Microsoft Visual Studio 2019 (or higher)

Visual Studio Community edition (or higher) is required for writing and debugging custom

code.

2.1.2 License Server (for running Host-ID/ Dongle locked floating licenses, not

applicable for node locked licenses)

Any one system will have to be made as the license server, and it is to this PC that the

license is locked, either via its MAC ID or via a dongle. The dongle is a USB device which

controls the licensing. The system (hardware / OS) requirements is same as that applicable

for NetSim clients. USB Port is required for connecting and running the dongle. Client

systems should be able to communicate with license server through the network.

2.2 Installing NetSim

Install the 32-bit or 64-bit build of NetSim depending on your PC platform. Based on the

NetSim version under installation, the version type being displayed in the following window will

change.

For example, you will see NetSim_Standard_13_0_14_HW_64bit.exe for a Standard

version install. Double click on the setup file. Click on Yes button to install the software.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 15 of 281

Figure 2-1: User Account Control message window appears and select Yes button.

Setup prepares the installation wizard and software installation begins with a Welcome

Screen. Click on Next button to continue with the installation.

Figure 2-2: Select Next button to continue with the installation

License agreement will be displayed. Read the agreement carefully, scroll down to read the

complete license agreement. Click on I Agree button else quit the setup by clicking Cancel

button.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 16 of 281

Figure 2-3: Select I Agree button

If you agree with the license agreement, you will be prompted to select either one of the

installation options, Express (Single-click installation) or Custom (Step-by-Step installation).

Express Installation will install the third-party tools silently along with NetSim without displaying

any prompts for the user.

Custom Installation is a step-by-step approach in which a user will be prompted to carry out

the installation process and the same applies to the installation of the third-party tools which

happens alongside with NetSim.

Both the installation methods are explained below:

Choose the Express (Single click) option and click on the Install button.

Figure 2-4: Select Express (Single click) radio button and Click on install

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 17 of 281

NetSim installation starts and users can see that the third-party tools are getting installed one

by one silently.

Figure 2-5: Wireshark is being installed Silently.

Figure 2-6: Python is being installed Silently.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 18 of 281

Figure 2-7: Sumo is being installed Silently.

After the third-party installations, NetSim installation further proceeds. Once it is completed,

NetSim complete Setup wizard appears as shown below. Click on Finish button to complete

the installation process of NetSim.

Figure 2-8: Select Finish button to complete the installation process of NetSim.

Otherwise, Choose the Custom (Step-by-step) option and click on the Install button.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 19 of 281

Figure 2-9: Select Custom (Step-by-Step) radio button and Click on install.

Now the user will be prompted to select the components to be installed. The list of components

is available for selection and assembly only in the Standard and Pro versions of NetSim.

NetSim Academic version is available as a single package.

Note: In Standard and Pro Versions of NetSim, the Choose Components screen will display only those components

for which the licenses are obtained by the user. Also, Network Emulator and Real Time Protocol are available as

Add-On along with NetSim.

Figure 2-10: list of components is available for selection and assembly only in the Standard and Pro
versions

Note: Select all the supporting applications for complete installation of the software as shown below:

Click on the Next button.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 20 of 281

Figure 2-11: list of third-party tools

Note: Sumo and Python comes only as a part of Standard and Pro Version Install.

In the next screen, you will be requested to enter the installation path. Select the path in which

the software needs to be installed and click on Next button.

Figure 2-12: NetSim installation directory path

Note: In the case you are installing 32bit NetSim in a 64-bit machine, ensure that the path is <OS installed drive>

C:/Program Files (x86)/NetSim/Standard_v13_0.

In the next screen, you will be requested to enter the Start Menu folder name. By default, it

shows NetSim Standard for Standard version install of NetSim. Click on the Install button to

start the installation.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 21 of 281

Figure 2-13: Start Menu folder name

The installation process begins.

Figure 2-14: NetSim Standard v13.0 being installed.

After the installation of required NetSim files, the installation of third-party tools begins.

For NetSim Academic Version, Adobe Flash Player, WinPcap, Wireshark will be installed.

For NetSim Standard and Pro Versions, along with WinPcap and Wireshark installation,

Python installation will start automatically. (If not deselected during 3rd party software

selection)

Click on Next button to start Wireshark installation.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 22 of 281

Figure 2-15: Select Next button to start Wireshark installation

Wireshark License Agreement appears. Click on I Agree button.

Figure 2-16: Wireshark License Agreement window

Make sure that all the components are selected and click on Next button.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 23 of 281

Figure 2-17: Choose Wireshark features

Click on Next button.

Figure 2-18: Select Next button

Select the path in which Wireshark needs to be installed and click on Next button.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 24 of 281

Figure 2-19: Wireshark installation directory path

Select Install Npcap 0.995 and click on Next button.

Figure 2-20: Select Install Npcap 0.995 in Wireshark window

Select Install USBPcap 1.3.0.0 and click on Install button.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 25 of 281

Figure 2-21: Select Install USBPcap 1.3.0.0 in Wireshark window

The installation process begins.

Figure 2-22: Wireshark installation process begins

Npcap License Agreement window appears. Click on I Agree button.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 26 of 281

Figure 2-23: Npcap License Agreement window

Installation Options window appears. Click on Install button.

Figure 2-24: Select Install options

Once the installation is completed successfully, click on Next button.

Figure 2-25: Select Next button

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 27 of 281

You will get the Npcap Setup Finished window. Click on Finish button.

Figure 2-26: Select Finish button to complete Npcap

USBPcap Driver License Agreement window appears. Click on I accept the terms of the

License Agreement check box and click on Next button.

Figure 2-27: USBPcap Driver License Agreement window

USBPcap CMD License Agreement window appears. Click on I accept the terms of the

License Agreement check box and click on Next button.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 28 of 281

Figure 2-28: USBPcap CMD License Agreement window

USBPcap Setup Installation window appears. Click on Next button.

Figure 2-29: USBPcap Setup Installation window

Select the path in which USBPcap needs to be installed and click on Install button.

Figure 2-30: USBPcap installation path

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 29 of 281

Once the installation is completed successfully, click on Close button.

Figure 2-31: Installation is completed

The Installation Complete dialog box appears once the installation process is completed

successfully. Click on the Next button.

Figure 2-32: Installation Complete dialog box and select next button

You will get the Wireshark Completing Setup window. Select the option I want to manually

reboot later and Click on Finish button.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 30 of 281

Figure 2-33: Select the option I want to manually reboot later and Click on Finish button

NetSim Standard Setup Installation proceeds further.

Figure 2-34: Setup Installation proceeds

Note: During the installation of NetSim Academic version, the supporting software installed is WinPcap.

SUMO Set Up installation wizard appears. Click on Next button to continue with Sumo

installation.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 31 of 281

Figure 2-35: SUMO Set Up installation wizard

SUMO License Agreement window appears. Click on I accept the terms in the License

Agreement checkbox and click on Next button.

Figure 2-36: SUMO License Agreement window

Select the path in which SUMO needs to be installed and click on Next button.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 32 of 281

Figure 2-37: SUMO installation directory path

SUMO Install Set Up window appears. Click on Install button.

Figure 2-38: SUMO Install Set Up window

SUMO Installation begins.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 33 of 281

Figure 2-39: SUMO Installation begins

Once the installation is completed, click on the Finish button.

Figure 2-40: Select Finish button

And then, Install Python 3.7.4 (64-bit) window appears. To start Python software installation,

click on Install Now option.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 34 of 281

Figure 2-41: Install Python 3.7.4 (64-bit) window

Python installation begins.

Figure 2-42: Python installation

A Setup was successful message will be displayed. Click on Close button.

Figure 2-43: Select Close Install Python 3.7.4 (64-bit)

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 35 of 281

This will take you to the pywin 32-224 installation wizard. To install Pywin32, Click on Next

button.

Figure 2-44: pywin 32-224 installation wizard window

Select the Python directory and Click on Next button.

Figure 2-45: Python directory path

The Setup is ready to install. Click on Next button.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 36 of 281

Figure 2-46: Select Next button

Pywin32 installation begins.

Figure 2-47: Pywin32 installation begins

Once Pywin installation is complete, click on Finish button.

Figure 2-48: Pywin installation to Finish button

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 37 of 281

This completes the Installation of python software. NetSim complete Setup wizard appears as

shown below. Click on Finish button to complete the installation process of NetSim.

Figure 2-49: NetSim complete Setup wizard

After this, to run NetSim, double click on the NetSim icon present in the desktop or right click

and choose Run as administrator option. A NetSim License Server Information screen

appears to start with NetSim.

Figure 2-50: Enter NetSim License Server IP Address

Enter the NetSim License Server IP Address, i.e. the system in which the License files are

present and the rlm.exe file is running. (To set up NetSim License Server - Refer to Section

2.3.1 – Installing NetSim RLM Dongle Driver Software (Dongle Based Licenses).) Click on OK

button. Once this is done, NetSim Home screen will appear.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 38 of 281

2.2.1 Silent installation

Steps for silent installation in NetSim are as follows.

1. For example, let us take the NetSim_Standard_13_0_14_HW_64bit.exe setup. Right

click on NetSim Standard 64-bit setup → Go to properties and copy the Location as

shown below.

Figure 2-51: NetSim Standard 64-bit setup location

2. Open command prompt and paste the copied location as shown below.

Figure 2-52: Enter setup location in command prompt

3. Run/Execute Command with the following parameters:

NetSim_Standard_13_0_14_HW_64bit.exe/S /silent=1

><setup location/S<space>/silent=1

i. silent=1: It will install NetSim and third-party tools silently.

ii. /S: It will Install NetSim itself silently.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 39 of 281

Figure 2-53: Silent installation command in command prompt

4. Press the Enter key. The following User Account Control message window appears.

Click on Yes button to begin silent installation of NetSim.

 Figure 2-54: User Account Control message window appears and select Yes

Note: Complete installation of NetSim may take up to 2 or 3 minutes.

2.2.2 Import Compatible Workspaces

After successful installation, NetSim automatically detects if any workspaces (of prior

versions/installations) are present. If yes, NetSim opens a window named, “Import Compatible

workspaces”, via which users can import these workspaces into new version of NetSim.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 40 of 281

Figure 2-55: Import Compatible Workspaces window after installation.

Check/Uncheck suitably and click on Proceed to import compatible workspaces into newer

version of NetSim.

A default workspace will be created and set as current workspace if none of the compatible

workspace are selected and clicked on Proceed.

The following window appears if the current workspace is deleted or removed after re-

installation of NetSim.

Figure 2-56: Relocate the workspace/Remove the workspace/Ignore

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 41 of 281

The “Relocate the workspace” option will allow the user to select a new location for the

workspace which was removed/ deleted. User can also ignore the message by selecting

“Ignore” option and clicking on OK button.

2.3 Setting up License Server

2.3.1 Installing NetSim RLM Dongle Driver Software (Dongle Based Licenses)

This section guides you to install the RLMDongle Driver software from the CD-ROM.

1. Insert the CD-ROM disc in the CD drive.

2. Double click on My Computer and access the CD Drive.

3. Double click on Driver_Software folder.

4. Double click on HASPUserSetup.exe

Each prompt displayed during the process tells you what it is about to do and prompts to

either continue or Exit.

Setup prepares the installation wizard and the driver software installation begins with a

Welcome Screen. Click on Next button.

Figure 2-57: Sentinel Runtime Setup window and select Next button

Note: Any other program running during the installation of the Dongle will affect the proper installation

of the software.

Sentinel Runtime Setup License Agreement appears. Read the license agreement carefully,

scroll down to read the complete license agreement. If the requirement of the license

agreement is accepted, Click on I accept the license agreement and click on Next button

else quit the setup by clicking Cancel button.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 42 of 281

Figure 2-58: Sentinel Runtime Setup License Agreement window appears and select Next button

The installation process begins.

Figure 2-59: Installation process begins

Once the Sentinel Runtime is installed successfully, click on Finish button.

Figure 2-60: Sentinel Runtime is installed successfully and select Finish button

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 43 of 281

Now the RLM driver software is installed successfully. If the driver has been successfully

installed, then upon connecting the Dongle in the USB port, a red light will glow (Refer

picture below Figure 2-61). If the driver is not properly installed, this light will not glow when

the dongle is connected to the USB Port.

Figure 2-61: Connecting the Dongle in the USB Port

2.3.2 Running NetSim License Server

▪ Copy the NetSim License Server folder and paste it on Desktop. Check that it has

the license file. If not copy the paste the license file into the License server folder

▪ Double click on NetSim License Server folder from Desktop.

▪ Double click on rlm.exe

▪ For hardware dongle-based users: After the Driver Software installation, connect the

RLM dongle to the system USB port. Double click on My Computer and access the

CD Drive. This CD contents will have the NetSim License server folder.

Note: For running NetSim, rlm.exe must be running in the server (license server) system and the server system

IP address must be entered correctly. Without running rlm.exe, NetSim won’t run.

While running rlm.exe, the screen will appear as shown below Figure 2-62.

Figure 2-62: When NetSim license server system running, window appears

© TETCOS LLP. All rights reserved

Ver 13.0 Page 44 of 281

2.3.3 Running NetSim Software

After running rlm.exe, double click the NetSim icon in the Desktop. The screen given below

will be obtained. Enter the Server IP address where the rlm.exe is running and click OK.

Figure 2-63: Enter NetSim License Server IP Address

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 45 of 281

3 NetSim GUI

The graphical user interface (GUI) allows users to interact with the simulator for creating,

modifying and saving, simulation experiments and workspaces. This is much easier to use

when compared to command line or text-based simulator interfaces. NetSim GUI comprises

of the Home Screen, Design Window, Results Window, Animation Window and Plots Window.

3.1 Menus in the NetSim Home Screen

You see the NetSim Home Screen when you run NetSim software for the first time, after

checking out a license from the NetSim License Server.

See the following image for an example of the NetSim Home screen as shown below Figure

3-1.

Figure 3-1: NetSim Home screen

You see the following items on the NetSim Home screen:

1. New Simulation: Use this menu to simulate different types of networks in NetSim. You

can simulate the following the types of networks: Internetworks, Legacy Networks,

Mobile Adhoc networks, Cellular Networks, Wireless Sensor Networks, Internet of

Things, Cognitive Radio Networks, LTE/LTE-A Networks, 5G NR (newly added

component in v12), VANETs, and Satellite Communication. Only the networks

(components) for which licenses are available will be shown. The networks

(components) shown at the bottom with grey background cannot be directly clicked

© TETCOS LLP. All rights reserved

Ver 13.0 Page 46 of 281

and entered. These features can be accessed through other components given the

dependencies.

2. Your work: Use this menu to load saved configuration files from the current

workspace. You can view, modify or re-run existing simulations. Along with this, users

can also export the saved files from the current workspace to their preferred location

on their PC’s.

3. Examples: Use this menu to perform simulations of different kinds categorized

technology-wise. Users can choose any network which they want to work and further

go down by using a double click on it or by a click on the arrow pointer which will take

you to the next level. By a click on any simulation file will open a pre-existing simulation

file which users can run and analyze the results. Users can click on the book icon

present in the right-hand side of each network which opens the corresponding pdf files.

This helps the users with all information about the current simulation as well as the

entire network technology.

Figure 3-2: Featured Examples and Experiments list window

Similarly, on the other side, users can find experiments section which has various

experiments covering all the technologies in NetSim. Users can choose their

experiment by either a double click on it or by a click on the pointer arrow which will

take you the samples. Click on the sample to open the particular experiment in NetSim.

All the settings to carry out the experiment are already done. Users can click on the

book icon present in the right-hand side of each experiment. This will open the

corresponding pdf file for the experiment which consists of detailed description of that

experiment.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 47 of 281

4. License Settings: Use this menu to perform the following. Click on License Settings

provides users with three sub-menus related to License information.

License Server Information: Use this menu to view details about the NetSim License

Server from where the client is checking out licenses.

Figure 3-3: NetSim License Server Information window

You will see the following details on the NetSim Home screen, if you click the License

Server Info menu item: the type of platform on which NetSim is running, the version of

RLM, the Dongle RLM ID, the IP address of the NetSim License Server, and the path

to the license files in the server hosting NetSim License Server.

End User License Agreement: Use this menu to view the end user license

agreement. You will see the following details on NetSim Home screen, if you click the

End User License Agreement menu item: Grant of License and Use of the Services,

License Restrictions, License Duration, Upgrade and Support Service etc.

Configure Installed Components/Libraries: Use this menu to allow NetSim users to

simulate only specific types of networks (by the licenses and libraries associated with

the types of networks). You control access to types of networks by selecting libraries

for specific types of networks that NetSim License Server checks out when NetSim

users start NetSim.

NetSim Home screen displays libraries for components for which you have purchased

licenses.

Note: You can select or clear libraries and control access to NetSim users, only if you

are using floating licenses.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 48 of 281

See the following image for an example of what the NetSim Home screen displays, if

you click the Configure Installed Components/Libraries menu item.

Figure 3-4: The Installed Component (Libraries) of NetSim

Use the License Settings menu as follows:

▪ Select the checkboxes for the component libraries (types of networks) that

NetSim users must be allowed to simulate.

▪ Clear the checkboxes for the component libraries (types of networks) that

NetSim users must not be allowed to simulate.

The Internetwork component is greyed out. You cannot clear the Internetworks

component because Internetworks is a base component that is required for all the other

components to work.

5. Documentation: Use this section to open the following NetSim help documents:

These include the User Manual which consists of complete description about all the

features in NetSim and how it can be used by the end users, the Technology Libraries

which provides users with an access to a detailed description of various Network

Technologies present in NetSim through individual pdf files, and Source code help

which comes along with Standard and Pro Versions of NetSim, allows users to gain a

better understanding of the underlying code structure for in-depth analysis.

6. Learn: Use this section to learn more about the software which includes the following:

Videos section can be used to view videos related to NetSim in TETCOS YouTube

channel. This channel helps users by providing frequent updates on what’s new in

NetSim, topics related to various network technologies covering different versions of

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 49 of 281

NetSim, and monthly webinars. The Experiments Manual section grants you access

to a well-designed experiments manual covering various networking concepts which

helps users to easily understand different networks and also gain ideas to carry out

their own experimentations in NetSim.

7. Support: Use this section to reach TETCOS helpdesk. Contact Technical Support

link can be used to raise a trouble ticket, you can also write to us via Email to

support@tetcos.com, and Answers/FAQ link grants you access to our Knowledge

Base which contains answers to all your questions most of the time. Users can utilize

the wealth of information present in it, which are further classified into the following:

FAQs, Technologies/Protocols, Modelling/UI/Results, and Writing your own code in

NetSim.

8. Contact Us: Use this section to contact us and know more information about our

product. You can write to us via Email to sales@tetcos.com or contact us via Phone

to our official number +91 76760 54321.

9. Website: Use this link www.tetcos.com to visit our website which consists of vast

information that will assist you through all walks of NetSim.

3.1.1 Creating “New” Simulations

The Simulation window loads up once user selects the desired network technology from the

New Menu. Click on New Simulation and select the desired kind of network to simulate.

Figure 3-5: NetSim Home Screen

mailto:support@tetcos.com
mailto:sales@tetcos.com
http://www.tetcos.com/

© TETCOS LLP. All rights reserved

Ver 13.0 Page 50 of 281

Save

Figure 3-6: To save experiment, Select File >Save. Save As etc

To save experiment, select File → Save, then specify the Experiment Name, Description

(Optional) and click Save. The short cut for the same is Ctrl + S.

Save as

To save an already existing/saved experiment by a different name after performing required

modifications/changes to it (without overwriting the existing copy), Save As option can be used.

Select File → Save As, then specify the Experiment Name, Description (Optional) and click

Save. The short cut for the same is Shift + Ctrl + S and F12.

3.1.2 Environment Settings

The settings menu provides user’s access to the simulation environment settings.

Figure 3-7: Environment settings

The Environment Settings window is used to switch between Grid View and Map View

backgrounds in supported network technologies. For Grid view, users can configure the Grid

environment length in meters as shown Figure 3-8.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 51 of 281

Figure 3-8: Grid View Setting

3.1.2.1 The Gird

The Grid coordinate system has its origin at the upper left of the drawing area, and positive Y

is down while positive X is to the right.

Figure 3-9: NetSim Design window

© TETCOS LLP. All rights reserved

Ver 13.0 Page 52 of 281

For Map view users can configure the latitude and longitude respectively.

Figure 3-10: Map View Setting

Users can zoom in and out of the map to add devices in specific geographical locations.

Figure 3-11: Map Design window

Learn

This menu contains link to NetSim Videos on TETCOS YouTube Channel and NetSim

Experiments manual.

Documentation

This menu contains link to NetSim User Manual, Technology Libraries and NetSim Source

Code Help.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 53 of 281

3.2 Modeling and Simulating a simple network

This section will demonstrate how to create a basic network scenario and analyze the results.

Let us consider Internetworks. To create a new scenario, Go to New Simulation →

Internetworks as shown below Figure 3-12.

Figure 3-12: NetSim Home Screen

3.2.1 Creating a Network scenario

In this example, a network with two subnets is designed. Let us say the subnet 1 consists of

two wired nodes connected via a Switch and the other subnet consists of one wired node. Both

the subnets are connected using a Router. Traffic in the Network flows from a wired node in

subnet 1 to the wired node in subnet 2.

Figure 3-13: Network Topology in this experiment

© TETCOS LLP. All rights reserved

Ver 13.0 Page 54 of 281

Perform the following steps to create this network design.

Step 1: Drop the devices. Click on Node icon and select → Wired Node.

Figure 3-14: Internetworks Device Palette in GUI

Click on the environment (the grid) where you want the Wired Node to be placed. In this way,

place two more wired nodes. Similarly, to place a Switch and a Router, click on the respective

device and click on the environment at the desired location.

Figure 3-15: Dropped Devices on GUI

Note that NetSim takes the (x, y) position of any device on the grid is the position of top left

corner of the icon and not the center of the icon.

Step 2: Connecting devices: Select the link and then left click on one device, free the mouse

button, then click on the second device and free the mouse button. The wired links may

disappear if you right click anywhere in the environment. Clicking and dragging without freeing

the mouse pointer would displace the device in the environment.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 55 of 281

Figure 3-16: To Connect devices select wired/wireless links

For example, select link and the click on Switch followed by router to connect them. In this

manner, continue to link all devices.

Figure 3-17: Network Topology

3.2.2 Configuring devices and links in the scenario

Step 1: To configure any device, right click on the device and select properties as shown

Figure 3-18.

Figure 3-18: Right click on the device and select properties

The default properties of any device can be modified per requirement. Then click on OK.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 56 of 281

Figure 3-19: Network layer Properties window for wired node

Step 2: To configure the links, right click on any Link and select Properties as shown Figure

3-20.

Figure 3-20: Wired Link properties window for links

3.2.3 Display Settings

In NetSim, users can Turn-On or Turn-Off display information such as IP Address of the

devices, link speed etc. For doing this click on Display settings as shown below Figure 3-21.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 57 of 281

Figure 3-21: Turn-On or Turn-Off display information such as IP Address of the devices, link speed
etc

In NetSim the device ID serves as a “device identifier” while the IP Address is an “Interface

identifier”

3.2.4 Copy/Paste

In NetSim simple copy paste can be used. Using this feature users can copy all the properties

of a device and create a new device with similar properties.

Right click on the device, click on copy and then right click and click paste. The sequence is

shown below Figure 3-22/Figure 3-23/Figure 3-24/Figure 3-25/Figure 3-26.

Figure 3-22: Devices present on GUI

© TETCOS LLP. All rights reserved

Ver 13.0 Page 58 of 281

Figure 3-23: Right click on the user device and Select copy

Figure 3-24: Right click on the GUI and Select Paste

Figure 3-25: Devices Pasted in GUI

Remove in the device options, is used to delete the device from the grid environment. Given

below is an example of removing the device User_Device_4 which was previously pasted.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 59 of 281

Figure 3-26: Right click on User_Device_4 and Select Remove

3.2.5 Modeling Application Traffic

After the network is configured, user needs to model traffic from Wired Node 2 to Wired Node

3. This is done using the application icon. Click on the Application icon present on the ribbon

as shown below Figure 3-27.

Figure 3-27: Select Application icon present on ribbon

In screen shot shown below the Application type is set to CBR, Source_ID is 2 and

Destination_ID is 3. Click on OK.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 60 of 281

Figure 3-28: Application Configuration window

3.2.6 Logging Packet/ Event Trace

Packet and Event Trace files are useful for detailed simulation analysis. By default, these are

not enabled since it slows down the simulation. To enable logging of Packet Trace / Event

Trace click on the icon in the tool bar as shown below. Set the file name and select the required

attributes to be logged. For more information, please refer sections 8.4 and 8.5 respectively.

Figure 3-29: Packet Trace and Event Trace options present on ribbon

3.2.7 Run Simulation

For simulating the network scenario created, click on Run Simulation present in the Ribbon.

Figure 3-30: Run Simulation icon in the Ribbon

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 61 of 281

Set the Simulation Time to 10 seconds. Click on OK.

Figure 3-31: Run Simulation window

3.2.8 ACL Configuration

Routers provide basic traffic filtering capabilities, such as blocking Internet traffic, with access

control lists (ACLs). An ACL is a sequential list of permit or deny statements that apply to

addresses or upper-layer protocols. These lists tell the router what types of packets to: permit

or deny. When using an access-list to filter traffic, a permit statement is used to “allow” traffic,

while a deny statement is used to “block” traffic.

3.2.8.1 ACL Commands

▪ To view ACL syntax use: acl print.

▪ Before using ACL’s, we must first verify that acl option enabled. A common way to

enable ACL use command: ACL Enable

▪ Enters configuration mode of ACL using: aclconfig

▪ To view ACL Table: Print

▪ To exit from ACL configuration use command: exit

▪ To disable ACL use command: ACL Disable (use this command after exit from acl

configuration)

To view ACL usage syntax use: acl print

[PERMIT, DENY] [INBOUND, OUTBOUND, BOTH] PROTO SRC DEST SPORT DPORT IFID

© TETCOS LLP. All rights reserved

Ver 13.0 Page 62 of 281

3.2.8.2 Step to Configure ACL

▪ To create a new rule in the ACL use command as shown below to block UDP packet

in Interface_2 and Interface_3 of the Router_3

▪ Disable TCP in all nodes (Wired Node and Router)

▪ Click on run simulation option and In the Run time Interaction tab set Interactive

Simulation as True and click on Accept.

▪ Set the Simulation Time as 500 sec or more. Click Ok

▪ Right click on Router_3 and select NetSim Console. Use the command as follows:

NetSim>acl enable

ACL is enable

NetSim>aclconfig

ROUTER_3/ACLCONFIG>acl print

Usage: [PERMIT, DENY] [INBOUND, OUTBOUND, BOTH] PROTO SRC DEST SPORT

DPORT IFID

ROUTER_3/ACLCONFIG>DENY BOTH UDP ANY ANY 0 0 2

OK!

ROUTER_3/ACLCONFIG>DENY BOTH UDP ANY ANY 0 0 3

OK!

ROUTER_3/ACLCONFIG>print

DENY BOTH UDP ANY/0 ANY/0 0 0 2

ROUTER_3/ACLCONFIG>exit

NetSim>acl disable

ACL is disable

NetSim>

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 63 of 281

Figure 3-32: ACL Configuration command

3.2.8.3 Results

The impact of ACL rule applied over the simulation traffic can be observed in the

IP_Metrics_Table in the simulation results window, In Router_3 number of packets blocked by

firewall has been shown below

Note: Results will vary based on time of ACL command are executed

Figure 3-33: IP Metrics Table in result window

▪ Check Packet animation window whether packets has been blocked in Router_3 or not

after entering ACL command to deny UDP traffic.

▪ Before applying ACL rule there is packet flow from Wired_Node_1 to Wired_Node_2.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 64 of 281

Figure 3-34: In Animation Window before applying ACL rules see the packet flow

▪ After applying ACL rule Packet flows up to Router_3 only

Figure 3-35: In Animation Window after applying ACL rules see the packet flow

The impact of ACL rule applied over the simulation traffic can be observed in the Application

throughput plot. Throughput graph will show a drop after ACL is set. If ACL is disabled after a

while, application packets will start flowing across the router. The Application throughput plot

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 65 of 281

will show a drop and increase(Moving througput graph) in throughput after setting ACL and

disabling ACL respectively.

Example: ACL rule applied at around 50sec user can see the drop in throughput in the graph,

since router blocks UDP packets in the plot. Once ACL has been disabled at around 240sec

router permits packets and hence throughput can be observed in the plot shown below Figure

3-36.

Figure 3-36: CBR Application throughput plot

3.3 Saving & Opening experiments and Printing results

3.3.1 Opening Saved Experiments:

Click on Your work (Ctrl+O).

Figure 3-37: Select Your work

Click on the saved experiment file you wish to open.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 66 of 281

3.3.2 Saving an Experiment

During Simulation: Users can save by using the short cut CTRL + S.

After Simulation: From Network Window: Click on File > Save button on the top left. Next,

specify the Experiment Name, Description (Optional) and click on Save.

Figure 3-38: Save popup window

Upon saving several files would get saved inside the folder, including:

▪ Configuration file (xml) & metrics file (xml)

▪ Trace Files (csv), if enabled, and

▪ Plot data (txt)

3.4 NetSim Keyboard Shortcuts

NetSim keyboard shortcuts can be used for frequently performed tasks. The keyboard

shortcuts that are currently supported are listed in the table below Table 3-1.

Keys Function

Home Screen

Ctrl + N Open a New Network

Ctrl + O Open a Saved Network

Ctrl + E Open a Examples

Design Window (Any Network)

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 67 of 281

Ctrl + C Copy

Ctrl + V Paste

Ctrl + R Open Run Simulation Window

Ctrl + S Save the Experiment

Shift + Ctrl + S Save As (To Save under different name)

Ctrl + P
Open Image/Screenshot of the network

scenario that is designed in the GUI

Alt+ F4 Close Window

F1 User Manual Help

Ctrl + '+/-' Zoom In/Zoom Out

Mouse Click (Left) Select a device

Ctrl + A Select All devices in the design environment

Ctrl + Mouse Click (Left) and Drag Select devices within a selected area

Delete
Deletes the selected devices in the

Environment along with any links it may have

Simulation Console

Ctrl + C

Terminates Simulation in Mid way. Results

will be calculated till the time at which the

simulation is terminated

Packet Animation Window

Space bar To Play/Pause animation

Table 3-1: NetSim keyboard shortcuts

3.5 NetSim Interactive Simulation

NetSim allows users to interact with the simulation at runtime via a socket or through a file.

User Interactions make simulation more realistic by allowing command execution to

view/modify certain device parameters during runtime.

This section will demonstrate how to perform Interactive simulation for a simple network

scenario. Let us consider Internetworks. To create a new scenario, go to New → Internetworks.

Click & drop Wired Nodes and Router onto the Simulation Environment and link them as shown

below Figure 3-39 or otherwise Open the scenario for Interactive Simulation which is available

in “<NetSim Install Dir>\Docs\ Sample_Configuration\Internetworks\Interactive Simulation”.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 68 of 281

Figure 3-39: Network Topology

▪ Click on Application icon present in the top ribbon and set the Application type as CBR.

The Source_Id is 1 and Destination_Id is 2.

▪ Set Start Time as 30 Sec

▪ Enable Plots and Packet trace options

▪ Click on run simulation option and In the Run time Interaction tab set Interactive

Simulation as True and click on Accept as shown below Figure 3-40.

Figure 3-40: Run time Interaction tab set Interactive Simulation as True

▪ Click on run simulation and set Simulation Time as 500 sec. (It is recommended to

specify a longer simulation time to ensure that there is sufficient time for the user to

execute the various commands and see the effect of that before Simulation ends) and

click OK

▪ Simulation (NetSimCore.exe) will start running and will display a message “waiting for

first client to connect” as shown below Figure 3-41.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 69 of 281

Figure 3-41: Waiting for first client to connect

▪ After Simulation window opens, goto Network scenario and right click on Router_3 or

any other node and select NetSim Console option as shown Figure 3-42.

Figure 3-42: Select NetSim Console option

▪ Now Client (NetSimCLI.exe) will start running and it will try to establish connection with

NetSimCore.exe. After connection is established the window will look similar like this

shown below Figure 3-43.

Figure 3-43: Connection is established

▪ After this the command line interface can be used to execute the supported commands

© TETCOS LLP. All rights reserved

Ver 13.0 Page 70 of 281

Note: Commands are not a case sensitive

3.5.1 Simulation specific (Not applicable for file based interactive simulation)

▪ Pause

▪ PauseAt

▪ Continue

▪ Stop

▪ Exit

▪ Reconnect

Pause: To pause the currently running simulation

PauseAt: To pause the currently running simulation with respect to particular time (Ex: To

Pause simulation at 70.2 sec use command as PauseAt 70.2)

Continue: To start the currently paused simulation

Stop: To stop the currently running simulation (NetSimCore.exe)

Exit: To exit from the client (NetSimCLI.exe)

Reconnect: To reconnect client (NetSimCLI.exe) to simulation (NetSimCore.exe) when

we rerun simulation again

3.5.2 Ping Command

▪ The ping command is one of the most often used networking utilities for troubleshooting

network problems.

▪ You can use the ping command to test the availability of a networking device (usually

a computer) on a network.

▪ When you ping a device, you send that device a short message, which it then sends

back (the echo)

▪ If you receive a reply then the device is in Network, if you don’t then the device is faulty,

disconnected, switched off, incorrectly configured.

▪ You can use the ping cmd with an IP address or Device name.

▪ ICMP_Status should be set as True in all nodes(Wired_Node and Router)

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 71 of 281

Figure 3-44: Set ICMP_Status to True in Network layer window.

▪ Right click on Wired_Node_1 and go to properties. Under General properties enable

Wireshark Capture option as “Online”

Ping <IP address> e.g. ping 11.4.1.2

Ping <NodeName> e.g. ping Wired_Node_2

3.5.2.1 Ping Command Results

Figure 3-45: Pinging to Wired_Node_2

▪ After simulation open packet trace and filter ICMP_EchoRequest and

ICMP_EchoReply from CONTROL_PACKET_TYPE/APP_NAME column

Figure 3-46: ICMP Control Packets in Packet Trace

© TETCOS LLP. All rights reserved

Ver 13.0 Page 72 of 281

▪ Open Wireshark and apply filter ICMP. We can see the ping request and reply packets

in Wireshark.

Figure 3-47: ICMP Control Packets in Wireshark

3.5.3 Route Commands

▪ route print

▪ route delete

▪ route add

In order to view the entire contents of the IP routing table, use following commands route

print.

route print

Figure 3-48: Network Route Print

▪ You will see the routing table entries with network destinations and the gateways to

which packets are forwarded when they are headed to that destination. Unless you’ve

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 73 of 281

already added static routes to the table, everything you see here will be dynamically

generated.

▪ In order to delete route in the IP routing table you will type a command using the

following syntax

Route delete destination_network

▪ So, to delete the route with destination network 11.5.0.0, all we’d have to do is type

this command.

route delete 11.5.1.2

▪ To check whether route has been deleted or not check again using route print

command.

▪ To add a static route to the table, you will type a command using the following syntax.

route ADD destination_network MASK subnet_mask gateway_ip METRIC metric_cost

IF interface_id

▪ So, for example, if you wanted to add a route specifying that all traffic bound for the

11.5.1.2 subnet went to a gateway at 11.5.1.1

route ADD 11.5.1.2 MASK 255.255.0.0 11.5.1.1 METRIC 100 IF 2

▪ If you were to use the route print command to look at the table now, you would see

your new static route.

Figure 3-49: Route added into Network

Note: Entry added in IP table by routing protocol continuously gets updated. If a user tries to remove a

route via route delete command, there is always a chance that routing protocol will re-enter this entry again.

Users can use ACL / Static route to override the routing protocol entry if required.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 74 of 281

4 Workspaces and Experiments

4.1 What is an Experiment and what is a workspace in

NetSim?

When you design & simulate a network in NetSim it is saved as an experiment. This experiment

is saved within a Workspace. In a logical sense, a workspace contains all the source code

files, executable files, icons, data files etc.

A workspace can contain one or more experiments.

In general, users need not change the workspace and can use the default workspace.

New workspaces need to be created by users when:

▪ The user wants to modify the underlying source code of NetSim as is typically in

research applications. The modified code will be saved in that workspace.

▪ A user chooses to save and organize a large number of experiments. These can be

saved under different workspaces provided by that user.

▪ The same PC/NetSim build is shared between multiple users.

The default workspace of NetSim will have the Master Source code and the Master Binaries

(Compiled files)

A default workspace is created in a user selected directory when NetSim is run for the first

time after installation. Choose the path where user wants the default workspace to be created

and click on OK.

Figure 4-1: Default workspace created in Documents folder

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 75 of 281

This default workspace contains the folders.

1. \src - contains protocol source codes.

2. \bin\bin_x86 - contains NetSim binaries for 32-bit and \bin\bin_x64 contains NetSim

binaries for 64-bit.

3. \Icons - contains icons of the devices, links etc.

Figure 4-2: Default workspace contains different folders

4.2 How does a user create and save an experiment in

workspace?

To create an experiment, select New Simulation - <Any Network> in the NetSim Home Screen

as shown Figure 4-3.

Figure 4-3: NetSim Home Screen

© TETCOS LLP. All rights reserved

Ver 13.0 Page 76 of 281

The created experiment can be saved by clicking on File > Save button on the top left corner

of the design window.

Figure 4-4: Save/Save As the experiment by clicking on File

A save pop-up window appears which contains Experiment Name, Description for the

experiment, Workspace Path.

Figure 4-5: Save popup window

Specify the Experiment Name and Description about the experiment (optional) and click on

Save. The workspace path is non-editable. Hence all the experiments will be saved in the

current workspace path.

Users can also select the files which are to be saved into the experiment folder.

▪ The Configuration file will be mandatorily saved into the experiment folder.

▪ Optional: Simulation output files such as Metrics.xml, Animation files, Event Trace

file, Packet Trace file and Plot data (if enabled).

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 77 of 281

▪ Optional: Protocol logs (if written) or Custom Log files (if codes have been modified

for logging)

In our example, we saved the experiment with the name MANET and this experiment can be

found in the default workspace path as shown below Figure 4-6.

Figure 4-6: Manet Example Saved in Workspace

Users can also see the saved experiments in Your Work menu as shown below Figure 4-7.

Figure 4-7: Saved experiments in Your work menu

If Description was provided while saving the experiment.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 78 of 281

Figure 4-8: Save popup window along with Experiment Name and Description

It will be displayed when mouse pointer is placed over the experiment name in the list shown

as part of the Your Work menu.

Figure 4-9: Saved Experiment Present under Your Work menu

The “Save As” option is also available to save the current experiment with a different name.

Users can rename the experiment or Open the folder where the experiment is saved or

Delete the experiment or Export the experiment by right-clicking on the experiment in the

Your Work window as shown below Figure 4-10.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 79 of 281

Figure 4-10: User options to “rename the experiment” or to “open folder” by right clicking on the
experiment

In this example, we have saved all the files related to the experiment. Hence, all the files will

be stored in the experiment folder Figure 4-11.

Figure 4-11: Simulation output files in experiment folder

© TETCOS LLP. All rights reserved

Ver 13.0 Page 80 of 281

4.3 Should each user have a workspace?

There is no strict association between users and workspaces. A single user can have multiple

workspaces (and in turn experiments in each workspace), or multiple users can operate in one

workspace.

4.4 How does a user export an experiment?

To save experiments in a different location, first save the experiment in the current workspace

and use export option present under Your work in the NetSim Home Screen as shown Figure

4-12.

Figure 4-12: Export option present in Your work in NetSim Home Screen

If you click on Export, an Export Experiment pop-up window appears where Users can select

the files which are to be exported as part of the experiment. The Configuration file is mandatory

and other files are optional. The destination path can be selected to export the experiment.

Figure 4-13: Export Experiment pop-up window

The exported experiments would be saved with *.netsim_exp extension.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 81 of 281

4.5 How does a user delete an Experiment in a workspace?

Users can delete experiments by clicking on the delete icon as shown below Figure 4-13.

Figure 4-14: Delete an Experiment in a workspace

It displays a popup window as shown below and click on OK.

Figure 4-15: Delete Experiment window popup

4.6 How does a user create a new workspace?

To create a new workspace, click on Wokspace options present in Your work Menu shown

below Figure 4-16.

Figure 4-16: Select Workspace options present in Your work Menu window

© TETCOS LLP. All rights reserved

Ver 13.0 Page 82 of 281

Then select More Options

Figure 4-17: Select More Options

And select New

Figure 4-18: Select New option

A New Workspace pop-up window appears where you can input the Workspace Name,

Description and Workspace Path (where you want to create new workspace).

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 83 of 281

Figure 4-19: New Workspace pop-up window

4.7 How does a user switch between workspaces?

Users can also switch from one workspace to another workspace. For doing this, Select Your

work->Workspace Options->More Options and click on the workspace you want to switch to

as shown below Figure 4-20.

Figure 4-20: Switch between workspaces

And then select “Set as Current” as shown below Figure 4-21.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 84 of 281

Figure 4-21: Select “Set as Current” workspace

4.8 How does a user export a workspace?

Users can export workspaces by selecting Your Work >> Workspace Options >> More Options

and then selecting Export option as shown below Figure 4-22.

Figure 4-22: Select Export option in Your work window

This will open export workspace window with the following options.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 85 of 281

Figure 4-23: Added by default Binaries, Source Code Icons to Selected Experiments list

Binaries, Source Code (available only for Standard and Pro) and Icons are added by default

as shown above. Users can add all experiments present in the current workspace by clicking

on All Experiments check box or if the user want to add particular experiment, user can right

click on the desired experiment’s name and click on Add option.

After selecting the experiments, user can export the workspace by Clicking on Export button

as shown below Figure 4-24.

Figure 4-24: Select All Experiments check box and then click on Export

© TETCOS LLP. All rights reserved

Ver 13.0 Page 86 of 281

This will open a window as shown below where users can enter the path to which the

workspace is to be exported and then click on ok as shown in below Figure 4-25.

Figure 4-25: Select the path by clicking on browse option in Export Workspace window

The workspace will be exported to the path selected with an extension <workspace

name>.netsim_wsp as shown below.

Figure 4-26: Workspace exported to Location.

Users can also have options to export individual experiments by right clicking on the

experiment and select Add to add the experiment to the export list as shown below Figure

4-27.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 87 of 281

Figure 4-27: Export individual experiments by right clicking on the experiment and select Add to add
the experiment to the export list

The added experiments will be available in the export list shown below Figure 4-28.

Figure 4-28: Added Experiments to the export list

After adding the experiments click on Export and follow the same procedure as explained

above

Note: Users can import only the exported workspaces.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 88 of 281

4.9 How does a user import a workspace?

Users can import workspaces by selecting Your work >>Workspace Options >>More Options

and then selecting Import option as shown below Figure 4-29.

Figure 4-29: Select Import option in Your work window

This will display a window were users need to give the source file (exported workspace file)

and the Destination, the path where the workspace is to be imported to and then click on ok.

Note: Only exported workspaces with “.netsim_wsp” extension can be imported.

Figure 4-30: Select the path by clicking on browse option for Source and Destination

The imported workspace will be set as the current workspace. The imported workspace can

be seen by clicking on Your Work >> Workspace option >> More Options as shown below

Figure 4-31.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 89 of 281

Figure 4-31: Imported workspace set as the current workspace by default

(Note: Users can import only version 12.2 workspaces into NetSim v13.0)

4.10 How does a user import an experiment?

Users can also have option to import experiments. For this click on Your work and then select

Import Experiment as shown below Figure 4-32.

Figure 4-32: Import experiments option in Your work window

The following window is displayed where users need to give the path from which the

experiment has to be imported and then click on OK.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 90 of 281

User can import the configuration file also through giving the path from which the configuration

file has to be imported, then describe the experiment name and click on OK.

Figure 4-33: Two options for Import Experiments

The imported experiment will be available in the current workspace. To see the imported

experiment, click on Your work as shown below Figure 4-34.

Figure 4-34: Imported experiment available in the current workspace

Note: Users can import only the exported experiments

4.11 How does a user delete a workspace?

Users can also delete a workspace by clicking on the delete icon shown below Figure 4-35

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 91 of 281

Figure 4-35: Delete a workspace by clicking on the delete icon in Your work window

Deleting current workspace is not allowed. Deleting a workspace will delete all saved

experiments and code modifications done in that workspace.

4.12 How does a user open and modify source codes?

User can also modify the source codes within a workspace. For doing this, select open Your

work ->Workspace Options->Open Code as shown below Figure 4-36.

Figure 4-36: Open code option is available in Your work window

This opens the source codes in MS Visual Studio.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 92 of 281

Users can then modify the protocol codes and build the solution. Then users can create a

network in NetSim or open the saved experiment which involves the protocol that has been

modified and click on run simulation. This simulation will run per the modified code.

The changes in the source codes applies to the current workspace only.

4.13 Can I use NetSim's default code for my experiments?

Yes, each workspace will have a Reset option which would set.

1. Binaries (compiled files) to default

2. Code (source C codes) to default

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 93 of 281

5 Simulating different networks in NetSim

The following table lists the networking technologies available in the different versions of

NetSim.

Type of Network NetSim Versions

Internetwork All versions

Legacy Network All versions

Cellular Network All versions

MANET All versions

Wireless Sensor Network All versions

Software Defined Network All versions

Internet of Things All versions

Cognitive Radio All versions

LTE All versions

5G NR Available only with NetSim Standard and NetSim Pro

versions

VANET Available only with NetSim Standard and NetSim Pro

versions

Satellite Communication Available only with NetSim Standard and NetSim Pro

versions

Network Emulator Available only with NetSim Standard and NetSim Pro

versions

TDMA Radio Networks Available only with NetSim Pro version

Real Time Protocol Available only with NetSim Pro version

Figure 5-1: Networking technologies available in the different versions of NetSim

Note: Network Emulator, TDMA Radio Networks, and Real Time Protocol are available only as separate Add-On

components along with NetSim.

NetSim comes with inbuilt examples to help you understand how the different types of

networks work.

The devices models in NetSim represent common networking devices in a generic way and

do not model any specific vendor’s implementation of the device. In real-world networks, each

device has specific vendor implementation of networking protocols.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 94 of 281

5.1 Internetworks

An Internetwork is a collection of two or more computer networks (typically Local Area

Networks or LANs) which are interconnected to form a bigger network.

Internetworks library in NetSim covers Ethernet, Address Resolution Protocol (ARP), Wireless

LAN – 802.11 a / b / g / n / ac and e, Internet Protocol (IP), Transmission Control Protocol

(TCP), Virtual LAN (VLAN), User Datagram Protocol (UDP), and routing protocols such as

Routing Information Protocol (RIP), Open Shortest Path First (OSPF), Internet Group

Management Protocol (IGMP), and Protocol Independent Multicast (PIM).

To simulate Internetworks, click on New Simulation and then click on Internetworks.

5.1.1 Internetworks Examples

To simulate the Examples for different types of Internetworks

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

2. Click the Internetwork example you wish to simulate. NetSim UI loads the example.

5.1.2 Internetwork Documentation

To view help documentation users can either click on “Technology Libraries” under

documentation in the home screen or click the ‘Book’ link located next to Internetworks in

examples. The help documentation explains the following:

▪ Introduction

▪ Simulation GUI

▪ Model Features

▪ Featured Examples

▪ Reference Documents

▪ Latest FAQ available online

5.2 Legacy Networks

Legacy networks cover older generation protocols which are rarely used today and not part of

the TCP/IP protocol suite. With the advent of TCP/IP as a common networking platform in the

mid-1970s, most legacy networks are no longer used.

NetSim Legacy Network library cover Pure Aloha and Slotted Aloha.

ALOHA is a protocol that was developed at the University of Hawaii and used for satellite

communication systems in the Pacific. ALOHA protocol was designed to send and receive

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 95 of 281

messages between multiple stations, on a shared medium. Slotted ALOHA is improvised

version of pure ALOHA designed to reduce the chances of collisions when sending data

between the sender and the receiver.

To simulate Legacy Networks, click on New Simulation and then under Legacy networks click

on either Pure Aloha or Slotted Aloha

5.2.1 Legacy Networks Examples

To simulate Pure ALOHA and Slotted ALOHA Examples:

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

2. Click the Legacy Network example you want to simulate. NetSim UI loads the

example.

5.2.2 Legacy Network Documentation

To view help documentation either click on “Technology Libraries” under documentation in the

home screen or click the ‘Book’ link located next Legacy Networks in examples. The help

documentation explains the following:

▪ Introduction

▪ Simulation GUI

▪ Model Features

▪ Featured Examples

▪ Reference Documents

▪ Latest FAQ available online

5.3 Cellular Networks

A cellular network (also known as a mobile network) is a communication network where the

last link is wireless. The network is distributed over land areas called cells. Every cell is served

by at least one fixed-location transceiver known as a base station. These cells together provide

radio coverage over larger geographical areas. User equipment’s such as mobile phones can

communicate even if the user is moving across different cells.

NetSim cellular networks library covers Global System for Mobile communication (GSM) and

Code-Division Multiple Access (CDMA).

To simulate Cellular Networks, click on New Simulation and then under Cellular networks click

on either GSM or CDMA.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 96 of 281

5.3.1 Cellular Networks Examples

To simulate GSM and CDMA Examples:

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

2. Click the Cellular Network example you want to simulate. NetSim UI loads the

example.

5.3.2 Cellular Networks Documentation

To view help documentation either click on “Technology Libraries” under documentation in the

home screen or click the ‘Book’ link located next Cellular Networks in examples. The help

documentation explains the following:

▪ Introduction

▪ Simulation GUI

▪ Model Features

▪ Featured Examples

▪ Reference Documents

▪ Latest FAQ available online

5.4 Advanced Routing

NetSim supports the following advanced routing protocols.

▪ Multicast Routing –

o Internet Group Management Protocol (IGMP)

o Protocol Independent Multicast (PIM)

▪ Access Control Lists (ACLs)

▪ Virtual LAN (VLAN)

▪ Public IP and Network Address Translation (NAT)

To simulate the above-mentioned routing protocols, click on New Simulation and then

Internetworks.

5.4.1 Advanced Routing Examples

To simulate the Examples for different types of Advanced Routing protocols

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 97 of 281

2. Click the Advanced-Routing example you wish to simulate. NetSim UI loads the

example.

5.4.2 Advanced Routing Documentation

To view help documentation users can either click on “Technology Libraries” under

documentation in the home screen or they can click the ‘Book’ link located next to Advanced

Routing in examples. The help documentation explains the following:

▪ Simulation GUI

▪ Model Features

▪ Featured Examples

▪ Reference Documents

▪ Latest FAQ available online

5.5 MANETs

Mobile Ad-hoc Network (MANET) is an ad hoc network that can change locations and

configure itself on the fly. Because MANETS are mobile, they use wireless connections to

connect to various networks.

NetSim MANET library covers:

▪ L3 Routing Protocols – DSR, AODV, OLSR and ZRP

▪ MAC Layer – IEEE 802.11

▪ MANET using Bridge_Node (Wired) and Bridge_Node (Wireless)

To simulate MANET, click on New Simulation and then select Mobile Adhoc networks.

5.5.1 MANET Examples

To simulate MANET Examples:

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

2. Click the Mobile-Adhoc-Networks example you want to simulate. NetSim UI loads

the example.

5.5.2 MANET Documentation

To view help documentation either click on “Technology Libraries” under documentation in the

home screen or click the ‘Book’ link located next MANET Networks in examples. The help

documentation explains the following:

© TETCOS LLP. All rights reserved

Ver 13.0 Page 98 of 281

▪ Introduction

▪ Simulation GUI

▪ Model Features

▪ Featured Examples

▪ Reference Documents

▪ Latest FAQ available online

5.6 Wireless Sensor Networks (WSN)

Wireless Sensor Network (WSN) is a group of spatially dispersed sensors that monitor and

collect the physical conditions of the environment and transmit the data they collect to a central

location. WSNs measure environmental conditions such as temperature, sound, pollution

levels, humidity, wind, and so on.

WSN in NetSim is part of NetSim’s IOT library and covers 802.15.4 MAC, PHY with MANET

routing protocols.

To simulate WSN, click on New Simulation and then Wireless Sensor Networks.

5.6.1 Wireless Sensor Networks (WSN) Examples

To simulate Wireless Sensor Networks Examples:

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

2. Click the IOT-WSN > Internet-of-Things example you want to simulate. NetSim UI

loads the example.

5.6.2 WSN Library Documentation

To view help documentation either click on “Technology Libraries” under documentation in the

home screen or click the ‘Book’ link located next to IOT-WSN examples. The help

documentation explains the following:

▪ Introduction

▪ Simulation GUI

▪ Model Features

▪ Featured Examples

▪ Reference Documents

▪ Latest FAQ available online

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 99 of 281

5.7 Internet of Things

Internet of things (IoT) is a network of object such as vehicles, people, home appliances that

contain electronics, software, actuators that are accessible from the public Internet. The

objects are embedded with suitable technology and use IP addresses to interact and exchange

data without manual assistance or intervention. The objects can also be remotely monitored

and controlled.

In NetSim, IOT is modeled as a WSN that connects to the internet via a 6LowPAN Gateway.

WSN for IoT uses the following protocols: AODV with IPv6 addressing at the L3 layer and

802.15.4 at the MAC & PHY layers. WSN sends data to the LowPAN Gateway which uses a

Zigbee (802.15.4) interface and a WAN Interface. The Zigbee interface connects wirelessly to

the WSN and the WAN interface connects to the Internet. Additionally, users can also simulate

and analyze energy model for IoT.

To simulate IOT, click on New Simulation and then Internet of Things

5.7.1 Internet of Things (IOT) Examples

To simulate IOT Examples:

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

2. Click the IOT-WSN > Wireless-Sensor-Networks example you want to simulate.

NetSim UI loads the example.

5.7.2 IOT Library Documentation

To view help documentation either click on “Technology Libraries” under documentation in the

home screen or click the ‘Book’ link located next to IOT-WSN examples. The help

documentation explains the following:

▪ Introduction

▪ Simulation GUI

▪ Model Features

▪ Featured Examples

▪ Reference Documents

▪ Latest FAQ available online

5.8 Software Defined Networks (SDN)

Software-defined networking (SDN) is an architecture that makes networks agile and flexible.

SDN decouples the network control and forwarding functions. SDN allows you to program your

© TETCOS LLP. All rights reserved

Ver 13.0 Page 100 of 281

network control and abstracts the physical infrastructure for applications and network services.

This approach enables enterprises and service providers to respond quickly to the changing

business requirements.

Unlike other technologies, and due to the way SDN works it is not available as a menu item

under New Simulation. SDN can be configured when running Internetworks, MANET, IOT,

WSN, Cognitive Radio, LTE or VANETs

5.8.1 Software Defined Networks (SDN) Examples

To simulate Software Defined Networks Examples:

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

2. Click the Software-Defined-Networks example you want to simulate. NetSim UI loads

the example.

5.8.2 SDN Library Documentation

To view help documentation either click on “Technology Libraries” under documentation in the

home screen or click the ‘Book’ link located next to Software Defined Network examples. The

help documentation explains the following:

▪ About SDN

▪ SDN in NetSim

▪ Model Features

▪ Featured Examples

▪ Reference Documents

▪ Latest FAQ available online

5.9 Cognitive Radio

Cognitive Radio (CR) is an adaptive, intelligent radio and network technology that

automatically detects available channels in a wireless spectrum and changes transmission

parameters to enable higher levels of communication. Cognitive Radio can be programmed

and configured dynamically to use the best wireless channels in its vicinity to avoid user

interference and congestion.

NetSim Cognitive Radio module is based on the IEEE 802.22 standard. Additionally, you can

connect a Cognitive Radio with Internetwork devices and run all the protocols supported in

Internetworks.

To simulate Cognitive Radio, click on New Simulation and then Cognitive Radio Networks

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 101 of 281

5.9.1 Cognitive Radio Examples

To simulate Cognitive Radio Examples:

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

2. Click the Cognitive-Radio example you want to simulate. NetSim UI loads the

example.

5.9.2 Cognitive Radio Library Documentation

To view help documentation either click on “Technology Libraries” under documentation in the

home screen or click the ‘Book’ link located next to Cognitive Radio examples. The help

documentation explains the following:

▪ Introduction

▪ Simulation GUI

▪ Model Features

▪ Featured Examples

▪ Reference Documents

▪ Latest FAQ available online

5.10 LTE

Long Term Evolution (LTE) is a standard for 4G wireless broadband technology that offers

increased network capacity and speed to mobile device users. LTE offers higher peak data

transfer rates -- up to 100 Mbps downstream and 30 Mbps upstream.

NetSim LTE Library support LTE/LTE-Advanced Networks.

Additionally, you can connect an LTE Network with Internetwork devices and run all the

protocols supported in Internetworks.

To simulate LTE/LTE-A networks, click on New Simulation and then select LTE/LTE-A

Networks.

5.10.1 LTE Examples

To simulate LTE Examples:

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

2. Click the LTE and LTE-A example you want to simulate. NetSim UI loads the example.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 102 of 281

5.10.2 LTE Library Documentation

To view help documentation either click on “Technology Libraries” under documentation in the

home screen or click the ‘Book’ link located next to LTE and LTE-A examples. The help

documentation explains the following:

▪ Introduction

▪ Simulation GUI

▪ Model Features

▪ Featured Examples

▪ Reference Documents

▪ Latest FAQ available online

5.11 5G NR

NetSim 5G library features full stack, end-to-end, packet level simulation of 5G NR networks.

The 5G library is based on Rel 15 / 3GPP 38.xxx series.

NetSim 5G library models all layers of the protocol stack as well as applications running over

the network. This 5G library is architected to connect to the base component of NetSim (and

in turn to other components) which provides functionalities such as TCP/IP stack protocols,

Wireless protocols, Routing algorithms, Mobility, Output Metrics, Animation, Traces etc.

To simulate 5G NR networks, click on New Simulation and then 5G NR.

5.11.1 5G NR Examples

To simulate LTE Examples:

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

2. Click the 5G NR example you want to simulate. NetSim UI loads the example.

5.11.2 5G NR Library Documentation

To view help documentation either click on “Technology Libraries” under documentation in the

home screen or click the ‘Book’ link located next to 5G NR examples. The help documentation

explains the following:

▪ Introduction

▪ Simulation GUI

▪ Model Features

▪ Featured Examples

▪ Specifications scheduled for next release.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 103 of 281

▪ Reference Documents

5.12 VANETs

Vehicular Ad-Hoc Network (VANET) is a subset of a Mobile Ad-Hoc Network or MANET that

allows vehicle-to-vehicle and vehicle-to-roadside communications to ensure safe

transportation.

To simulate VANET click on New Simulation and then click on VANET

5.12.1 VANET Examples

To simulate VANET Examples:

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

2. Click the VANETs example you want to simulate. NetSim UI loads the example.

5.12.2 VANET Library Documentation

To view help documentation either click on “Technology Libraries” under documentation in the

home screen or click the ‘Book’ link located next to VANET examples. The help documentation

explains the following:

▪ Introduction

▪ Simulation GUI

▪ Model Features

▪ Featured Examples

▪ Reference Documents

▪ Latest FAQ available online

5.13 Satellite Communication

NetSim satellite library models end-to-end, full stack, packet level communication between

terrestrial nodes and Geostationary satellites.

The satellite can be thought of as a relay station. It operates on the bent-pipe (transparent

star) principle, sending back to Earth what comes in, with only amplification and a shift from

uplink to downlink frequency.

The Satellite MAC layer protocol supported in NetSim is TDMA for forward link and MF-TDMA

for return link (based on the DVB S2 standards). The forward link is in the Ku band (12 – 18

GHz) while the return link is in the Ka band (24 – 60 GHz)

© TETCOS LLP. All rights reserved

Ver 13.0 Page 104 of 281

To simulate Satellite Communication networks, click on New Simulation and then click on

Satellite Comm. Networks

5.13.1 Satellite Communication Examples

To simulate the Examples for different types of Internetworks

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

2. Click the Satellite-Communication example you wish to simulate. NetSim UI loads

the example.

5.13.2 Satellite Communication Documentation

To view help documentation users can either click on “Technology Libraries” under

documentation in the home screen or click the ‘Book’ link located next to Satellite-

Communication in examples. The help documentation explains the following:

▪ Introduction

▪ Simulation GUI

▪ Model Features

▪ Featured Examples

▪ Reference Documents

Latest FAQ available online

5.14 TDMA Radio Networks

NetSim TMDA Radio Network module uses TDMA/DTDMA in MAC/PHY along with MANET

Routing protocols in Layer 3.

To simulate TDMA Radio Networks, click on New Simulation → TDMA Radio Networks and

select TDMA/DTDMA in MAC/PHY layer of the devices.

Note: TDMA Radio Network component is available only in NetSim pro version.

5.14.1 TDMA Radio Network Examples

To simulate TDMA Radio Networks Examples:

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

2. Click the TDMA Radio Networks example you want to simulate. NetSim UI loads the

example.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 105 of 281

5.14.2 TDMA Radio Network Library Documentation

To view help documentation either click on “Technology Libraries” under documentation in the

home screen or click the ‘Book’ link located next to TDMA Radio Networks examples. The help

documentation explains the following:

▪ Introduction

▪ Simulation GUI

▪ Model Features

▪ Featured Examples

▪ Reference Documents

▪ Latest FAQ available online.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 106 of 281

6 Applications (Network Traffic Generator)

Applications are the sources of traffic in the network. This traffic is modeled as individual

packets. These packets flow from the source to the destination over the designed network. As

it flows through the network, depending on the devices, link bandwidths and networking

protocols, the packets would experience network effects such as delay, error, loss etc.

Applications are generally parameterized in terms of packet size, inter-packet arrival time,

priority, transport protocol running below etc. Therefore, each application has its own

distinctive traffic pattern and creates its own unique load on the network.

Different applications have differing levels of complexity. Some applications are used to quickly

model basic requirements while in other cases parameters can be accurately modeled to

carefully reproduce real world characteristics. For example, if the goal is to analyze protocol

behavior, then using a simple CBR application (that generates a certain number of packets

every second of a fixed size) would suffice.

NetSim allows users to model and simulate different types of applications.

1. CBR

2. Custom

3. COAP

4. Database

5. FTP

6. Email

7. HTTP

8. PEER_TO_PEER

9. Video

10. Voice

11. Sensor App

12. Erlang Call

13. BSM

14. Emulation (available only if Emulator Add-on is licensed)

To set up the application click on the application icon from the tool bar as shown below Figure

6-1.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 107 of 281

Figure 6-1: Application icon from the tool bar

Figure 6-2: Application Configuration Window

This properties window allows you to model the application traffic. There may be more than

one application you may require for your simulation study. You can add (or) delete one or more

applications by clicking on the “+” or “-” symbols present on top left-hand side next to the

Application.

These application models have default values set, for the various application properties, to

model standard application behavior. Users can modify the parameters to model their own

applications.

6.1 Common properties for all applications

Application Method: It specifies the type of Application method

Unicast/Multicast/Broadcast.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 108 of 281

Application Type: It specifies the type of application such as CBR, Custom, Peer to

Peer, COAP, Email, HTTP, FTP, Voice, Video, Database, Erlang Call, Sensor App,

BSM, and Emulation.

Application ID: This property represents the unique identification number of the

application.

Application Name: It specifies the name of the application.

Source Count: This property represents number of sources for the application. Voice,

Video, FTP, Database and Custom applications have only one source.

Source ID: This property represents the unique identification number of the source.

Destination Count: This property represents number of destinations for the

application. Voice, Video, FTP, Database and Custom applications have only one

destination.

Destination ID: This property represents the unique identification numbers of the

destination.

For Unicast Applications, users can select the ID of a device in the network as the Destination

ID.

For Broadcast Applications, the Destination ID, is set to ‘0’.

For Multicast Applications, users can enter the number of multicast destinations in the

Destination Count filed and specify the Device ID’s of the destination devices separated by

comma (“,”) in the Destination ID field. E.g., 6, 7, 8

Start time: This property represents the start time of the application in seconds.

End time: This property represents the end time of the application in seconds.

For example, if Start time is 1s and end time is 10s then application starts generating traffic at

the 1st second and stops at the 10th second.

Encryption: Encrypts Application packet payload using algorithms such as AES, DES, XOR

and TEA. The effect of encryption can be analyzed by enabling Wireshark option in either the

source or the destination devices. Refer Section 8.7 on “Packet Capture and Analysis Using

Wireshark” for further details.

In NetSim the packet size remains constant when encrypting using these algorithms.

Therefore, using different encryption models will not have any impact on the network

performance metrics that NetSim outputs. NetSim does not perform decryption of the packet

at the receiver end since it does not have any impact on the performance metrics generated.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 109 of 281

Random Startup: If random start up is set true, application will start at a random time between

0 and inter-arrival time. Having a random start-up time provides more realism to the model

since all applications need not necessarily start at time = 0 in the real world.

QoS: NetSim provides QoS differentiation for the different types of applications through four

defined scheduling service types, also called QoS classes as shown below Table 6-1.

QoS Class Description Priority

UGS -
Unsolicited
Grant Service

The UGS scheduling service type is designed to
support real-time data streams consisting of fixed-size
data packets issued at periodic intervals

High

rtPS - Real-time
Polling Service

The rtPS scheduling service type is designed to support
real-time data streams consisting of variable-sized data
packets that are issued at periodic intervals. This would
be the case, for example, for MPEG (Moving Pictures
Experts Group) video transmission

Medium

ertPS -
Extended real-
time Polling
Service

The ertPS is a scheduling mechanism that builds on the
efficiency of both UGS and rtPS. UGS allocations are
fixed in size, ertPS allocations are dynamic. The ertPS
is suitable for variable rate real-time applications that
have data rate and delay requirements.

Normal

nrtPS - Non-
real-time Polling
Service

The nrtPS is designed to support delay-tolerant data
streams consisting of variable-size data packets for
which a minimum data rate is required. The standard
considers that this would be the case, for example, for
an FTP transmission.

Low

BE - Best Effort

The BE service is designed to support data streams for
which no minimum service guarantees are required and
therefore may be handled on a best basis.

Low

Table 6-1: Different QoS classes with Description and Priority in NetSim

Priority: The priority is automatically set based on the QoS class set by the user. Depending

on the scheduling algorithm the router would process packets, with different priorities,

differently.

Session Protocol: Session Protocol is applicable only for applications that support RTP

(Real-time Transport Protocol)

Transport Protocol: This parameter is newly added to the Applications window where by

default it selects the Transport Layer Protocol (either TCP or UDP) depending on the

application that is set by the user.

Note: Users can also change the value of this parameter according to the transport protocol they intend to run a

particular application.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 110 of 281

6.2 Application Types

Brief explanation of application types as shown below Table 6-2.

Application

Type

Properties Units Description

CBR –

Constant bit

Rate

Packet size (Constant

distribution) – It is the size

of the packet

bytes Packets of constant size are

generated at constant inter arrival

times.

The generation times would be as

follows:

Packet 1: Application start time

Packet 2: Packet 1 + Interarrival

Time

Packet 3: Packet 2 + Interarrival

Time

....

Packet (n+1): Packet n + Interarrival

Time

Ends at Application end time

Inter Arrival Time

(Constant distribution) – It

is the gap between two

successive packets

µs

Custom Packet size (Constant,

Exponential distribution) –

It is the size of the packet

bytes It is user defined application where

the packet size and inter-arrival

time can be set per user

requirements.
Inter Arrival Time

(Constant, Exponential

distribution) – It is the time

µs

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 111 of 281

gap between two

successive packets

Peer to Peer File size distribution

(Constant, Exponential

distribution)

- Peer-to-peer network does not have

the notion of clients or servers but

only equal peer nodes that

simultaneously functioning as both

"clients" and "servers" to the other

nodes on the network.

Ex – Torrent, LimeWire etc.

Value – Size of the file bytes

Piece size - Each file is

divided into equal sized

pieces. This property

represents the size of

each piece

bytes

Email Email send/receive –

Represents the rate at

which emails are

sent/receive

- Allows users to send/receive email

application

Ex – Outlook, Apple mail, Gmail

etc.

Duration (Constant,

Exponential distribution) -

Time between two

successive emails

Seconds

Email size (Constant,

Exponential distribution) –

Size of an email

Bytes

HTTP –

Hyper Text

Transfer

Protocol

Inter Arrival Time

(Constant, Exponential

distribution) – It is the time

gap between two

successive HTTP requests

seconds HTTP is a protocol that utilizes TCP

to transfer its information between

computers (usually Web servers

and clients).

TCP should mandatorily be set as

the transport layer protocol.
Page size (Constant,

Exponential distribution) –

It is the size of each page

bytes

© TETCOS LLP. All rights reserved

Ver 13.0 Page 112 of 281

Page count – Represents

the number of pages

-

COAP –

Constrained

Application

Protocol

Inter Arrival Time

(Constant, Exponential

distribution) – It is the time

b//w two successive

COAP requests

seconds

It is a specialized web transfer

protocol for use with constrained

nodes and constrained (e.g., low-

power, lossy) networks and

designed for M2M applications

Page size (Constant,

Exponential distribution) –

It is the size of each page

bytes

Response time – It is the

time taken by a device to

generate response

ms

Multicast response –

Represents the server

responds to multicast

response or not

-

NSTART – Limit the

number of simultaneous

outstanding interactions

that a client maintains to a

given server

-

DEFAULT_LEISURE –
This setting is only
relevant in multicast
scenarios, outside the
scope of the EST-coaps
draft

-

PROBING_RATE: A
parameter which specifies
the rate of re-sending
Non-confirmable
messages.

-

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 113 of 281

Ack required – It

represents whether the

ack for the

request/response to be

sent or not

-

FTP – File

Transfer

Protocol

File size (Constant,

Exponential distribution) –

It is the size of the file

bytes It is a standard network

protocol used for the transfer

of files between a client and server

Note: Devices must have TCP

enabled as the transport layer

protocol.

Ex – FileZilla

The generation times would be as

follows:

File 1: Application start time

File 2: File 1 + Interarrival Time

File 3: File 2 + Interarrival Time

....

File (n+1): File n + Interarrival Time

Ends at Application end time

The files are in-turn fragmented into

packets during the simulation.

Users can generate one file by

setting

File Inter Arrival Time

size (Constant,

Exponential distribution) –

It is the gap between two

files

seconds

https://en.wikipedia.org/wiki/Network_protocol
https://en.wikipedia.org/wiki/Network_protocol
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Client%E2%80%93server_model

© TETCOS LLP. All rights reserved

Ver 13.0 Page 114 of 281

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐸𝑛𝑑 𝑇𝑖𝑚𝑒

< (𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑆𝑡𝑎𝑟𝑡 𝑇𝑖𝑚𝑒

+ 𝐹𝑖𝑙𝑒 𝐼𝑛𝑡𝑒𝑟𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑇𝑖𝑚𝑒)

Database Transaction size

(Constant, Exponential

distribution) - It represents

the size of each

transaction

bytes A database application is a

computer program whose primary

purpose is entering and retrieving

information from a

computerized database

Ex – MS Excel, MySQL etc.
Transaction Inter Arrival

Time (Constant,

Exponential distribution) –

It is the time gap between

two successful

transactions

µs

Voice Packet size (Constant,

Exponential) – It is the

size of the packet

bytes It allows users to configure voice

application between client and

server

Note – Distribution is constant only

for all codec types except custom

Ex – Skype

Packet Inter Arrival Time

(Constant, Exponential

distribution) - It is the gap

between two successful

packets

µs

Service type – CBR, VBR -

Suppression models

available for VBR –

Deterministic, Markov

chain

-

Success ratio - Sets the

ratio of the packets that

are not silenced during

VBR calls

%

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 115 of 281

Video Model Type - Continuous

Normal VB, Continuous

State Autoregressive

Markov, Quantized State

Continuous Time Markov,

Simple IPB Composite

Model

- It allows users to configure video

application between client and

server

Ex – Skype

Erlang Call Packet size (Constant,

Exponential distribution) –

It is the size of the packet

bytes The erlang is a unit of traffic density

in a telecommunications system.

One erlang is the equivalent of one

call

Note – Distribution is constant only

for all codec types except custom

Packet Inter Arrival Time

(Constant, Exponential

distribution) - It is the gap

between two successful

packets

µs

Call duration (Constant,

Exponential distribution) –

It is the duration of each

call

seconds

Call Inter Arrival Time

(Constant, Exponential

distribution) - It is the gap

between two successful

calls

seconds

Service type – VBR, CBR -

Suppression model

available for VBR –

Deterministic, Markov

chain

-

Success ratio - Sets the

ratio of the packets that

%

© TETCOS LLP. All rights reserved

Ver 13.0 Page 116 of 281

are not silenced during

VBR calls

Sensor App Packet size (Constant

distribution) – It is the size

of the packet

bytes Used to create application between

two sensors

Ex – Smart home, Smart water etc.

Packet Inter Arrival Time

(Constant distribution) - It

is the gap between two

successful packets

µs

BSM –

Basic safety

message

Packet size (Constant,

Exponential distribution) –

It is the size of the packet

bytes The BSM Application class sends

and receives the IEEE 1609 WAVE

(Wireless Access in Vehicular

Environments) Basic Safety

Messages (BSMs). The BSM is a

20-byte packet that is generally

broadcast from every vehicle at a

nominal rate of 10 Hz.

Note - Available only with VANET

component

Ex – Traffic management

Packet Inter Arrival Time

(Constant, Exponential

distribution) - It is the gap

between two successful

packets

µs

Emulation Source Real IP -

Specifies the real IP

Address of source device

in Emulation

- NetSim Emulation application

enables users to connect NetSim

simulator to real devices and

interact with live applications.

Note - Will be present only when

Emulator Add-on is licensed

Source Port - Specifies

the Port no used for

transmission by

Application running in

source device

Destination Real IP -

Specifies the real IP

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 117 of 281

Address of destination

device in Emulation

Destination Port -

Specifies the Port no used

for reception by

Application running in

destination device

Table 6-2: Brief explanation of application types

Voice, Erlang call

For Voice and Erlang call applications, Codec option is available as follows.

Codec

Codec stands for Coder-decoder. Codecs are devices which encode / decode digital data

streams. Codec is the component of any voice system that translates between analog speech

and the bits used to transmit them. Every codec transmits a burst of data in a packet that can

be reconstructed into voice.

Five different standards of voice codec’s available in NetSim are G.711, G.729, G.723, GSM-

FR, GSM-EFR which can be selected depending on the variations required. Packet size and

Inter-arrival time value will vary depending on the codec value chosen.

G.711: G.711 is a Pulse code modulation (PCM) of voice frequencies on a 64-kbps channel.

G.711 uses a sampling rate of 8,000 samples per second. Non-uniform quantization with 8

bits is used to represent each sample, resulting in a 64-kbps bit rate. There are two types of

standard compression algorithms are used.

▪ µ-law algorithm.

▪ A-law algorithm.

G.729: The G.729 speech codec uses audio data compression algorithm and compress the

data at bit rates that vary between 6.4 and 12.4 kbps. Coding of speech at 8 kbps using

conjugate-structure algebraic-code-excited linear prediction (CS-ACELP).

G.723: G.723 is an ITU standard for speech codecs that uses the ADPCM method and

provides good quality audio at 24 and 40 Kbps.

GSM-FR: GSM–Full Rate (GSM-FR) speech codec was developed in early 1990s and was

adopted by the 3GPP for mobile telephony. The codec operates on each 20ms frame of

speech signals sampled at 8 KHz and generates compressed bit-streams with an average bit-

© TETCOS LLP. All rights reserved

Ver 13.0 Page 118 of 281

rate of 13 kbps. The codec uses Regular Pulse Excited – Long Term Prediction – Linear

Predictive Coder (RPE-LTP) technique to compress speech. The codec provides voice activity

detection (VAD) and comfort noise generation (CNG) algorithms and an inherent packet loss

concealment (PLC) algorithm for handling frame erasures. The codec was primarily developed

for mobile telephony over GSM networks.

GSM-EFR: GSM enhanced full rate speech codec is a speech coding standard that was

developed in order to improve the quite poor quality of GSM-Full Rate (FR) codec. Working at

12.2 kbps the EFR provides wire like quality in any noise free and background noise

conditions. The EFR 12.2 kbps speech coding standard is compatible with the

highest AMR mode (both are ACELP).

CUSTOM: It is similar to the CUSTOM application type explained in the table above.

Video Models

Model Type

▪ Continuous Normal VBR – This model is the simplest of all models. It uses Normal

Distribution for the generation of bits per pixel. In this model, consecutive packet sizes

are independent of each other.

o Frames per second – Number of frames arriving per second. This is in the range

of 10 – 100.

o Pixels per frame -Number of pixels in each frame. This is in the range of 10000 –

100000.

o Bits per pixel (µ) – Mean value of the normal distribution used to generate the

value of bits per pixel.

o Bits per pixel (Σ) – Standard Deviation of the normal distribution used to generate

the value of bits per pixel.

▪ The generation rate for video application can be calculated by using the

formula Generation Rate (bits per second) = fps * ppf * bpp

where, fps = frames per second, ppf = pixel per frame, bpp (µ) = bits per

pixel (mean)

▪ Users can set the above-mentioned parameters in the Application

Properties.

▪ Continuous State Autoregressive Markov –This model incorporates the

autocorrelation between the frames. Also, current packet size depends on the previous

packet size via the first order autoregressive Markov process.

o Frames per second – Number of frames arriving per second. This is in the range

of 10 – 50.

https://en.wikipedia.org/wiki/Speech_encoding
https://en.wikipedia.org/wiki/GSM
https://en.wikipedia.org/wiki/Full_Rate
https://en.wikipedia.org/wiki/Adaptive_Multi-Rate
https://en.wikipedia.org/wiki/Algebraic_Code_Excited_Linear_Prediction

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 119 of 281

o Pixels per frame - Number of pixels in each frame. This is in the range of 10000 –

100000.

o Constants A, B– First order autoregressive Markov process λ(n) can be generated

by the recursive relation λ(n) = aλ(n-1)+bw(n).

o Eta– The steady-state average E(λ)and discreet auto covariance C(n) are given by

E(λ) = (b / (1-a)) η C(n)=(b2/(1-a2))an where η is the Gaussian parameter.

▪ Quantized State Continuous Time Markov –In this model the bit rate is quantized

into finite discrete levels. This model takes uniform quantization step as A bits/pixel.

There are M + 1 possible levels (0, A… MA). Transitions between levels are assumed

to occur with exponential rates that may depend on the current level. This model is

approximating the bit rate by a continuous time process λ(t) with discrete jumps at

random Poisson time.

o Frames per second – Number of frames arriving per second. This is in the range

of 10 – 100.

o Pixels per frame - Number of pixels in each frame. This is in the range of 10000 –

100000.

o No of Multiplexed Sources– This model considers the aggregate instantaneous

input rate λN (t) instead of the single source bit rate λ (t). The total rate is the sum

of N independent random processes each with mean E (λ) and variance C (0) at

steady state. Therefore, the steady state- mean of λN (t) will be E (λ N) =N x E (λ)

bits/pixel.

o Quantization Level– This model takes uniform quantization step as A bits/pixel.

There are M + 1 possible levels (0, A, MA). Transitions between levels are assumed

to occur with exponential rates that may depend on the current level.

▪ Simple IPB Composite Model–In this model, the frames are organized as

IBBPBBPBBPBBIBBPBB… i.e., 12 frames in a Group of Pictures (GOP). Generate X0

from a Gaussian distribution N(0, y 0). Set initial value N0= 0, D0 = 1.

For k = 1, 2,…, N-1, calculate Φkj , j = 1, 2,…,k iteratively using the following formulae

 Nk = r(k) – j=1Σk-1Φk-1,j r(k-j)

 Dk = Dk-1 –(N2k-1/Dk-1)

 Φkk = Nk / Dk

 Φkj = Φk-1, j-ΦkkΦk-1,k-j j=1,….,k-1

 mk = j = 1ΣkΦkjXk-j

 y k = (1- Φ2kk) yk-1

© TETCOS LLP. All rights reserved

Ver 13.0 Page 120 of 281

Finally, each Xk is chosen from N (mk, y k). Thus, we get a process X with ACF approximating

to r (k).

The auto correlation function can be calculated in a recursive way as follows:

 r(0) = 1, r(k+1) = ((k+d)/(k+1))r(k)

Where d= H-0.5.

H is called the Hurst parameter k-β is used as the ACF of a self-similar process. We get the

value of H parameter for a self-similar process using the relationship,

 Β = 2 – 2H

Distribution of these data is Gaussian. For data to be Beta distributed, the following mapping

is being used.

 Yk = F-1β (FN(Xk)), k>0

 Xk: Self-similar Gaussian process,

 FN: The cumulative probability of normal distribution,

 F-1β: The inverse cumulative probability functions of the Beta model.

o Frames per second – Number of frames arriving per second. This is in the range

of 10 – 50.

o Gamma I, Gamma B, Gamma P, Eta I, Eta B, Eta P, Beta I, Beta P, Beta B –

Refer i-button help of Simple IPB Composite Model.

6.3 Network Traffic Generation Rate for Different

Applications

This section explains how the traffic generation rate can be calculated for different types of

applications:

CBR and Custom application

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝑀𝑏𝑝𝑠) = (𝑃𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒 (𝑏𝑦𝑡𝑒𝑠) ∗ 8) / 𝐼𝑛𝑡𝑒𝑟 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 (µ𝑠)

Example: Packet size = 1460Bytes and Inter arrival time = 20000µs.

Generation rate (Mbps) = 1460*8/20000 = 0.584Mbps

Video

The traffic generation rate for Video applications are based on the

CONTINUOUS_NORMAL_VBR model. This CONTINUOUS_NORMAL_VBR model is the

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 121 of 281

simplest of all video models in NetSim. It uses Normal Distribution for the generation of bits

per pixel. In this model, consecutive packet sizes are independent of each other. The

generation rate for video application can be calculated by using the formula shown below:

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑) = 𝑓𝑝𝑠 ∗ 𝑝𝑝𝑓 ∗ 𝑏𝑝𝑝

where, fps = frames per second

ppf = pixel per frame

bpp (µ) = bits per pixel (mean)

Users can set the above-mentioned parameters in the Application Properties.

Example: Frames per second = 20, pixels per frame = 10000, bits per pixel = 0.52 then the

generation rate would be

Generation rate (bps) = fps*ppf*bpp

= 20*10000*0.52 = 104000 bits per second = 0.1040 Mbps

Voice

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝑀𝑏𝑝𝑠) = (𝑃𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒 (𝑏𝑦𝑡𝑒𝑠) ∗ 8) / 𝐼𝑛𝑡𝑒𝑟 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 (µ𝑠))

Note – Distribution is constant for all codec types except custom.

Email

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝑀𝑏𝑝𝑠) = (𝐸𝑚𝑎𝑖𝑙 𝑠𝑖𝑧𝑒 (𝑏𝑦𝑡𝑒𝑠) ∗ 8) / 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑠)

Example: Email size = 20000bytes, Duration = 1s.

Generation rate (Mbps) = 20000*8/1000000 = 0.16Mbps

HTTP

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝑀𝑏𝑝𝑠) = (𝑃𝑎𝑔𝑒 𝑠𝑖𝑧𝑒 (𝑏𝑦𝑡𝑒𝑠) ∗ 8 ∗ 𝑃𝑎𝑔𝑒 𝑐𝑜𝑢𝑛𝑡) / 𝐼𝑛𝑡𝑒𝑟 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 (𝑠)

Example: Page size = 20000 Bytes, Page Count = 2, Inter arrival time = 3s

Generation rate (Mbps) = 20000*8*2/3000000 = 0.106Mbps

FTP

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝑀𝑏𝑝𝑠) = (𝐹𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 (𝑏𝑦𝑡𝑒𝑠) ∗ 8) / 𝐼𝑛𝑡𝑒𝑟 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 (𝑠)

Example: File size = 100000 Bytes, Inter arrival time = 5s

Generation rate (Mbps) = 100000*8/5 = 0.16Mbps

© TETCOS LLP. All rights reserved

Ver 13.0 Page 122 of 281

Database

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝑀𝑏𝑝𝑠) = (𝑃𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒 (𝑏𝑦𝑡𝑒𝑠) ∗ 8) / 𝐼𝑛𝑡𝑒𝑟 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 (µ𝑠)

Example: Packet size = 10000 Bytes, Inter arrival time = 1000000µs

Generation rate (Mbps) = 10000*8/1000000 = 0.08Mbps

BSM

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝑀𝑏𝑝𝑠) = (𝑃𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒 (𝑏𝑦𝑡𝑒𝑠) ∗ 8) / 𝐼𝑛𝑡𝑒𝑟 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 (µ𝑠)

Example: Packet size = 20Bytes and Inter arrival time = 1000000µs.

Generation rate (Mbps) = 20*8/1000000 = 0.00016Mbps

6.4 Priority and QoS of Applications

The various application traffic generated in NetSim have the following priority and QoS values

as shown below Table 6-3.

Application Type Priority Value Priority QoS Class

Voice – One way
Voice – Two way

8
8

High
High

RTPS
UGS

Video 6 Medium nRTPS

FTP 2 Low BE

Database 2 Low BE

Custom 2 Low BE

Voice – One way
Voice – Two way

8
8

High
High

RTPS
UGS

Video 6 Medium nRTPS

FTP 2 Low BE

Database 2 Low BE

Custom 2 Low BE

Table 6-3: Priority and QoS of Applications

Note: Priority of “Normal” has a Priority Value of 4 and “nRTPS” QoS Class. Ex: Video over TCP.

Priority will have an impact on network performance when multiple applications with different

priorities are configured in a network. These packets will be queued and dequeued from the

router buffer based on the priority.

6.5 Capture real applications and simulate in NetSim

Users can capture packets from a live network using Wireshark. This can then be used as an

input to NetSim as explained in Section 4 of the Emulator technology library user guide.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 123 of 281

6.6 Modelling Poisson arrivals in NetSim

Any time you have events which occur individually at random moments, but which tend to

occur at an average rate when viewed as a group, you have a Poisson process.

For example, we can estimate that a certain node generates 1200 packets per minute. These

packets are randomly generated within a minute, but there are on average 1200 packets per

minute. If 1200 packets generated per minute that, on average, one packet is generated every

60 / 1200 = 0.05 seconds. So, let’s define a variable λ = 1/ 0.05 = 20 and call it the rate

parameter. The rate parameter λ is a measure of frequency: the average rate of events

(packets) per unit of time (in this case, seconds).

Knowing this, we can ask questions like, what is the probability that a packet will be generated

within the next second? What’s the probability within the next 10 seconds? There’s a well-

known function to answer such questions. It’s called the cumulative distribution function for

the exponential distribution, and it looks like this:

 𝐹(𝑥) = 1 − 𝑒−𝜆𝑥

Figure 6-3: Plot for cumulative distribution function for the exponential distribution

Basically, the more time passes, the more likely it is that a packet is generated. The word

“exponential”, in this context, refers to exponential decay. As time passes, the probability of

having no packets generated decays towards zero – and correspondingly, the probability of

having at least one packet generated increases towards one.

Plugging in a few values, we find that:

▪ The probability of generating a packet within the next 0.05 seconds is F (0.05) ≈ 0.63

▪ The probability of generating a packet within 1 second is F (1) ≈ 0.999999998

In particular, note that after 0.05 seconds – the prescribed average time between packets –

the probability is F (0.05) ≈ 0.63.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 124 of 281

Generating Poisson arrivals in NetSim

We simply write a function to determine the exact amount of time until the next packet. This

function should return random numbers, but not the uniform kind of random number produced

by most generators. We want to generate random numbers in a way that follows our

exponential distribution.

Given that the inverse of the exponential function is ln, it’s easy to write this analytically, where

R is the random value between 0 and 1:

𝑇 = − 𝑙𝑜𝑔𝑒

1 − 𝑅

𝜆

Where 𝑇 is the time at which the next packet is generated.

The simple way of selecting this via the UI is to select exponential distribution for inter-arrival

time inside application properties.

6.7 Application Configuration – Special Conditions

1. In a wired network with routers and switches OSPF, spanning tree etc. takes times to

converge and hence it is a good practice to set the application start time greater than

OSPF convergence time. In general, the applications can start at 20s for smaller

networks and should be increased as the size of the network grows.

2. If applications are started before OSPF convergence, then.

▪ Packets generated before OSPF table convergence may be dropped at the

gateway router.

▪ The application may also stop if ICMP is enabled in the router.’

▪ If TCP is enabled TCP may stop after the re-try limit is reached (since the SYN

packets would not reach the destination)

3. For MANET networks the application start time should be a min of 5s, since that

amount of time is required for convergence of OLSR/ZRP.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 125 of 281

7 Running Simulation via Command Line

Interface

7.1 Running NetSim via CLI

Advanced users can model their simulation via a configuration file (which can be created

without the NetSim GUI) and run the simulation from command line. This is typically done in

cases where very large networks are to be simulated (it takes too long to create it in the GUI),

or to run a series of simulations automatically. The configuration file contains all required

information to run the simulation including the network topology, devices, links, traffic,

statistics, traces etc. To run Simulation in NetSim through command line interface (CLI), the

following steps have to be followed.

Step 1: Note the Application Path

Application path is the current workspace location of the NetSim that you want to run. The

default application path will be something like

“C:\Users\PC\Documents\NetSim_13.0.14_64_std_default\bin\bin_x64” for 64-bit and

“C:\Users\PC\Documents\NetSim_13.0.14_32_std_default\bin\bin_x86” for 32-bit. For

more information on NetSim workspace, Refer Section 4 “Workspaces and Experiments”.

Step 2: Note the IO Path

IO path (Input/output Path) is the path where the input and output files of an application is

written. This is similar to the temp path of windows OS. For NetSim, the IO path can be got by

Start → Run → %temp%/NetSim. Once you reach this folder, the user can notice that the

path would be something like

“C:\Users\PC\AppData\Local\Temp\NetSim\std13.0.14_x64”

The IO path is the path where the Configuration.netsim (NetSim Configuration file) of the

scenario, that will be simulated, should be present.

App path and IO path can also be same, i.e., Configuration.netsim can be placed inside the

app path (if the app path has the write permission). Otherwise, users can create a folder for

IO path and Configuration.netsim can be placed inside that folder.

Note: Sample configuration.netsim files are available in the <NetSim installation Directory>/Docs/

Sample_Configurations folder of the NetSim install directory inside the respective protocol folder names.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 126 of 281

Step 3: Running NetSim through command line for Simulation.

To run NetSim through command line, copy the app path where NetSimCore.exe is present

and paste it in the command prompt.

>cd <app path>

Note: File path should be always added in the command prompt within double quotes. For example,

>cd “C:\Users\PC\Documents\NetSim_13.0.14_64_std_default\bin\bin_x64”

7.1.1 Running in CLI Mode when using floating licenses

For floating licenses, type the following in the command prompt. The type of license can be

seen by clicking on Help → About NetSim in GUI of NetSim.

>NetSimCore.exe<space> -apppath<space><app path><space>-

iopath<space><io path><space>-license<space>5053@<Server IP Address>

Where,

▪ <app path> contains all files of NetSim including NetSimCore.exe. Specifying the app

path is optional. NetSim will take the current path as app path if not specified.

▪ <iopath> contains Configuration.netsim. (Configuration.xsd is available in the bin

folder of NetSim’s current workspace path

<C:\Users\PC\Documents\NetSim_13.0.14_64_std_default\bin\bin_x64> for 64-bit

and <C:\Users\PC\Documents\NetSim_13.0.14_64_std_default\bin\bin_x86> for

32-bit). Refer section 7.2.4 to know about configuration.xsd file.

▪ 5053 is the port number through which the system communicates with the license

server i.e. the system in which the dongle is running (for floating license users)

▪ <Server IP Address> is the ip address of the system where NetSim license server

(dongle) is running.

Note: Please contact your network administrator / lab in-charge to know the IP address of the PC where

the NetSim license server is running.

The following screenshot is the example of running NetSim through CLI where the ip address

of the NetSim license server is 192.168.0.9.

Figure 7-1: Running NetSim through CLI mode for floating license

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 127 of 281

7.1.2 Running in CLI Mode when using node-locked or cloud licenses

For cloud licenses and node-locked licenses, type the following in the command prompt

>NetSimCore.exe<space>apppath<space><apppath><space>iopath<space><io

path><space>-license<space><license file path>

Where,

▪ <app path> contains all files of NetSim including NetSimCore.exe

▪ <iopath> contains Configuration.netsim and Configuration.xsd

▪ <license file path> path where the license file is present. This is generally the

<NetSim_Installation_Directory>/bin folder.

For E.g. C:\Program Files\NetSim\Standard_v13_0\bin

The following screenshot is the example of running NetSim through CLI for the node locked or

cloud license.

Figure 7-2: Running NetSim through CLI mode for Cloud and Node lock licenses

Once simulation is complete the text files that are requested by the end user in

Configuration.netsim will be written in the <iopath>.

To know more about the options that are available to run NetSim via CLI, type the following in

the command prompt.

>cd <app path>

>NetSimCore.exe –h

© TETCOS LLP. All rights reserved

Ver 13.0 Page 128 of 281

Figure 7-3: More Options available to run NetSim via CLI

7.1.3 Quick edit for copy pastes in CLI mode

With Quick Edit mode, you can copy text between a command window and Windows-based

programs, and you can also paste text into a command window by using a right-click

operation. To use Quick edit mode in command prompt users can run the command prompt

→ Right Click the icon in the upper-left corner of the Command Prompt window, and then

Click Properties →In the options, enable Quick Edit mode → and click on OK.

Figure 7-4: Quick edit mode via CLI Running

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 129 of 281

7.2 Understanding the Configuration.netsim file

When a scenario is created in the GUI, NetSim’s UI code write all the details about the devices

used and its properties, the links used and their properties, the properties of the environment

being used, etc. in the file Configuration.netsim

The simulation engine that contains DLLs and NetSimCore.exe reads this

Configuration.netsim, executes the simulation and writes output metrics files. The GUI then

displays the metrics based on the text files written by the backend.

In order to run NetSim through command line (CLI), the user must create the

Configuration.netsim file furnishing all the details about the devices, links and the environment

of the desired scenario.

7.2.1 How to use Visual Studio to edit the Configuration file?

In Visual Studio, XML view provides an editor for editing raw XML and provides IntelliSense

and color coding. After you type the element name and press the CTRL+ SPACE, you will be

presented with a list of attributes that the element supports. This is known as “IntelliSense”.

Using this feature, you can select the options that are required to create the desired scenario.

Color coding is followed to indicate the elements and the attributes in a unique fashion.

The following screenshot displays the Configuration.netsim which is opened through the Visual

Studio as shown below Figure 7-5.

Figure 7-5: Open Configuration.netsim file via Visual Studio

To reformat click on edit→Advanced→Format Document.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 130 of 281

Figure 7-6: Reformat the Configuration.netsim file

7.2.2 Sections of Configuration file

These are the different sections in Configuration.netsim:

▪ EXPERIMENT_INFORMATION

▪ GUI_INFORMATION

▪ NETWORK_CONFIGURATION

▪ SIMULATION_PARAMETER

▪ PROTOCOL_CONFIGURATION

▪ STATISTICS_COLLECTION

EXPERIMENT_INFORMATION:

This section contains the details about the user credentials, such as the user mode (Admin or

Exam or Practice), experiment name, date on which the experiment is created and the

comments about the experiment. This section plays a significant role while running NetSim

through GUI.

GUI_INFORMATION:

This section contains the GUI information like the environment length, view type etc. and the

network name which is desired to be run.

NETWORK_CONFIGURATION:

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 131 of 281

This section is used to configure the devices and the links of the desired network at each layer

of the TCP/IP stack. It consists of DEVICE_CONFIGURATION, CONNECTION and

APPLICATION_CONFIGURATION. DEVICE_CONFIGURATION configures the devices in

the desired network while the CONNECTION configures the links in the desired network and

APPLICATION configures the Applications.

SIMULATION_PARAMETER:

Simulation time and seed values are described in this section.

PROTOCOL_CONFIGURATION:

IPV4 and static ARP are enabled or disabled in this section. The text files illustrating the static

routing and static ARP can be obtained by enabling the corresponding tags in the

Configuration.netsim.

STATISTICS_COLLECTION:

The packet trace and the event trace can be observed in the text files which are created by

enabling the tags in this section. The required fields of the packet trace can be enabled in the

PACKET_TRACE while the event trace can be enabled in the EVENT_TRACE of this section.

7.2.3 Sample Configuration file

Sample “Configuration.netsim” file will be installed in user system along with the software at

<NetSim installed Path>\Docs\ Sample_Configuration\ <Network Technology>.User can open

and edit these files using Visual Studio 2015/2017/2019 or any XML editor. The purpose of

providing the sample “Configuration.netsim” file is to assist the user in writing a network

scenario manually by analyzing the format for that specific network technology.

7.2.4 Configuration.xsd file

Configuration.xsd is an XML schema Definition file which is present in the bin folder of

NetSim’s current workspace path <C:\Users\PC\Documents\NetSim_13.0.14_64_std_default

\bin\bin_x64> for 64-bit and <C:\Users\PC\Documents\NetSim_13.0.14_64_std_default

\bin\bin_x86> for 32-bit.

Configuration.xsd file can be placed inside the <iopath> along with the configuration.netsim

file to verify the contents in the configuration.netsim file. This file checks and validates the

structure and vocabulary of a configuration.netsim document against the grammatical rules of

the appropriate XML language.

It is not mandatory to place the configuration.xsd file along with the Configuration.netsim file

in the iopath. But if it is done, then it will be easier to check & validate changes that are done

to the Configuration.netsim file.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 132 of 281

8 Outputs: Results, Plots and Data Files

8.1 Result Window and Plots Windows

The results of a simulation run are presented in a unified dashboard for convenient analysis.

The graphical displays are application throughputs, link throughputs, buffer occupancy and

TCP congestion windows. The tabular presentation includes end-to-end delays, jitter, errors,

packets generated / received / collided, route tables, TCP Acks, retransmissions etc.

Results are organized per interface, per device, per application and per link. In addition,

summary metrics are aggregated and presented system-wide (network-level). Information in

the trace files contain individual packet flow and individual event execution. Protocol log files

records a myriad of information pertaining to protocol operation necessary for in-depth analysis

and debugging.

The results can be exported as a .csv file and opened in a spread sheet software like Excel.

Results can also be exported in .html format and opened in a browser.

Figure 8-1: Result Window

8.1.1 Application and Link Throughput Plots

If plots are enabled, NetSim plots Instantaneous (50 ms averaging window), Cumulative

moving average and Time Average for link and application throughputs.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 133 of 281

Figure 8-2: Link Throughput plot

Guidance for Zooming, Panning, and obtaining XY co-ordinate value are providing on the

bottom left of the window.

The ‘re-plot’ option can be used to change the X-value Min and Max, and to change the

averaging window for plotting the instantaneous throughput.

8.1.2 Buffer Occupancy Plot

The buffer occupancy over time can be plotted by setting Buffer Occupancy Plot Enabled to

True. This parameter is available wherever there are buffers in NetSim such as in Router –

WAN Port – Network Layer as shown Figure 8-3.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 134 of 281

Figure 8-3: Buffer Occupancy Plot Enabled to True in WAN Port – Network Layer

Upon simulation the buffer occupancy plot can be opened from the Results Window and

would look like what is shown below Figure 8-4.

Figure 8-4: Buffer occupancy plot

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 135 of 281

8.1.3 TCP Congestion Window Plot

The TCP Congestion window over time can be plotted by setting Congestion Window Plot

Enabled to True. This parameter is available wherever in the end nodes in NetSim where

TCP has been enabled, for example Wired Node – Transport Layer.

Figure 8-5: Set TCP Congestion Plot Enabled to True in Transport Layer

Upon simulation the TCP congestion window plot can be opened from the Results Window

and would look like what is shown below Figure 8-6.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 136 of 281

Figure 8-6: TCP Congestion window plot

The downsampling algorithm in NetSim plot engine leads to some approximations while

plotting, especially in TCP. To see a precise TCP congestion plot window please use

Wireshark.

8.1.4 Notes on plots

1. To accelerate plotting, NetSim uses down-sampling/decimation to choose n points

from N for plotting.

▪ NetSim generates n random numbers from a discrete uniform 𝑈 (0, 𝑁 − 1)

distribution and plots these n points.

▪ To get a more precise plot users can select the min and max values in the time

series and replot.

2. The link throughput is calculated as the sum of throughputs in both directions for a full

duplex link.

3. Application throughput is plotted till the last packet reaches or end of simulation time,

whichever is earlier.

4. Cumulative Moving Average: This is the average of the metric up until the current time

and is defined as.

𝜃(̅̅ ̅t) =
1

𝑡
∫ 𝒓(𝒖)𝒅𝒖

𝒕

𝟎

8.1.5 Link metrics

Here users can view the values of the metrics obtained based on the overall network and also

displays the values of the metrics pertaining to each link.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 137 of 281

▪ Link_ Id - It is the unique Id for the link.

▪ Link_ throughput_ graph – Plots throughput vs. Simulation time

Formula:

𝐿𝑖𝑛𝑘 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑖𝑛 𝑀𝑏𝑝𝑠) =
𝑇𝑜𝑡𝑎𝑙 𝑏𝑦𝑡𝑒𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑙𝑖𝑛𝑘 ∗ 8

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 (𝑀𝑖𝑐𝑟𝑜 𝑠𝑒𝑐)

Total Bytes transmitted is counted for successful data packets and control packets.

The calculation is based on the packet size (bytes) at the PHY layer, which would include app

layer payload plus the overheads of all layers. Error and collision packets are not included in

this calculation and only successful packets are counted for calculation of this metric.

▪ Packets_ Transmitted - It is the total number of packets transmitted in the link. Along

with data packets, it includes protocol control packets like ARP Request, ARP Reply,

TCP_ACK, TCP_SYN, RTS, CTS, WLAN_ACK, OSPF_ HELLO, RIP packets etc.

▪ Packets_ errored - Total number of packets error in the link inclusive of data and

control packets.

▪ Packets_ collided - Total number of packets collided in the link including data and

control packets.

▪ Bytes_ Transmitted - It is the total number of bytes transmitted in the link. It is equal

to the sum of the ‘Payload_ Transmitted’ and ‘Overhead_ Transmitted’ transmitted in

the link.

▪ Payload_ Transmitted - It is the total payload transmitted in the link.

▪ Overhead_ Transmitted - It is the total overhead transmitted in the link. It includes the

layer wise overheads and all control packets in the link.

8.1.6 Queue Metrics

Displays the values of the queue metrics for the devices containing buffer queue like routers,

access points etc.

▪ Device Id - Unique id number of the device.

▪ Port Id - Unique id number of the port of the device. This is also called as interface id.

▪ Queued Packet - Number of packets queued at a particular port of a device.

▪ Dequeued Packet - Number of packets removed from the queue at a particular port of

device.

▪ Dropped Packet - Number of packets dropped at a particular port of a device.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 138 of 281

8.1.7 Protocol Metrics

The Performance metrics tables of protocols such as TCP, UDP, IP, IEEE802.11, LTE, AODV

and DSR are provided in the respective technology library documentation.

8.1.8 Device Metrics

Displays device related metrics like ARP table, IP forwarding tables. This is also dependent

upon the type of network/technology simulated.

IP_Forwarding Table

▪ Network Destination - It represents the Network address of the destination.

▪ Netmask/Prefix length - A 32-bit combination used to describe which portion of an

address refers to the subnet and which part refers to the host.

▪ Gateway - It is the IP address of the next-hop router.

▪ Interface - It represents a network connection.

▪ Metrics - It is the value used to choose between two routes.

▪ Type - It represents the type of the network i.e. local/Multicast/Broadcast

Switch MAC Address Table: These metrics will be displayed when we run networks having

Switches.

▪ MAC Address - It represents the MAC address of the switch interfaces.

▪ Type - It is the type of the switch.

▪ Outport - It is the output port of the switch.

8.1.9 Cellular Metrics

Displayed if GSM or CDMA is running in the network.

GSM/CDMA Metrics. MS Metrics

▪ MS Id - It is the id of the Mobile station.

▪ Call Generated - It is the number of calls generated by a Mobile Station.

▪ Call Blocked - It is the number of calls blocked by a Base station when no channel

available.

▪ Call Blocking probability - It is the probability of calls blocked by a base station.

▪ Channel request sent - It is the number of channel requests sent by a mobile station.

▪ Call request sent - It is the number of call requests sent by a mobile station (at source)

▪ Call request received - It is the number of call requests received by a mobile station

(at destination)

▪ Call accepted - It represents the number of calls accepted by a mobile station.

▪ Call rejected - It represents the number of calls rejected by a mobile station.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 139 of 281

▪ Handover request - It is the number of handover requests sent by a mobile station.

Handover refers to the process of transferring an ongoing call or data session from one

channel connected to the core network to another channel.

▪ Call dropped - It represents the number of calls dropped by a BS.

▪ Call dropping probability - It represents the probability of number of calls dropped by

a BS.

8.1.10 Channel metrics

▪ BS Id - It is the Id of a Base Station.

▪ Channel Id - It represents the channel number.

▪ Uplink frequency - It is the uplink frequency of the GSM network to send data from

mobile station to base station.

▪ Downlink frequency - It is the downlink frequency of the GSM network to send data

from base station to mobile station.

▪ Time slot - It represents the time slot. In GSM network, Frequency band is divided into

200kHz carriers and then each carrier is divided into 8 time slots (0-7).

8.1.11 Sensor metrics

Displayed if WSN/IOT is running in the network.

▪ Device Id - It represents the Id’s of the sensor and LoWPAN Gateway.

▪ Packet Transmitted - It is the number of packets (either data/routing/ZigBee)

transmitted by Sensor and LoWPAN gateway

▪ Packet Received - It is the number of packets (either data/routing/ZigBee) received

by Sensor and LoWPAN gateway

▪ Ack Transmitted - It is the number of acknowledgements transmitted by a particular

device.

▪ Ack Received - It is the number of acknowledgements received by a particular device.

▪ CCA Attempt - It represents the number of Clear channel Assessment attempts at

sensors and LoWPAN Gateway used to determine whether the medium is idle or not.

▪ Successful CCA Attempt - It represents the number of successful CCA attempts at

sensors and LoWPAN Gateway.

▪ Failed CCA - It represents the number of failed CCA attempts at sensors.

▪ Total Backoff Time - It is the total backoff time obtained. It is the time that sensors

have to wait before attempting to access the channel.

▪ Average Backoff time - It is the average backoff time.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 140 of 281

▪ Beacon Transmitted - It the total number of beacons transmitted by a LoWPAN

Gateway. It transmits network beacons in a beacon enabled mode. If beacon mode is

enabled, it follows slotted CSMA/CA algorithm

▪ Beacon Received - It is the total number of beacons received by the sensors.

▪ Beacon Forwarded - It is the total number of beacons forwarded by the sensors.

▪ Beacon Time - It is the total time calculated for beacon transmission at LoWPAN

Gateway.

▪ CAP Time - It is the total Contention Access Period obtained during simulation. During

this time, sensors compete for channel.

▪ CFP Time - It is the total Contention free period obtained. In CFP, nodes request for

Guarantee time slots. If GTS is allocated, nodes can transmit without contention.

8.1.12 Battery Model

▪ Device Name - It represents the Name and Id of the Sensor

▪ Initial Energy - It represents the initial energy of the sensors.

▪ Consumed Energy - This is the total energy consumed by the respective sensor.

▪ Remaining Energy - This is the remaining energy of the sensor at the end of the

simulation.

▪ Transmission Energy - It is the energy consumed by the respective sensor for

transmitting data.

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐸𝑛𝑒𝑟𝑔𝑦 (𝑚𝐽) = 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (𝑚𝐴) × 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝑉) ×

𝐴𝑚𝑜𝑢𝑛𝑡𝑂𝑓𝑇𝑖𝑚𝑒𝑅𝑎𝑑𝑖𝑜𝐼𝑠𝐼𝑛𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑆𝑡𝑎𝑡𝑒(𝑠).

▪ Receiving Energy - It is the energy consumed by the respective sensor while receiving

data.

𝑅𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔𝐸𝑛𝑒𝑟𝑔𝑦 (𝑚𝐽) = 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (𝑚𝐴) × 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝑉) ×

𝐴𝑚𝑜𝑢𝑛𝑡𝑂𝑓𝑇𝑖𝑚𝑒𝑅𝑎𝑑𝑖𝑜𝐼𝑠𝐼𝑛𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑆𝑡𝑎𝑡𝑒(𝑠).

▪ Idle Energy - When the sensor is active and ready but not currently receiving or

transmitting data packets, it is said to be in an idle state. This metrics calculates the

energy consumed by the sensor in idle state.

𝐼𝑑𝑙𝑒𝐸𝑛𝑒𝑟𝑔𝑦 (𝑚𝐽) = 𝐼𝑑𝑙𝑒𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (𝑚𝐴) × 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝑉) ×

𝐴𝑚𝑜𝑢𝑛𝑡𝑂𝑓𝑇𝑖𝑚𝑒𝑅𝑎𝑑𝑖𝑜𝐼𝑠𝐼𝑛𝐼𝑑𝑙𝑒𝑆𝑡𝑎𝑡𝑒(𝑠).

▪ Sleep Energy - This is the energy consumed when the respective sensor is in an

inactive mode.

𝑆𝑙𝑒𝑒𝑝𝐸𝑛𝑒𝑟𝑔𝑦 (𝑚𝐽) = 𝑆𝑙𝑒𝑒𝑝𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (𝑚𝐴) × 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝑉) ×

𝐴𝑚𝑜𝑢𝑛𝑡𝑂𝑓𝑇𝑖𝑚𝑒𝑅𝑎𝑑𝑖𝑜𝐼𝑠𝐼𝑛𝑆𝑙𝑒𝑒𝑝𝑆𝑡𝑎𝑡𝑒(𝑠).

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 141 of 281

8.1.13 CR metrics

Displayed if 802.22 cognitive radio is running in the network.

8.1.13.1 Base station Metrics

▪ BS Id - It is the id of a Base Station.

▪ Interface Id - It is the Interface Id of a BS

▪ SCH sent - SCH. It is the number of Superframe Control Headers sent by a BS. SCH

carries Base Station’s MAC address along with the schedule of quiet periods for

sensing, as well as other information about the cell.

▪ FCH sent - It represents the number of Frame Control Headers sent by a BS. It is

transmitted as a part of Down Stream (DS) Protocol Data Unit in DS subframe specifies

length of either DS-Map if transmitted or US-Map. It is sent in the first two subchannels

of the symbol immediately following the preamble symbol.

▪ DSA req received - It is the number of Dynamic Service Addition requests received

by a BS used to create a new service flow.

▪ DSA rep sent - It is the number of DSA replies sent by a BS.

▪ DSC req received - It is the number of Dynamic Service Change requests received by

a BS to dynamically change the parameters of an existing service flow.

▪ DSC rep sent - It is the number of DSC replies sent by a BS.

▪ DSD req received - It is the number of Dynamic Service Deletion requests received

by a BS to delete an existing service flow.

▪ DSD rep sent - It is the number of DSD replies sent by a BS.

▪ CHS req sent - It is the number of Channel Switch Requests sent by a BS.

8.1.13.2 CPE metrics

▪ CPE Id - It represents the Id of Customer Premise Equipment

▪ Interface Id - It represents the Interface Id of the CPE

▪ SCH received - It is the number of Superframe Control Headers received by a CPE.

▪ FCH received - It represents the number of Frame Control Headers received by a

CPE.

▪ DSA req sent - It is the number of Dynamic Service Addition requests sent by a CPE.

▪ DSA rep received - It is the number of DSA replies received by a CPE.

▪ DSC req sent - It is the number of Dynamic Service Change requests sent by a CPE.

▪ DSC rep received - It is the number of DSC replies received by a CPE.

▪ DSD req sent - It is the number of Dynamic Service Deletion requests sent by a CPE.

▪ DSD rep received - It is the number of DSD replies received by a CPE.

▪ CHS req received - It is the number of Channel Switch Requests received by a CPE.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 142 of 281

▪ UCS Sent - It is the number of Urgent Coexistence Situations sent by a CPE.

8.1.13.3 Incumbent Metrics

▪ BS Id - It represents the Id of the Base Station

▪ Incumbent Id - It represents the Id of the Incumbent.

▪ Frequency - It is the frequency at which the incumbent operates.

▪ Operational Time - It is the active period of the incumbent.

▪ Idle Time - It is the inactive period of the incumbent.

▪ Interference Time - It is the time when interference occurs due to CPE.

8.1.13.4 Channel Metrics

▪ BS Id - It is the Id of the BS

▪ Channel Number - It represents the channel number at which the BS is operating.

▪ Frequency - It is the frequency of the channel at which the BS is operating.

▪ Spectral efficiency - It refers to the information rate that can be transmitted over a

given bandwidth in a specific communication system. It is a measure of how efficiently

a limited frequency spectrum is utilized by the physical layer protocol, and sometimes

by the media access control protocol.

8.1.14 Application Metrics

Displays Application performance metrics.

▪ Application Id - It is the unique Id of the application running at the source.

▪ Application Name - It is unique name of the application running.

▪ Source Id - It is the unique Id of the device running that particular application.

▪ Destination Id - It is the unique Id of the destination device.

▪ Packet generated - It is the total number of packets generated from the source.

▪ Packets Transmitted - It is the total number of packets generated and transmitted

from the source.

▪ Packet received - It is the total number of packets received at the destination.

▪ Payload Transmitted - It is the total payload transmitted in bytes. It is equal to the

product of ‘Packets Transmitted’ and ‘Packet Size’. This calculation will apply only in

case of a constant packet size (CBR, CUSTOM (constant) etc. In other cases, this

should be considered as the sum of the payload of the packets transmitted.

▪ Payload Received - It is the total payload received at the destination in bytes.

▪ Throughput - Total user data (or) payload delivered to their respective destination

every second.

If Simulation Time > Application End Time, then

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 143 of 281

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑀𝑏𝑝𝑠) =
𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑡𝑜 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (𝑏𝑦𝑡𝑒𝑠) ∗ 8

𝑇𝑖𝑚𝑒 𝑙𝑎𝑠𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡 𝑎𝑡 𝐴𝑝𝑝 𝑙𝑎𝑦𝑒𝑟(𝜇𝑠) − 𝐴𝑝𝑝 𝑆𝑡𝑎𝑟𝑡 𝑇𝑖𝑚𝑒 (𝜇𝑠)

If Simulation Time < Application End Time, then

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑖𝑛 𝑀𝑏𝑝𝑠) =
𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑡𝑜 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (𝑏𝑦𝑡𝑒𝑠) ∗ 8

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒(𝜇𝑠) − 𝐴𝑝𝑝 𝑆𝑡𝑎𝑟𝑡 𝑇𝑖𝑚𝑒(𝜇𝑠)

▪ Jitter

𝐽𝑖𝑡𝑡𝑒𝑟(𝜇𝑠) =
𝑇𝑜𝑡𝑎𝑙𝑃𝑎𝑐𝑘𝑒𝑡 𝐽𝑖𝑡𝑡𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 − 1

𝑃𝑎𝑐𝑘𝑒𝑡 𝐽𝑖𝑡𝑡𝑒𝑟 (𝜇𝑠) = |𝐸𝑛𝑑𝑡𝑜𝐸𝑛𝑑 𝐷𝑒𝑙𝑎𝑦 𝑜𝑓 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑎𝑐𝑘𝑒𝑡 − 𝐸𝑛𝑑𝑡𝑜𝐸𝑛𝑑 𝐷𝑒𝑙𝑎𝑦 𝑜𝑓 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑎𝑐𝑘𝑒𝑡|

▪ Delay - It is the average amount of time taken (calculated for all successful packets) to

reach the destination application layer from when the packet is sent from source’s

application later. It would APP_IN time at destination – APP_OUT time at source.

8.1.15 IP Metrics

IP layer metrics calculated for the overall network and displayed for each device.

▪ Device Id - It is the unique ID of the Device.

▪ Packet sent - Specifies the number of packets (L3 and above) sent by the node.

▪ Packet forwarded - Specifies the number of packets (L3 and above) forwarding by an

intermediate node(s) to next hop/target node.

▪ Packets Received - Specifies the number of packets (L3 and above) successfully

received at the destination, from intermediate node(s) and source node(s).

▪ Packets discarded - Specifies the number of packets (L3 and above) discarded when

there is no route available.

▪ TTL Expired - Specifies the number of Data and Control packets (L3 and above)

dropped when TTL expires.

▪ Firewall block - Specifies the number of packets (L3 and above) blocked by Firewall

for example TCP, UDP and ICMP Packets etc.

8.1.16 Advanced Metrics

In the Application metrics table, in addition to packets generated and packets received,

additional information on duplicate packets that were received can be obtained. This is

achieved by adding the following environment variable:

PC Settings → Properties → Advance system settings → Environment Variables → User

Variables → New

© TETCOS LLP. All rights reserved

Ver 13.0 Page 144 of 281

Figure 8-7: Environment Variables window

The Application metrics table in the results dashboard will display an additional column –

Duplicate packet received as shown below Figure 8-8

Figure 8-8: Application metrics table in results window

Note: Note that keeping track of duplicate packets will slow down the simulation

8.1.17 Notes on metrics

1. The metrics are calculated at each layer and might not be equivalent to the same metric

calculated at a different layer. For exactness and precision, we recommend users also

verify the results with the event trace & packet trace generated by NetSim.

2. Broadcast / Multicast application will have no entries under Application Metrics in

Results window if there are zero packets received. In other words, it will not show ‘0’

throughput. Users may notice that ‘0’ throughput is shown for unicast applications, and

this is because of the way Broadcast/Multicast application metrics is architected in

NetSim.

8.1.18 The different results files written at the end of simulation

The following table lists the various files that will be written in the NetSim install directory/ IO

path on completion of simulation.

S. No File Contents

1 Metrics.xml
Contains the metrics of the network
that is simulated recently.

2 Node.pcap
Contains the information of captured
packets that is recently simulated.

3 LicenseErrorLog.txt

Contains the status of the
communication between the NetSim
dongle and the client

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 145 of 281

4 ConfigLog.txt

This file will be written while reading
the Configuration file.
Provides errors if there are errors in
the configuration file.

5 LogFile.txt

Contains the logs as the control flows
across various layers in the Network
Stack

6 PacketTrace.csv

Contains the detailed packet
information. This file will be written
only when Packet Trace is enabled.

7 EventTrace.csv

Contains the information about each
event. This file will be written only
when Event Trace is enabled.

8 Animation.txt
Contains the information about the
flow of the packet.

9 Static ARP.txt

Contains the information about the
dropped devices like Ip address and
mac address.

Table 8-1: Different results files written at the end of simulation in I/O Path

If NetSim runs via the UI, then the metrics will be displayed automatically at the end of

simulation with illustrative tables.

If NetSim runs via CLI, then the metrics will be written into Metrics.txt and MetricsGraph.txt.

8.2 Export to .csv

In NetSim Result Dashboard, users can use the option Export Results (.xls/.csv) to export

all the metrics file to XL/CSV file for the further computation or analysis using it.

Figure 8-9: Select Option Export Results (.xls/.csv) in Result window

© TETCOS LLP. All rights reserved

Ver 13.0 Page 146 of 281

XL/CSV file:

Figure 8-10: Option Export Results (.xls/.csv) to export all the metrics

A web formatted (html file) report can be generated for simulations performed in NetSim, using

the Print button present in the results window as shown below Figure 8-11.

Figure 8-11: Print Results(.html) in Results window

The report that is generated contains:

▪ A screenshot of the network scenario created in NetSim GUI.

▪ All the metrics tables that were part of the Simulation Results Window

▪ Dynamic Metrics Plots (if Dynamic Metrics is enabled prior to Simulation).

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 147 of 281

Figure 8-12: html report generated in PDF format

• The report that is generated makes it convenient for documentation, reference, study

and further analysis.

• This html report can be printed as PDF or printed out by selecting printer options.

8.3 Packet Animation

NetSim provides the feature to play and record animations to the user. Packet animation

enables users to watch traffic flow through the network for in-depth visualization and analysis.

Users have the following options before running simulation:

▪ Record the animation.

▪ Don’t play/ record animation and

▪ Play and record animation while running simulation.

Figure 8-13: Run Simulation window

© TETCOS LLP. All rights reserved

Ver 13.0 Page 148 of 281

The packet animation would then be recorded and the user can view the animation from the

NetSim Packet Animation window as shown below Figure 8-14.

Figure 8-14: Packet Animation window

While viewing packet animation, user can see the flow of packets as well as the type of packet.

Blue color packet denotes control packet, green color is used for data packet and red color is

error/collided packet.

8.3.1 Packet animation Table

Packet Animation table is also provided for users to see the flow of packets along with packet

animation.

Figure 8-15: Packet Animation table in animation window

The “Table Filters” option available in the Packet Animator Window allows users to filter the

parameters that will be displayed in the Packet Trace Window displayed alongside animation.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 149 of 281

Figure 8-16: Table Filters option available in the Packet Animator Window

Note: Packet Animation table would be displayed only if Packet Trace is enabled in the

network before running the simulation.

8.3.2 Packet animation – Display Settings

NetSim Packet Animation can be customized using the View More drop-down list provided

with the display settings as shown below Figure 8-17.

Figure 8-17: Display Settings in Packet animation window

The View More Animation options can be used to view (enable/disable)

▪ Device Name

▪ IP address of devices

▪ VLAN ID

▪ Application Flow

▪ Node Movement

▪ Packet Flow

▪ Battery Level

▪ Route tables etc alongside animation

Note: The options displayed under View more drop down are dependent on the network that

is simulated and features that are enabled.

8.3.3 Example on how to use NetSim packet animation feature:

Case 1: ARP PROTOCOL - WORKING

Figure 8-18: Intra LAN IP Forwarding

© TETCOS LLP. All rights reserved

Ver 13.0 Page 150 of 281

▪ Create a scenario with 3 wired nodes, 2 switches and 1 router and connect it based on

the following scenario.

▪ Disable TCP in all the wired nodes.

▪ Click on application and set Source_Id and Destination_Id as 1 and 2 respectively.

▪ Set Simulation time = 100s. After clicking on Run Simulation, edit Static ARP

Configuration tab by setting Static ARP as Disable. Click on OK button to simulate.

Now click on packet animation and analyse the following:

Figure 8-19: Packet animation window

▪ NODE-1 sends ARP_Request which is then broadcasted by SWITCH-4.

▪ During the process the devices that receive the ARP_Request packet (Switch, Router,

and Node-2) will update their ARP table or the switch table.

▪ NODE -2 sends the ARP_Reply to NODE-1 via SWITCH-4.

▪ Now NODE-1 updates its ARP table with the MAC address of NODE-2 on receiving

the ARP_Reply.

▪ After this step, NODE-1 starts sending data packets to NODE-2 since the source now

has both IP and MAC addresses of destination.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 151 of 281

Case 2: Across-Router-IP-forwarding

Figure 8-20: Across Router IP Forwarding

▪ Follow all the steps till Step 2 and perform the following sample.

▪ To run the simulation, click on the Application icon and set the Source_Id and

Destination_Id as 1 and 3 respectively.

▪ Click on Run Simulation and set Simulation time as 100 sec.

▪ Then go to Static ARP Configuration tab and set Static ARP as Disable. Click on OK

button to simulate.

Click on packet animation to analyse the following:

Figure 8-21: Packet animation window

▪ NODE-1 transmits ARP_Request which is further broadcasted by SWITCH-4.

ROUTER-6 sends ARP_Reply to NODE-1 which goes through SWITCH-4. Then

NODE-1 starts to send data to NODE-3.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 152 of 281

▪ If the router has the address of NODE-3 in its routing table, ARP protocol ends here

and data transfer starts that is PACKET_ID 1 is being sent from NODE-1 to NODE-3.

▪ In other case, Router sends ARP_Request to appropriate subnet and after getting the

MAC ADDRESS of the NODE-3, it forwards the packet which it has received from

NODE-1.

▪ When a node has to send data to a node with known IP address but unknown MAC

address, it sends an ARP request. If destination is in same subnet as the source (found

through subnet mask) then it sends the ARP (broadcast ARP message) request,

otherwise it forwards it to the default gateway.

▪ Former case happens in case of intra-LAN communication. The destination node

sends an ARP response which is then forwarded by the switch to the initial node. Then

data transmission starts.

▪ In latter case, a totally different approach is followed. Source sends the ARP request

to the default gateway and gets back the MAC address of default gateway. (If it knows

which router to send then it sends ARP request to the corresponding router and not to

Default gateway).

▪ When source sends data to default gateway (a router in this case), the router

broadcasts ARP request for the destined IP address in the appropriate subnet. On

getting the ARP response from destination, router then sends the data packet to

destination node.

8.3.4 How to record and save Packet animation as a Video file

Note: The following procedure applies to Windows 10 Operating system only. Users with other

versions of Windows can use third-party video capture tools (Link to a list of common tools) to

save NetSim packet animation as a video.

To quickly capture NetSim packet animation, launch the packet animation window. Before

playing the animation, press Windows key + G on the keyboard to open Game bar. (or Select

windows settings and then select Gaming option for Game bar related settings). Now start

recording by pressing record option as shown below. (Shortcut to start recording Windows

key + Alt + R)

https://en.wikipedia.org/wiki/Comparison_of_screencasting_software

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 153 of 281

Figure 8-22: In packet animation window press Windows key + G on the keyboard and Select Start
recording

Then select the checkbox “Enable gaming features for this app to record gameplay” option.

Figure 8-23: Select the checkbox “Enable gaming features for this app to record gameplay” option

Once you select the checkbox, recording window will open as shown below.

Figure 8-24: Recording window

Now start playing the animation in NetSim using play button in packet animation window.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 154 of 281

Figure 8-25: Start playing the animation in animation window

Once the animation has been recorded stop recording (Shortcut to stop recording Windows

logo key + Alt + R). Recorded clips will be saved in windows default videos folder (E.g.:

C:\Users\PC\Videos\Captures).

8.4 Packet Trace

NetSim allows users to generate trace files which provide detailed packet information useful

for performance validation, statistical analysis and custom code de-bugging. Packet Trace logs

a set of chosen parameters for every packet as it flows through the network such as arrival

times, queuing times, departure times, payload, overhead, errors, collisions etc.

The packet trace is written whenever a packet is received at a device. For example, if we have

transmission N1 -> N2 -> N3, then the packet trace is written for every packet being received

at N2 and at N3. Note that it not written for every packet being transmitted by N1 and the

subsequently by N2. This means that packet which are transmitted from N1 but which may

have been errored or collided before being received by N2 are not written in the packet trace.

By providing a host of information and parameters of every packet that flows through the

network, packet trace provides necessary forensics for users to catch logical errors without

setting a lot of breakpoints or restarting the program often. Window size variation in TCP,

Route Table Formation in OSPF, Medium Access in Wi-fi, etc., are examples of protocol

functionalities that can be easily understood from the trace.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 155 of 281

Note: By default, packet tracing option is turned off. Turning on Packet Trace will slow down the simulation

significantly. After simulation, users would get the “open packet trace” link in the metrics window (will also

get Packet_Trace.csv file in the saved folder).

8.4.1 How to set filters to NetSim trace file

Step 1: Open the trace file. (In this example packet trace is opened)

Figure 8-26: Packet Trace

Step 2: Click the arrow in the header of the column you want to filter. In the list of text or

numbers, uncheck the (Select All) box at the top of the list, and then check the boxes of the

items you want to show.

For example, click on arrow of SOURCE_ID and uncheck the “Select all” check box and select

NODE 2 then click on OK.

All the rows which are having NODE 2 as source id will be shown below Figure 8-28.

Figure 8-27: Select Transmitter ID arrow mark in the header in packet trace

© TETCOS LLP. All rights reserved

Ver 13.0 Page 156 of 281

Figure 8-28: Filter Transmitter ID to NODE 2 in packet trace

Typically, filters can be set to observe “Errored/Collided/Successful “packets, packets of

destination and packets of source.

8.4.2 Observing packet flow in the Network through packet trace file

Open the packet trace file, Click the arrow in the header of the column PACKET_ID and

uncheck the “Select all” check box and select the packet id which you want to observe, for

example 1, and then click on OK.

Figure 8-29: Select Packet ID arrow mark in the header in packet trace

Scenario is as shown below Figure 8-30 and traffic flow is from Wired Node 2 to Wired Node

3.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 157 of 281

Figure 8-30: Traffic flow is from Wired Node 2 to Wired Node 3

Flow of packet 1 can be observed from the packet trace as shown below Figure 8-31.

Figure 8-31: Flow of packet observed in the packet trace

Note: In the trace file device IDs are shown not device names. Wired Node 1’s ID is 2 so it is Shown as

NODE-2, Wired Node 2’s ID is 3 so it is shown as NODE -3, Router-1’ ID is 1 so it is shown as ROUTER-1.

Device IDs are shown on the top of the device icon in the above scenario.

In a scenario source and destinations are fixed but transmitter and receiver are changed. For

example, in the above scenario NODE-2 is the source and NODE-3 is the destination, but

when NODE- 2 sending the packet to the ROUTER-1 then NODE-2 is the transmitter and

ROUTER-1 is the receiver. When ROUTER-1 sending the packet to the NODE-3, ROUTER-

1 is the transmitter and NODE-3 is the receiver.

8.4.3 Analysing Packet Trace using Pivot Tables

NetSim Packet trace is saved as a spread sheet. Packet Trace can be converted to an Excel

table to make the management and analysis of data easier. A table typically contains related

data in a series of worksheet rows and columns that have been formatted as a table. By using

the table features, you can then manage the data in the table rows and columns independently

from the data in other rows and columns on the worksheet.

PivotTables are a great way to summarize, analyse, explore, and present your data, and you

can create them with just a few clicks. PivotTables are highly flexible and can be quickly

© TETCOS LLP. All rights reserved

Ver 13.0 Page 158 of 281

adjusted depending on how you need to display your results. You can also create Pivot Charts

based on PivotTables that will automatically update when your PivotTables do.

If you enable packet trace, Open Packet Trace link present in the Simulation Results Window

can be used to load the packet Trace file in MS-Excel. Formats the spread sheet as a table

for convenient analysis.

Figure 8-32: Sheet 1 is the packet trace

Sheet 2 of the packet trace file has a pivot table – Pivot Table (TX-RX) automatically populated

to analyze the packets that were transmitted and received in the network that was simulated.

Further users can modify the table by adding or deleting the column headers.

Figure 8-33: Sheet 2 of the packet trace file has a pivot table

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 159 of 281

Sheet 3 of the packet trace has a blank pivot table – Pivot Table (Custom) which can be used

to create additional pivot tables from scratch.

Figure 8-34: Sheet 3 of the packet trace file has a blank pivot table

Steps to analyse the packet trace using pivot tables

Step 1: Click on Packet Trace in the result dashboard, you can find 3 sheets will be created

i.e. Packet Trace, Pivot Table (TX-RX), Pivot Table (Custom)

Figure 8-35: Packet Trace, Pivot Table (TX-RX), Pivot Table (Custom) in packet trace

Step 2: Click on Pivot Table (Custom) to create your own pivot table.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 160 of 281

Figure 8-36: Select Blank Pivot Table (Custom) to create your own pivot table

Once you open the sheet PivotTable (Custom), you'll need to decide which fields to add.

Each field is simply a column header from the source data. In the PivotTable Field List,

check the box for each field you want to add.

8.4.4 Packet Transmitted / Received Analysis

• If you want to analyse packets sent from all sources to all destinations, then check

SOURCE_ID, DESTINATION_ID and CONTROL_PACKET_TYPE/APP_NAME as

shown below Figure 8-37.

Figure 8-37: Select the check box of SOURCE_ID, DESTINATION_ID and

CONTROL_PACKET_TYPE/APP_NAME in PivotTable Fields

• The selected fields will be added to one of the four areas below the Field List. Click

SOURCE_ID, hold it and drag to the ROW field. Similarly, DESTINATION_ID to

COLUMNS and CONTROL_PACKET_TYPE/APP_NAME to VALUES.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 161 of 281

Figure 8-38: Selected fields add to one of the four areas below the Field List

• The PivotTable will calculate and summarize the selected fields. In this example, the

PivotTable shows the packets sent from all sources to all destinations.

Figure 8-39: PivotTable Created with selected fields

• The above example shows all the packets which including data packets and control

packets.

• If you wish to know how many Data and how many were control packets then, check

the PACKET_TYPE and drag it to the ROWS field as shown below Figure 8-40.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 162 of 281

Figure 8-40: Select the PACKET_TYPE Check Box and drag it to the ROWS fields

▪ This will look like

Figure 8-41: PivotTable Created with Packet Type

▪ Further, if you wish to know how many packets got errored and how many were

successful, check the PACKET_STATUS field and drag it to the ROWS field.

Figure 8-42: PivotTable Created with Packet Status

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 163 of 281

8.4.5 Delay analysis

We explain this using a packet trace generated per the following network scenario.

Figure 8-43: Network Topology with different application

Create a network scenario with 1 router and 6 wired nodes. Create 3 applications as per the

following Table 8-2.

Application
Type

Source
Id

Destination
Id

Transport

Protocol

Packet Size
(Bytes)

Inter arrival time
(μs)

CBR 2 3 TCP 1460 20000

VOICE 4 5 UDP 1500 20000

CUSTOM 6 7 TCP 1200 20000

Table 8-2: Application Properties

Note: Users need to select Codec as CUSTOM for voice application as shown in the below

screenshot Figure 8-44.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 164 of 281

Figure 8-44: Application properties Window

Enable Packet Trace and simulate the scenario for 10 seconds. Open packet trace and

perform the following steps:

▪ Insert a column after PHY_LAYER_END_TIME, then select the whole column and

calculate delay for each and every packet by using the formula.

=PHY_LAYER_END_TIME – APPLICATION_LAYER_ARRIVAL_TIME

Figure 8-45: Calculate delay in packet trace using PHY_LAYER_END_TIME –
APPLICATION_LAYER_ARRIVAL_TIME then Press CTRL + ENTER

▪ Then Press CTRL + ENTER. This will calculate delay for the whole column shown

below.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 165 of 281

Figure 8-46: Calculate delay for the whole column

▪ Name the column as DELAY.

▪ Go to Insert->PivotTable and click on OK to create a blank Pivot Table with the newly

added column listed under the PivotTable Fields.

▪ Drag and drop DESTINATION_ID, RECEIVER_ID, PACKET_STATUS and

CONTROL_PACKET_TYPE/APP_NAME to FILTERS field shown below Figure 8-47.

Figure 8-47: Added Selected fields to Filter

▪ Filter RECEIVER_ID to Node-3 by clicking on the drop down and select OK.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 166 of 281

Figure 8-48: Filter RECEIVER_ID to Node-3 by clicking on the drop down

▪ Similarly filter CONTROL_PACKET_TYPE/APP_NAME to APP1_CBR,

DESTINATION_ID to NODE-3 and PACKET_STATUS to Successful

Figure 8-49: Similarly filter other fields as per screenshot

▪ Drag and drop PACKET_ID to ROWS and the Delay value that we calculated earlier

to VALUES area.

Figure 8-50: Drag and drop DELAY value that we have calculated earlier to

ROWS and VALUES field

▪ Click on Count of DELAY drop down and select Value Field settings, then Select SUM

and click on OK.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 167 of 281

Figure 8-51: Select Count of DELAY drop down and select Value Field settings as SUM

▪ Again, Drag and drop DELAY to VALUES field.

Figure 8-52: Drag and drop DELAY to VALUES field

▪ Select one cell and calculate the Application Delay, which is the average delay faced

by a packet by using the formula

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐷𝐸𝐿𝐴𝑌 =
𝑆𝑢𝑚 𝑜𝑓 𝐷𝐸𝐿𝐴𝑌 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑃𝑎𝑐𝑘𝑒𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠

 Figure 8-53: Calculated the Application Delay in Pivot table

▪ Compare the obtained value with the DELAY in Application Metrics

© TETCOS LLP. All rights reserved

Ver 13.0 Page 168 of 281

Figure 8-54: Compare the obtained DELAY with Application Metrics DELAY

▪ To calculate DELAY for VOICE application, filter DESTINATION_ID to Node-5,

RECEIVER_ID to Node-5, CONTROL_PACKET_TYPE/APP_NAME to APP2_VOICE

and PACKET_STATUS to Successful

▪ Similarly calculate and compare DELAY for other applications by following the above

procedure.

8.4.6 Throughput analysis

To explain how users can perform Throughput Analysis, we have used same network design

example as was used for Delay analysis above.

After loading the packet trace switch to sheet Pivot Table (Custom), drag and drop

SOURCE_ID, RECEIVER_ID, CONTROL_PACKET_TYPE / APP_NAME and

PACKET_STATUS to FILTERS field.

▪ Similarly drag and drop APP_LAYER_PAYLOAD to ROWS field and VALUES field.

▪ Filter SOURCE_ID to NODE-2, CONTROL_PACKET_TYPE APP_NAME to

APP1_CBR, PACKET_STATUS to Successful and RECEIVER_ID to NODE-3

▪ Click on Count of APP_LAYER_PAYLOAD drop down and select Value Field settings,

then Select Sum and click on OK.

▪ The pivot table would look like.

Figure 8-55: Pivot Table

▪ Select 1 cell and calculate the throughput by using the formula.

 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝑀𝑏𝑝𝑠) =
𝑆𝑢𝑚 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝐴𝑝𝑝 𝐿𝑎𝑦𝑒𝑟 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 (𝐵𝑦𝑡𝑒𝑠) ∗ 8

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 (𝜇𝑠)

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 169 of 281

Figure 8-56: Calculate the throughput by using the formula in Pivot Table

EmptyCell=GETPIVOTDATA("APP_LAYER_PAYLOAD(Bytes)",A6,"APP_LAYER_PA

YLOAD(Bytes)",1460)*8/10000000

▪ Now compare the throughput calculated using pivot table with the Application Metrics

throughput.

Figure 8-57: Compared the calculated throughput using pivot table with the Application

Metrics throughput

▪ To calculate THROUGHPUT for VOICE application, filter SOURCE_ID to Node-4,

RECEIVER_ID to Node-5, CONTROL_PACKET_TYPE/APP_NAME to APP2_VOICE

and PACKET_STATUS to Successful

▪ Similarly calculate and compare THROUGHPUT for other applications by following the

above procedure.

8.4.7 Plotting with Pivot Charts

In a pivot table, you can create a new field that performs a calculation on the sum of other

pivot fields.

▪ Open Packet Trace, switch to sheet Pivot Table (Custom)

▪ Drag and drop SOURCE_ID, RECEIVER_ID and PACKET_STATUS to FILTERS field,

then CONTROL_PACKET_TYPE/APP_NAME, APP_LAYER_PAYLOAD to ROWS

field and APP_LAYER_PAYLOAD to VALUES field as shown below Figure 8-58.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 170 of 281

Figure 8-58: Drag and drop Sleeted Fields to one of the four areas

below the Field List

▪ Filter SOURCE_ID to Node 2, Node 4 and Node 6, then RECEIVER_ID to Node 3,

Node 5 and Node 7 and PACKET_STATUS to successful

Figure 8-59: Filter Source ID and Destination ID

▪ Filter CONTROL_PACKET_TYPE/APP_NAME to APP1_CBR, APP2_VOICE and

APP3_CUSTOM

▪ Select a cell in the pivot table, and on the Excel Ribbon, under the PivotTable Tools

tab, click the Options tab (Analyse tab in Excel 2013).

▪ In the Calculations group, click Fields, Items, & Sets, and then click Calculated Field.

Figure 8-60: In Calculations group Select Calculated Field

▪ Type a name for the calculated field, Application Throughput.

▪ Then click on ADD to save the calculated field.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 171 of 281

Figure 8-61: Insert calculated field name and select Add

▪ Click on Formula text box and then select APP_LAYER_PAYLOAD in the Fields list

and click on Insert Field.

▪ Calculate the throughput by using the following formula shown below and click on OK.

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝑀𝑏𝑝𝑠) =
𝑆𝑢𝑚 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝐴𝑝𝑝 𝐿𝑎𝑦𝑒𝑟 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 (𝐵𝑦𝑡𝑒𝑠) ∗ 8

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 (𝜇𝑠)

Figure 8-62: Calculate the throughput by using the following formula

▪ Select a cell in the pivot table, and on the Excel Ribbon, under the PivotTable Tools

tab, click the Options tab (Analyze tab in Excel 2013).

▪ In the Tools group, click Pivot chart and select OK.

Figure 8-63: In the Tools group Select Pivot chart

▪ This will display a pivot chart shown below.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 172 of 281

Figure 8-64: Pivot Chart

(Note: The procedure may vary with different versions of excel, the given procedure is according to the

Excel 2013.)

8.4.8 Packet Trace Fields

GENERAL FIELDS DESCRIPTION

PACKET_ID

Specifies the ID of the Data Packets.
For control packets this value is set to 0
For every application packet IDs are assigned in serial order. The
Packet ID is not a unique number. It is the tuple {Application ID,
Packet_ID} that is unique.

SEGMENT_ID

Specifies the ID of the segment of the Data Packet. Segmentation is
done in transport layer. If the packet size (generated in the APP layer)
is greater than the maximum segment size in TRANSPORT layer,
packet will get segmented.
For control packets it is N/A

PACKET_TYPE
Specifies the type of application that generates the packet.
It can be Control Packet, Custom, CBR, Peer_to_peer, E-Mail,
DataBase, FTP, Video, Voice, HTTP.

CONTROL_PACKET_TYPE

Specifies the type of Control Packet transmitted.
Following are the Protocol specific control packets
WLAN: WLAN_ACK, WLAN_BlockACK
OSPF: OSPF_HELLO, OSPF_D-D, OSPF_LSR, OSPF_LSU,
OSPF_LSA
RIP: RIP_Message
GSM: GSM_Channel_Request, GSM_Channel_Granted,
GSM_Call_Request, GSM_Channel_Request_For_Incoming,
GSM_Call_Accepted
CDMA: CDMA_Channel_Request, CDMA_Channel_Granted,
CDMA_Call_Request, CDMA_Channel_Request_For_Incoming,
CDMA_Call_Accepted
DSR, AODV, ZRP, OLSR: RREQ, RREP, NDP_HELLO_MESSAGE,
OLSR_TC_MESSAGE
Zigbee: Zigbee_BEACON_FRAME, Zigbee_ACK
Cognitive Radio: SCH, FCH, DS-MAP, US-MAP, UCD, DCD,
BW_REQUEST, UCS_NOTIFICATION
LTE: LTE_Measurement_Report, LTE_RRC_CONNECTION_SETUP,
LTE_RLC_SDU, LTE_RRC_CONNECTION_REQUEST,
LTE_RRC_CONNECTION_SETUP_COMPLETE, LTE page, LTE Ack
etc.

SOURCE_ID
Specifies the <Device-type>-<ID> of the source set in the application.
Note that if the device name is changed the new name will not reflect in
the trace.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 173 of 281

DESTINATION_ID

Specifies the <Device-type>-<ID> of the destination set in the
application. Note that if the device name is changed the new name will
not reflect in the trace. If the application is a broadcast application the
destination field will show 0

TRANSMITTER_ID

Specifies the <Device-type>-<ID> of the current node which is
transmitting the packet. Note that if the device name is changed the
new name will not reflect in the trace. The difference between a Source
node and a Transmitter, is that when the Source remains constant
across the entire packet transmission whereas the transmitter ID
changes with each hop of the packet.

RECEIVER_ID

Specifies the <Device-type>-<ID> of the current node which is
receiving the packet. Note that if the device name is changed the new
name will not reflect in the trace. The difference between a Destination
node and a Receiver, is that when the Destination remains constant
across the entire packet transmission whereas the receiver ID changes
with each hop of the packet.

APP_LAYER_ARRIVAL_TI
ME (μs)

Specifies the time at which packet is at the Application_Layer of
Source_ID (or Transmitter_ID). This is usually the time at which the
packet is generated at Source_ID

TRX_LAYER_ARRIVAL_TI
ME (μs)

Specifies the time at which packet reaches the Transport_layer from
the application layer. This will usually be the same as
Application_layer_Arrival_Time unless there are TCP re-transmissions

NW_LAYER_ARRIVAL_TIM
E (μs)

Specifies the time at which packet reaches the Network_Layer of
Transmitter_ID if this is a Router (or) Time at which packet reaches the
Network_layer of previous Router / Source_ID (immediate previous
Layer 3 or higher device) if current device is Switch / Access Point.

MAC_LAYER_ARRIVAL_TI
ME (μs)

Specifies the time at which packet reaches MAC_Layer of
Transmitter_ID

PHY_LAYER_ARRIVAL_TI
ME (μs)

Specifies the time at which packet reaches PHY_layer of
Transmitter_ID

PHY_LAYER_START_TIME
(μs)

Specifies the time at which packet starts betting transmitted in the link
between Transmitter_ID and Receiver_ID

PHY_LAYER_END_TIME
(μs)

Specifies the time at which packet reaches Phy_Layer of Receiver_ID

APP_LAYER_PAYLOAD
(Bytes)

Specifies the size of the Payload at Application Layer

TRX_LAYER_PAYLOAD
(Bytes)

Specifies the size of the Payload at Transport Layer

NW_LAYER_PAYLOAD
(Bytes)

Specifies the size of the Payload at Network Layer

MAC_LAYER_PAYLOAD
(Bytes)

Specifies the size of the Payload at Data Link Layer

PHY_LAYER_PAYLOAD
(Bytes)

Specifies the size of the Payload at Physical Layer

PHY_LAYER_OVERHEAD
(Bytes)

Specifies the size of the overhead in Physical layer

PACKET_STATUS Specifies whether the Packet is Successful, Collided or Errored

LOCAL_ADDRESS
Specifies the Port Number at Source Node. Port Numbers are chosen
randomly by NetSim.

FOREIGN_ADDRESS
Specifies the Port Number at Destination Node. Port Numbers are
chosen randomly by NetSim.

CWND (bytes) Specifies the current size of the TCP congestion window

SEQ_NO If TCP is enabled, it specifies the TCP Sequence number of the packet

ACK_NO
If TCP is enabled, it specifies the TCP Acknowledgement number of
the packet

© TETCOS LLP. All rights reserved

Ver 13.0 Page 174 of 281

RTT (seconds) Specifies the Round-Trip Time for the packet

RTO (seconds) Specifies the Retransmission Timeouts

CONNECTION_STATE Specifies the state of TCP connection

isSyn If TCP is enabled, it specifies whether the packet is TCP_SYN or not

isAck
If TCP is enabled, it specifies whether the packet is
TCP_ACK/TCP_SYN_ACK or not

isFin If TCP is enabled, it specifies whether the packet is TCP_FIN or not

SEGMENT_LENGTH Specifies the segment length of the packet

SOURCE_IP Specifies the IP address of the source

DESTINATION_IP Specifies the IP address of the destination

GATEWAY_IP Specifies the IP address of the device which is transmitting a packet

NEXT_HOP_IP Specifies the IP address of the next hop

Table 8-3: Packet Trace Fields and Description

NOTE:

▪ Each line in the packet trace represents one hop of one packet.

▪ The packet trace is logged in ascending order of time as measured in Phy_Layer_End_Time.

8.5 Event Trace (only in Standard/Pro Version)

8.5.1 NetSim Network Stack and Discrete Event Simulation working

NetSim’s Network Stack forms the core of NetSim and its architectural aspects are

diagrammatically explained below. It exactly mirrors the TCP/IP stack and has the following

five layers.

▪ Application Layer – CBR, Voice, Video, HTTP, COAP etc.

▪ Transport Layer – TCP, UDP

▪ Network Layer – IP, OSPF, AODV, OLSR etc.

▪ MAC Layer – 802.11, 802.15.4, LTE etc.

▪ Physical Layer – Wired (P2P, P2MP, MP2MP), Wireless (RF Propagation)

Network Stack accepts inputs from the end-user in the form of Configuration file and the data

flows as packets from one layer to another layer in the Network Stack.

All packets, when transferred between devices move up and down the stack, and all events in

NetSim fall under one of these ten categories of events, namely, Physical IN, Data Link IN,

Network IN, Transport IN, Application IN, Application Out, Transport OUT, Network OUT,

Data Link OUT and Physical OUT. The IN events occur when the packets are entering a

device while the OUT events occur while the packet is leaving a device. In addition to these

events there can be TIMER events associated with each protocol.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 175 of 281

Figure 8-65: Flow of one packet from a Wired node to a Wireless node

Every device in NetSim has an instance of the Network Stack shown above. Switches &

Access points have a 2-layer stack, while routers have a 3 layer stack. End-nodes have a 5

layer stack.

The protocol engines are called based on the layer at which the protocols operate. For

example, TCP is called during execution of Transport IN or Transport OUT events, while

802.11b WLAN is called during execution of MAC IN, MAC OUT, PHY IN and PHY OUT

events.

When these protocols are in operation, they in turn generate events for NetSim's discrete event

engine to process. These are known as SUB EVENTS. All SUB EVENTS, fall into one of the

above 10 types of EVENTS and TIMER events if applicable.

Each event gets added in the Simulation kernel by the protocol operating at the particular layer

of the Network Stack. The required sub events are passed into the Simulation kernel. These

sub events are then fetched by the Network Stack in order to execute the functionality of each

protocol. At the end of Simulation, Network Stack writes trace files and the Metrics files that

assist the user in analyzing the performance metrics and statistical analysis.

8.5.2 Event Trace

The event trace records every single event along with associated information such as time

stamp, event ID, event type etc. in a text file or .csv file which can be stored at a user defined

location. Apart from a host of information, the event trace has two special information fields for

diagnostics.

▪ A log of the file name and line number from where the event was generated (Please

refer “Writing Custom Code in NetSim → Debugging your code → Via CLI”) and

© TETCOS LLP. All rights reserved

Ver 13.0 Page 176 of 281

▪ Previous event which triggered the current event.

Note: Turning on Event Trace will slow down the simulation significantly

NetSim provides users with the option of turning on "Event Traces".

How to enable Event Trace via GUI?

If NetSim runs via GUI, event trace can be turned on by clicking the Event Trace icon in the

tool bar and selecting the required fields in the event trace.

How to enable Event Trace via CLI?

If NetSim runs via CLI, then the event trace can be turned on by enabling the event trace in

the STATISTICS_COLLECTION tag of the configuration file. Following is a screenshot of a

Configuration.netsim file with Event Trace disabled:

Figure 8-66: Open Configuration.netsim in Visual Studio and Event Trace disabled

You can see that the STATUS is set to DISABLE, file name and file path are not set. To enable

Event trace these parameters can be modified by editing the Configuration file. Open

Configuration.netsim file and provide the file name, path and set status as Enable. Following

is a screenshot of a Configuration.netsim file with Event Trace enabled:

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 177 of 281

Figure 8-67: Event Trace enabled in Configuration.netsim file

Event Trace Metrics:

Event_Id Specifies the ID of the Event

Event_Type
Specifies the type of event being performed, for e.g. -
APPLICATION_IN, APPLICATION_OUT, MAC_OUT, MAC_IN,
PHYSICAL_OUT, PHYSICAL_IN, etc.

Event_Time
Specifies the time (in microseconds) at which the event is being
executed

Device_Type
Specifies the type of device in which the current event is being
executed

Device_Id Specifies the ID of device in which the current event is being executed

Interface_Id
Specifies the Interface_Id of device in which the present event is being
executed.

Application_Id
Specifies the ID of the Application on which the specific event is
executed

Packet_Id
Specifies the ID of the packet on which the current event is being
executed

Segment_Id
Specifies the ID of the segment of packet on which the current event is
being executed

Protocol_Name Specifies the Protocol which is presently executed

Subevent_Type

Specifies the protocol sub event which is being executed. If the sub
event value is 0, it indicates interlayer communication (Ex: MAC_OUT
called by NETWORK_OUT) or a TIMER_EVENT which has no sub
event.

Packet_Size Specifies the size of packet during the current event

Prev_Event_Id Specifies the ID of the event which generated the current event.

Table 8-4: Event Trace fields and Descriptions

8.5.3 Calculation of Delay and Application throughput from event trace

1. Enable Event trace and run simulation.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 178 of 281

2. Click Event Trace option (Open Event Trace) in the Simulation results window as

shown in below Figure 8-68.

 Note: Event tracing is available only in NetSim standard and pro versions.

Figure 8-68: Select Event Trace option in results window

3. Click on Pivot Table (Custom) in excel sheet as shown below Figure 8-69.

Figure 8-69: Select Pivot Table (Custom) in excel sheet

4. A blank PivotTable and Field List will appear on a new worksheet.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 179 of 281

Figure 8-70: A blank PivotTable

5. Once PivotTable worksheet open, you'll need to decide which fields to add. Each field

is simply a column header from the source data. In the PivotTable Field List, check

the box for each field you want to add.

8.5.3.1 Application Delay Analysis:

1. Drag and drop the Event_Type, Protocol_Name Fields into FILTERS, Packet_Id into

ROWS and Device_Id into COLUMNS.

2. Drag and Drop Event_Time Field into VALUES twice, then both will show Sum of

Event_Time. Recheck that you have dropped the Event_Time field twice.

3. Click on the second Event_Time field in the VALUES and select the Value Field

Settings.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 180 of 281

Figure 8-71: Select Second Event_Time field in the VALUES and select the Value Field Settings

Figure 8-72: Select Summarize value field by Count

4. A window named Value Field Settings opens then select Count option and click OK

button.

5. Then finally the Pivot Table Fields will be as shown below Figure 8-73.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 181 of 281

Figure 8-73: Sleeted Fields to one of the four areas Field list

6. In the Event_Type select APPLICATION_IN and APPLICATION_OUT,

Protocol_Name select APPLICATION and in Column Labels select the Source_Id

and Destination_Id. In our example source node ID is 1 and destination node ID is 10

Figure 8-74: Select the Event type, Protocol Name, Source and Destination ID etc

And the Pivot Table created will be as shown (1 in the table is Source_Id and 10 is the

Destination_Id)

© TETCOS LLP. All rights reserved

Ver 13.0 Page 182 of 281

Figure 8-75: Created Pivot Table

7. Select the entire empty column H then and enter the formula =IF(AND(LEN(A1),

INT(A1)=A1),F1-G1*B1) in function and press CTRL+ENTER

F column is Total Sum of Event_Time, G Column is Total Count of Event_Time, B

Column is Sum of Event_time(µs) of the Source.

Figure 8-76: Select Entire empty column H then and enter the formula =IF(AND(LEN(A1),
INT(A1)=A1),F1-G1*B1) in function and press CTRL+ENTER

App Delay =
𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝐷𝑒𝑙𝑎𝑦𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑏𝑦 𝑡ℎ𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑎𝑝𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

Note: If the packet size is > 1500 then fragmentation occurs and the packet is received as multiple

segments. In NetSim the destination counts each segment as different packet.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 183 of 281

Then in an empty cell enter

 =SUMIF(H:H,">0")/GETPIVOTDATA("Count of Event_Time(US)2",A4,"Device_Id",10)

where

GETPIVOTDATA ("Count of Event_Time(US)2",A4,"Device_Id",10) gives the total

number of packets received by the destination (in this case 10). This will give the exact

Application Delay.

Figure 8-77: Calculated Application Delay using Formula in Pivot table

Compare with the Delay in Application_Metrics_Tables and it would exactly match. There

might be slight difference in the decimals due to Excel’s round offs.

Figure 8-78: Compare the Application_Metrics_Tables Delay and Pivot table Delay

8.5.3.2 Application Throughput Analysis

1. For Application Throughput drag and drop Event_type, Protocol_Name Fields in

FILTERS, Device_Id in ROWS, Packet_Size(Bytes) into VALUES. Change the Value

Field Settings of Packets_Size(Bytes) to SUM as mentioned in Delay Analysis.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 184 of 281

Figure 8-79: Sleeted Fields to one of the four areas Field list

Then Select the Event_Type as APPLICATION_IN, Protocol_Name as APPLICATION and

Device_Id as the Destination (in this case 10).

Figure 8-80: Select the Event type, Protocol Name, Source and Destination ID etc

2. App Throughput =
𝑇𝑜𝑡𝑎𝑙𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑓𝑢𝑙𝑙𝑦𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑏𝑦𝑡ℎ𝑒𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒

Then in an empty cell type =GETPIVOTDATA ("Packet_Size(Bytes)",A4)*8/10000000

This give the Application Throughput in Mbps (Multiplied by 8 to convert Bytes to bits, and

divided by 100000 to convert into Mega)

Figure 8-81: Calculate Application Throughput using formula

Compare with the Application throughput in the Application_Metrics_Table

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 185 of 281

Figure 8-82: Compare the Application_Metrics_Tables throughput and Pivot table throughput

8.6 Packet Capture & analysis using Wireshark

8.6.1 Enabling Wireshark Capture in a node for packet capture

NetSim provides functionality to capture packets in the virtual nodes. The pcap file written by

NetSim contains fields of packet layer 3 and above. This pcap file can be opened using the

popular software, Wireshark (formerly Ethereal).

To enable packet capture in Wireshark, Right Click on the device where wireshark should be

run. In the properties, go to General_Properties and set the Wireshark Capture parameter as

Online.

Figure 8-83: Enable Wireshark in General Properties for wired node

© TETCOS LLP. All rights reserved

Ver 13.0 Page 186 of 281

Wireshark Capture Options

Online
Online option will initiate a live interactive packet capture,
displaying packets while running simulation

Offline
Offline option will initiate silent packet capture and generate
a pcap file which can be opened using Wireshark post-
simulation

Disable Packets are not captured by Wireshark during simulation.

Table 8-5: Wireshark Capture Options and Description

8.6.2 Viewing captured packets

If enabled, Wireshark Capture automatically starts during simulation and displays all the

captured packets. To view the details of the packet displayed, click-on the packet as shown

below Figure 8-84.

Figure 8-84: Packets Captured in Wireshark

The detail of the contents of the selected packet can be seen in the below panes as shown

below Figure 8-85.

Figure 8-85: Packet Information in below panes

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 187 of 281

In the above figure, the details of the packet are displayed in both tree form and bytes form. In

the tree form, user can expand the data by clicking on the part of the tree and view detailed

information about each protocol in each packet.

8.6.3 Filtering captured packets

 Display filters allow you to concentrate on the packets you are interested in while hiding the

currently uninteresting ones. Packets can be filtered by protocol, presence of a field, values of

field’s etc. To select packets based on protocol, type the protocol in which you are interested

in the Filter: field of the Wireshark window and presenter to initiate the filter. In the figure below

Figure 8-86, tcp protocol is filtered.

Figure 8-86: TCP Protocol is filtered in Wireshark

You can also build display filters that compare values using a number of different comparison

operators like ==, != , >, <, <=, etc. Following is an example displaying filtered packets whose

SYN Flag and ACK Flag are set to 1 in a TCP Stream.

Figure 8-87: Filtered SYN Flag and ACK Flag are set to 1 in a TCP Stream

8.6.4 Analyzing packets in Wireshark

8.6.4.1 Analyzing Conversation using graphs

A network conversation is the traffic between two specific end points. For example, an IP

conversation is all the traffic between two IP addresses. In Wireshark, Go to Statistics Menu→

Conversations as shown below Figure 8-88.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 188 of 281

Figure 8-88: In Wireshark, Go to Statistics Menu > Conversations

Different types of protocols will be available. User can select the specific conversation by going

to the desired protocol. For example, in the following diagram, we have selected TCP.

Figure 8-89: TCP Wireshark Conversion for Wired Nodes

User can also analyze each of the conversation and can create graphs by selecting them and

clicking on “Graph”.

Figure 8-90: Select Graph in Wireshark Conversion

Different types of graphs are possible for Round Trip time, Throughput, Time/Sequence

(Stevens), Time/Sequence (tcptrace) and Window Scaling

8.6.5 Window Scaling

 Click on data packet i.e. <None>.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 189 of 281

Figure 8-91: Select one data Packet <None>in Wireshark

 Choose statistics→TCP Stream Graph→Window Scaling.

Figure 8-92: Statistics>TCP Stream Graph>Window Scaling

Click on Switch Direction in the window scaling graph window.

Fig 8-93: TCP congestion window Plot

© TETCOS LLP. All rights reserved

Ver 13.0 Page 190 of 281

8.6.5.1 Comparing the packet lengths

To analyze the packet sizes of all packets transmitted, go to Statistics Menu→Packet

lengths. Users can also set filter to analyze a collection of specific packets only. For example,

tcp filter is set to obtain the packet length below Figure 8-94.

Figure 8-94: Comparing the packet lengths in Wireshark

8.6.5.2 Creating IO graphs

To get the graph, go to Statistics Menu → IO Graph.

Figure 8-95: Statistics Menu > IO Graph in Wireshark

8.6.5.3 Creating Flow graphs

The flow graph feature provides a quick and easy to use way of checking connections between

a client and a server. It can show where there might be issues with a TCP connection, such

as timeouts, re-transmitted frames, or dropped connections. To access flow graph, go to

Statistics Menu → Flow Graph and select the flow type. By default, you can see the flow

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 191 of 281

graph of all the packets. To get the TCP flow, select TCP flow in “Flow Type” dropdown box

and you will obtain the flow as shown Figure 8-96.

Figure 8-96: Statistics Menu > Flow Graph in Wireshark

© TETCOS LLP. All rights reserved

Ver 13.0 Page 192 of 281

9 Writing Custom Code in NetSim

9.1 Writing your own code

NetSim allows the user to write the custom code for all the protocols by creating a DLL

(Dynamic Link Library) for their custom code.

There are various important steps in this process, and each of these steps has various options

as explained in the subsequent pages.

9.1.1 Microsoft Visual Studio 2019 Installation Settings

NetSim requires only a few components of Visual Studio Community 2019 edition to be

installed. Upon starting the installer:

1. Under the Workloads tab users can select Desktop Development with C++ as

shown below Figure 9-1.

Figure 9-1: In Workloads tab select Desktop Development with C++

2. Under the Individual components tab select VC++2015.3 V140 toolset for desktop

(x86,x64).

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 193 of 281

Figure 9-2: In Individual components tab select VC++2015.3 V140 toolset for desktop
(x86,x64).

9.1.2 Modifying code

DLL is the shared library concept, implemented by Microsoft. All DLL files have a .dll file

extension. DLLs provide a mechanism for sharing code and data to upgrade functionality

without requiring applications to be re-linked or re-compiled. It is not possible to directly

execute a DLL, since it requires an EXE for the operating system to load it through an entry

point. NetSim requires Visual Studio Compiler for building DLL’s.

Note: Make sure that Visual Studio 2015 or above is installed in your system.

Refer section 4.12 section “How does a user open and modify source codes” to open NetSim

Source Codes

1. After this you may modify the source codes of any project. You can also add new files

to the project if required. As an example, let us make a simple source code modification

to TCP. Inside Solution Explorer pane in Visual Studio, double click on TCP project.

Then open TCP.c file by double clicking on it. Using the drop down list of functions that

are part of the current file, choose fn_Netsim_TCP_Init().

© TETCOS LLP. All rights reserved

Ver 13.0 Page 194 of 281

Figure 9-3: Select fn_Netsim_TCP_Init() in TCP.C in Visual Studio

2. Add the line fprintf(stderr, "\nSource is Modified\n"); statement inside the

fn_Netsim_TCP_Init() function as shown below to print “Source is modified”.

_getch(); is added in the next line for the simulation to wait until it gets a user input.

Figure 9-4: Source Code modified in fn_Netsim_TCP_Init() function in TCP project

3. Once this is done click to save the changes and overwrite the file (in case of write

protection).

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 195 of 281

Figure 9-5: Select Overwrite in save of Read Only File

9.1.3 Building Dlls

1. Identify the build of NetSim that is installed in your system from NetSim Home Screen

as shown below Figure 9-6.

Figure 9-6: In NetSim Home Screen Identify the build of NetSim

2. Based on the build of NetSim installed modify the solution platform in Visual studio

from the drop down as shown below Figure 9-7.

Figure 9-7: Based on the build of NetSim select Win32/x64 in Visual studio

© TETCOS LLP. All rights reserved

Ver 13.0 Page 196 of 281

3. Choose x64 for 64 bit version of NetSim and Win32 for 32 bit version of NetSim. After

changing the solution platform, changes will be automatically applied to all projects that

are displayed in the Solution Explorer.

4. Now rebuild the network by right clicking on the project header and selecting Rebuild

creates a Dll file in the bin folder of NetSim’s current workspace path

<C:\Users\PC\Documents\NetSim_13.0.14_64_std_default\bin\bin_x64> for 64-bit

and <C:\Users\PC\Documents\NetSim_13.0.14_64_std_default\bin\bin_x86> for 32-

bit which contains your modifications. If build is successful a message similar to the

following will be displayed in the output window as shown below Figure 9-8.

Figure 9-8: Build is successful a message similar to the following will be displayed in the output
window

9.1.4 Running Simulation

1. After rebuilding the code, user can run the simulation via GUI (Please refer section 3).

In this case, user can create a scenario in any network which involves TCP protocol.

Running the simulation with the custom DLL will initially display a warning message as

shown below Figure 9-9.

Figure 9-9: Modified Project display a DLL warning message to NetSim Console

2. The warning message lists the Dll files which have been modified in the bin folder

(bin\bin_x86 for 32-bit and bin\bin_x64 for 64-bit) of NetSim’s current workspace path.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 197 of 281

After pressing any key, the statement “Source is modified” will be printed to console as

shown below Figure 9-10.

Figure 9-10: Printf Statement written to console

3. Press any key to proceed with the simulation.

4. The warning message will not be displayed if no Dll’s are modified in the bin folder of

current workspace path (bin\bin_x86 for 32-bit and bin\bin_x64 for 64-bit).

9.1.5 Source Code Dependencies

The following are the list of projects that are part of NetSim source codes present in

<NetSim_Install_Directory>/src/Simulation directory and their dependencies:

PROJECT DEPENDENCY

Application IP

Cellular Application

CLIInterpertor Firewall, IP

Cognitive Radio Application

Ethernet Firewall

IEEE802_11 Battery Model

OSPF IP

Routing IP

RPL IP

ZigBee Battery Model

ZRP IP

Aloha -

AODV -

© TETCOS LLP. All rights reserved

Ver 13.0 Page 198 of 281

ARP` -

Battery Model -

CSMACD -

DSR -

Firewall -

IEEE1609 -

IP -

LTE NR

Mobility -

P2P -

SDN -

Support Function -

TCP -

Token_BR -

UDP -

UWAN

DTDMA -

TDMA -

Satellite Comm. Networks -

Table 9-1: Source Code Dependencies

For E.g.: To perform modifications to Application Project, IP folder will also be required in

addition to lib folder, Include folder and NetSim.sln file.

9.1.6 Enabling Additional Security Checks

SDL – Security Development Lifecycle checks adds recommended Security Development

Lifecycle. These checks include extra security-relevant warnings as errors, and additional

secure code-generation features.

/sdl enables a superset of the baseline security checks provided by /GS and overrides /GS-.

By default, /sdl is off. /sdl- disables the additional security checks.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 199 of 281

Figure 9-11: Enabling Additional Security Checks application properties window

If SDL checks is enabled (/sdl), following warnings will be treated as errors:

Warning

enabled by

/sdl

Equivalent

command-line

switch

Description

C4146 /we4146
A unary minus operator was applied to an unsigned

type, resulting in an unsigned result.

C4308 /we4308
A negative integral constant converted to unsigned

type, resulting in a possibly meaningless result.

C4532 /we4532

Use of continue, break or goto keywords in a

__finally/finally block has undefined behavior during

abnormal termination.

C4533 /we4533 Code initializing a variable will not be executed.

C4700 /we4700 Use of an uninitialized local variable.

C4703 /we4703
Use of a potentially uninitialized local pointer

variable.

C4789 /we4789
Buffer overrun when specific C run-time (CRT)

functions are used.

C4995 /we4995 Use of a function marked with pragma deprecated.

C4996 /we4996 Use of a function marked as deprecated.

Table 9-2: SDL Warnings Messages

Reference: https://docs.microsoft.com/en-us/cpp/build/reference/sdl-enable-additional-

security-checks?view=vs-2019

https://docs.microsoft.com/en-us/cpp/build/reference/sdl-enable-additional-security-checks?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/sdl-enable-additional-security-checks?view=vs-2019

© TETCOS LLP. All rights reserved

Ver 13.0 Page 200 of 281

9.2 Implementing your code - Examples

9.2.1 Hello World Program

Objective: Print Hello World from TCP protocol.

Implementation: Add fprintf (stderr, “<MESSAGE>”) statement inside the source code of TCP

as shown below to print “Hello World” when custom built dll is executing.

fprintf(stderr, "\nHello World\n");

_getch();

Figure 9-12: Hello World Printf Statement added in TCP Project

Build DLL as explained in Section 9.1.3 and run the simulation, you can see the following

output on the console.

Figure 9-13: Hello World Statement written to console

Press enter then simulation will continue.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 201 of 281

9.2.2 Introducing Node Failure in MANET

Objective: Node failure using MANET-DSR using Device Id.

Implementation: Identify the Device ID of the particular node to be failed.

Step 1: Create a file with the name NodeFailure.txt inside the bin folder of NetSim’s current

workspace path <C:\Users\PC\Documents\NetSim_13.0.14_64_std_default\bin\bin_x64> for

64-bit and <C:\Users\PC\Documents\NetSim_13.0.14_32_std_default\bin\bin_x86> for 32-

bit. The file will contain two columns: one being the Node ID of the device to be failed and

other being the failure time (in microseconds).

For example, to fail Node Id 2 from10th sec onwards and fail Node Id 1 from 90th sec onwards,

the NodeFailure.txt file will be as follows Figure 9-14.

Figure 9-14: NodeFailure.txt file

Step 2: Go to DSR.c in DSR protocol.

Step 3: The function fn_NetSim_DSR_Init() will execute before the protocol execution starts.

So, in this function, we will read the NodeFailure.txt and save information regarding which

nodes will fail at which time. Add the following code inside the specified function.

 int i;

 FILE *fp1;

 char *pszFilepath;

 char pszConfigInput[1000];

 pszFilepath = fnpAllocateMemory(36,sizeof(char)*50);

 strcpy(pszFilepath,pszAppPath);

 strcat(pszFilepath,"/NodeFailure.txt");

 fp1 = fopen(pszFilepath,"r");

 i=0;

 if(fp1)

 {

 while(fgets(pszConfigInput,500,fp1)!= NULL)

© TETCOS LLP. All rights reserved

Ver 13.0 Page 202 of 281

 {

 sscanf(pszConfigInput,"%d %d",&NodeArray[i],&TimeArray[i]);

 i+=1;

 }

 fclose(fp1);

 }

Step 4: The fn_NetSim_DSR_Run() is the main function to handle all the protocol

functionalities. So, add the following code to the function at the start.

int i,nFlag=1;

 if(nFlag)

 {

 for(i=0;i<100;i++)

 if((pstruEventDetails->nDeviceId== NodeArray[i]) &&

(pstruEventDetails->dEventTime >= TimeArray[i]))

 {

 pstruEventDetails->nInterfaceId = 0;

 pstruEventDetails->pPacket=NULL;

 return 0;

 }

 }

Step 5: Add the following code inside DSR.h header file.

 //Node failure model

 int NodeArray[200];

 int TimeArray[200];

Step 6: Build DLL as explained in Section 9.1.3.

Step 7: Create a scenario in MANET where data packets should be travelling from source to

destination through the mentioned node in NodeFailure.txt file. For that user can increase the

pathloss exponent value and the distance among the nodes. User can utilize Packet Animation

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 203 of 281

to check the node failure (i.e. no packets are forwarded by failed nodes) after the mentioned

time.

9.3 Debugging your code

This section is helpful to debug the code which user has written. To write your own code please

refer Section 9.1.2.

9.3.1 Via GUI

Debugging your code via GUI there are two methods available.

▪ Using _getch()

▪ Using Environment Variables (NETSIM_BREAK)

9.3.1.1 Using _getch()

Step 1: Perform the required modification of the protocol source code and add _getch() (used

to hold the program execution until the user enters a character) statement inside init function

of the modified protocol. For example, take DSR protocol and add the following lines of code

in the init function as shown in the below screenshot Figure 9-15.

fprintf(stderr, "\nAttach to Process now\n");

_getch();

Figure 9-15: Added Two line of Code in DSR protocol

Step 2: Build the DSR protocol as explained in Section 9.1.3. Do not close Visual Studio.

Step 3: In NetSim, create a network scenario where the protocol is being used and start the

simulation. In the console window user would get a warning message shown in the below

screenshot Figure 9-16 and the simulation will pause for user input (because of _getch()

added in the init function)

© TETCOS LLP. All rights reserved

Ver 13.0 Page 204 of 281

Figure 9-16: Attach to Process Statement written to console

Step 4: In Visual Studio, put break point inside the source code where you want to debug.

Step 5: Go to “Debug→Attach to Process” in Visual studio as shown and attach to

NetSimCore.exe.

Figure 9-17: Debug > Attach to Process in Visual studio

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 205 of 281

Figure 9-18: Select NetSimCore.exe in Attach to Process Window

Click on Attach. Press enter in the command window. Then control goes to the project and

stops at the break point in the source code as shown below Figure 9-19. All debugging options

like step over (F10), step into (F11), step out (Shift + F11), continue (F5) are available.

Figure 9-19: Control goes to the project and stops at the break point in the source code

After execution of the function, the control goes back to NetSim and then comes back to the

custom code the next time the function is called in the simulation.

To stop debugging and continue execution, press Shift+F5 (key). This then gives the control

back to NetSim, for normal execution to continue.

9.3.1.2 Using Environment Variable

This section is helpful to Debug Using Environment Variable (NETSIM_BREAK). To set

Environment variable follow the steps as shown.

Note: Setting NETSIM_BREAK Environment Variable will cause the simulation to slow down and it is

recommended to remove this Environment Variables after debugging the simulation

© TETCOS LLP. All rights reserved

Ver 13.0 Page 206 of 281

Step 1: Right click on My Computer\ This PC and select Properties.

Step 2: Go to Advanced System setting → Advanced Tab → Environment Variables option

Step 3: Click New in System variables. Type “NETSIM_BREAK” as Variable name and any

positive integer as variable value (e.g., 2). Click OK. The value of the variable is the event ID

at which you want NetSim Simulation to break. In this example we have set the value to 2,

which means that the simulation will break at the previous event.

Figure 9-20: Environment Variable Window

Figure 9-21: Add Variable name and Variable Value in New in System Variable

Step 4: Open NetSim and then open the source codes. Please refer Section 4.12 “How does

a user open and modify source codes” for more information.

Step 5: Create a network scenario in NetSim (Internetworks or any other networks)

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 207 of 281

Figure 9-22: Network Topology

Step 6: In this example we are placing a break point in TCP source code and thus TCP should

be select in Application properties window.

Step 7: Enable Event trace option and run the simulation.

Simulation will break at event ID 1 as we have set the environment variable to 2 as shown

below Figure 9-23.

Figure 9-23: Simulation will break at event ID 1

Here NetSim breakpoint has been triggered.

Step 8: Inside Solution Explorer pane in Visual Studio, double click on TCP project. Then open

TCP.c file by double clicking on it. Using the drop down list of functions that are part of the

current file, choose fn_NetSim_TCP_Run().

Step 9: In Visual Studio, Set the breakpoint in the code by clicking on the grey area on the left

of the line or by right clicking on the line and selecting Breakpoint->Insert Breakpoint.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 208 of 281

Figure 9-24: Added Break point in line number 50

Step 10: Go to “Debug→Attach to Process” in Visual studio as shown Figure 9-25 and select

NetSimCore.exe from the list of processes displayed.

Figure 9-25: Debug > Attach to Process in Visual studio

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 209 of 281

Figure 9-26: Select NetSimCore.exe in Attach to Process Window

Click on Attach. Press any key in the command window to continue the process.

Step 11: Now we need to enter next event ID to break.

Figure 9-27: Enter next event ID to break

Then control goes to the project and stops at the break point in the source code (NetSim will

break wherever user has set the breakpoint) as shown below Figure 9-28. All debugging

options like step over (F10), step into (F11), step out (Shift + F11), continue (F5) are

available.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 210 of 281

Figure 9-28: Control goes to the project and stops at the break point in the source code.

After execution of the function, the control goes back to NetSim and then comes back to the

custom code the next time the function is called in the simulation. To stop debugging and

continue execution, press Shift+F5 (key). This then gives the control back to NetSim, for

normal execution to continue.

If NETSIM_BREAK environment variable is set, NetSim event trace file additionally logs the

file name and line number of the source code where the event was added as shown below:

Figure 9-29: NetSim event trace file additionally added two columns the file name and line number of
the source code.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 211 of 281

9.3.2 Via CLI

Modify the DSR protocol and build the code. Create a scenario on MANET then follow the

below steps.

Step 1: Open the Command prompt. Press “windows+R” and type “cmd”.

Step 2: To run the NetSim via CLI copy the path where “NetSimCore.exe” is present.

>cd <apppath>

>NetSimCore.exe<space>-apppath<space><apppath><space>-

iopath<space><iopath><space>-license<space>5053@<ServerIP Address><space> -d

Step 3: Type the following command.

Figure 9-30: Run the NetSim via CLI Mode use the following Command.

Press enter, now you can see the following screen.

Figure 9-31: Enter the Event ID

Step 4: Open the Project in Visual Studio and put break point inside the source code.

Step 5: Go to “Debug→Attach to Process”.

Figure 9-32: Debug > Attach to Process

© TETCOS LLP. All rights reserved

Ver 13.0 Page 212 of 281

Attach to NetSimCore.exe.

Figure 9-33: Select NetSimCore.exe in Attach to Process Window

Click on Attach.

Step 6: Go to command prompt which is already opened in Step 3. Enter the Event Id.

Note: If you don’t want to stop at any event you can specify 0 as event id.

Figure 9-34: Enter the Event Id

Execution will stop at the specified event.

Figure 9-35: Execution stops at the specified event

Press enter then control goes to the project and stops at the break point in the source code as

shown below Figure 9-36.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 213 of 281

Figure 9-36: Control goes to the project and stops at the break point in the source code

All debugging options like step over (F10), step into (F11), step out (Shift + F11), continue (F5)

are available.

After execution of the function, the control goes back to NetSim and then comes back to the

custom code the next time the function is called in the simulation.

To stop debugging press Shift+F5. This then gives the control back to NetSim, for normal

execution to continue.

9.3.3 Co-relating with Event Trace

To debug your own (custom) code, it is often helpful to know which section of the code (file

name & line number) generated the event under study. There are 2 ways to enable this feature.

Procedure 1

Step 1: Open configuration.netsim file and provide the file name, path and set status as

Enable.

Figure 9-37: Enable Event Trace by editing Configuration.netsim and provide the file name, path and
set status as Enable

Step 2: Run the NetSim via CLI in debug mode (Refer NetSim Help in Section 7→Running

Simulation via CLI) with –d as the fourth parameters.

Press enter.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 214 of 281

Figure 9-38: Run the NetSim via CLI

Step 3: Enter -1 as the event ID.

Figure 9-39: Enter -1 as the event ID

Upon running, NetSim will write the file name and line number of the source code that

generated each event.

Figure 9-40: NetSim writes the file name and line number of the source code in Event Trace

Note: In the above trace file Event Id 56 is triggered inside the IEEE802_11_Phy.c file which is present in

IEEE802_11 project. Since all the lib files are opaque to the end user, you cannot see the source code of

the lib file. However, Event Id 56 is triggered at line number 396 of IEEE802_11_Phy.c file and you can find

the location of the event by opening the IEEE802_11_Phy.c file as shown below.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 215 of 281

Figure 9-41: IEEE802_11_Phy.c file Code in Visual Studio

Procedure 2:

Step 1: Right click on my computer and select Properties.

Step 2: Go to Advanced System setting → Advanced Tab → Environment Variables.

Step 3: Click New. Type “NETSIM_BREAK” as Variable name and any negative integer as

Variable value. Click OK.

Figure 9-42: Environment Variables Window

© TETCOS LLP. All rights reserved

Ver 13.0 Page 216 of 281

Figure 9-43: Enter Variable name and Value in New System Variable

Step 4: Restart the system.

Step 5: Now perform simulation in NetSim (Enable event trace in GUI). Upon running, NetSim

will write the file name and line number of the source code that generated each event.

Figure 9-44: NetSim writes the file name and line number of the source code in Event Trace

9.3.4 Viewing & Accessing variables

Viewing variables while debugging code

To see the value of a variable, when debugging hover the mouse over the variable name in

the code. A text box with variable contents appears. If the variable is a structure and contains

other variables, then click on the plus sign which is there to the left of the text box. Users can

pin the variable to watch by clicking on the pin icon to the right of that variable in the text box.

Figure 9-45: Viewing variables while debugging code

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 217 of 281

Adding the variable to watch

Figure 9-46: Adding the variable to watch

Watch the change in the variable as the code progress by right clicking on the variable &

clicking on "add watch" tab. This is useful if to continuously monitor the change in the variable

as the code progresses.

Viewing external variables

During the process of debug users would come across variables that are defined outside the

source file being built as a .dll. Such variables cannot be viewed directly when added in the

watch tab, as this would throw the error.

CX0017: Error:symbol “Variable_Name”not found.

Figure 9-47: Viewing external variables

In the call stack window one can find the file in which that variable is situated. Right click on

the dll file name in the call stack window, in this case NetworkStack.dll. Then in the pull-down

menu which appears, select "load symbols from" and give the path of the pdb (program

database) file.

A program database (.pdb) file, also called a symbol file, maps the identifiers that a user

creates in source files for classes, methods, and other code to the identifiers that are used in

the compiled executables of the project. The .pdb file also maps the statements in the source

code to the execution instructions in the executables. The debugger uses this information to

© TETCOS LLP. All rights reserved

Ver 13.0 Page 218 of 281

determine: the source file and the line number displayed in the Visual Studio IDE and the

location in the executable to stop at when a user sets a breakpoint. A symbol file also contains

the original location of the source files, and optionally, the location of a source server where

the source files can be retrieved from.

When a user debugs a project in the Visual Studio IDE, the debugger knows exactly where to

find the .pdb and source files for the code. If the user wants to debug code outside their project

source code, such as the Windows or third-party code the project calls, the user has to specify

the location of the .pdb (and optionally, the source files of the external code) and those files

need to exactly match the build of the executables.

The pdb files are usually available in NetSim’s install directory, else write to

support@tetcos.com for the latest copy of these debug files. Go to Tools >

options>debugging>load all symbols.

Figure 9-48: Go to Tools > options > debugging > load all symbols in Visual Studio

 Note: If the load symbols menu option is greyed, then it means symbols are already loaded

In the watch window, the variable which the user has to watch should be edited by double

clicking on it and prefixing {,, NetworkStack.dll} to the variable name and pressing enter. (The

name of the respective file in which the variable is defined should be mentioned - in this case

NetworkStack.dll).

mailto:support@tetcos.com

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 219 of 281

Figure 9-49: Variable In the watch window

Accessing External Variables

Each protocol in NetSim has a separate Dll file which contains the variables and functions

which can be shared. In case of cross layer protocol implementations variables of one protocol

may have to be accessed from another Dll.

 An example is given below showing how Physical layer parameters of devices running

IEEE802.11 can be accessed in the Network Layer with DSR protocol configured.

The variable battery is defined in a structure stru_802_11_Phy_Var which is part of

IEEE802_11_Phy.h file. So the user will have to access a pointer of type

stru_802_11_Phy_Var. In the header file where the structure definition is given, the following

line of code must be written –

#ifndef SHARE_VARIABLE

 _declspec(dllexport) IEEE802_PHY_VAR *var1;

#else

 _declspec(dllimport) IEEE802_PHY_VAR *var1;

#endif

In the example, the code line must be written in IEEE802_11_Phy.h file present inside

IEEE802_11 folder.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 220 of 281

Figure 9-50: Code Modification done in IEEE802_11_Phy.h file present inside IEEE802_11 folder

In the main function where a user wishes to find the dReceivedPower_mw, the variable must

be assigned the respective value. In the above case, the following line of code must be written

inside fn_NetSim_IEEE802_11_PhyIn() function in IEEE802_11_Phy.c file present inside

IEEE802_11 folder.

var1 = DEVICE_PHYVAR(pstruEventDetails->nDeviceId,pstruEventDetails-

>nInterfaceId);

Note that the parameters given in the macro or any function which assigns a value to the

variable must be defined beforehand in the code. Here nDeviceId and nInterfaceId are defined

beforehand.

Figure 9-51: Code Modification done in IEEE802_11_Phy.c file present inside IEEE802_11 folder

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 221 of 281

The IEEE802_11 project must be built and the resulting libIEEE802.11.dll file which gets

created in the bin folder of NetSim’s current workspace

<C:\Users\PC\Documents\NetSim_13.0.14_64_std_default\bin\bin_x64> for 64-bit and

<C:\Users\PC\NetSim_13.0.14_32_std_default\bin\bin_x86> for 32-bit NetSim.

The Object file IEEE802_11.lib which is also got created in the lib folder located in the

current workspace path

<C:\Users\PC\Documents\NetSim_13.0.14_64_std_default\src\Simulation\lib_x64> for 64-bit

and <C:\Users\PC\Documents\NetSim_13.0.14_32_std_default\src\Simulation\lib> for 32-bit.

Now expand the DSR project in solution explorer. For accessing the IEEE802_11 variable, the

following lines must be added in DSR.h file

#define SHARE_VARIABLE

#pragma comment(lib,"IEEE802_11.lib")

Figure 9-52: Accessing the IEEE802_11 variable, Modification done in DSR.h file

Add the following lines of code to the DSR.c file as shown below Figure 9-53.

#include "../IEEE802_11/IEEE802_11_Phy.h"

#include "../BatteryModel/BatteryModel.h"

© TETCOS LLP. All rights reserved

Ver 13.0 Page 222 of 281

Figure 9-53: Add the following lines of code to the DSR.c file in DSR Project

In the fn_NetSim_DSR_Run() function add the following lines of code to print the value of

dReceivedPower_mw variable from DSR project.

 if (var1)

fprintf(stderr, "\n Remaining Energy(mJ): %lf\n"
,battery_get_remaining_energy((ptrBATTERY)var1->battery));

Figure 9-54: Code Related to Remaining Energy for nodes

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 223 of 281

The DSR project must be built and the resulting libDSR.dll file gets created in the bin folder

of NetSim’s current workspace path

<C:\Users\PC\Documents\NetSim_13.0.14_64_std_default\bin\bin_x64> for 64-bit and

<C:\Users\PC\Documents\NetSim_13.0.14_32_std_default\bin\bin_x86> for 32-bit. When a

scenario is run, the remaining energy of the node will be printed to the simulation console as

shown below Figure 9-55.

Figure 9-55: Remaining energy of the node printed in NetSim console

9.3.5 Print to console window in NetSim

Users can try printing the Device ID, Application ID, Duplicate Ack Count etc.

To print to console: Print node positions in MANET

Open Mobility Project, and in Mobility.c file go to fn_NetSim_Mobility_Run() function. Inside

the default case add following codes

fprintf(stderr,"\n The position of %s at time %.2lfms is X=%.2lf and Y = %.2lf

\n",DEVICE_NAME(pstruEventDetails->nDeviceId),

pstruEventDetails->dEventTime,

DEVICE_POSITION(pstruEventDetails->nDeviceId)->X,

DEVICE_POSITION(pstruEventDetails->nDeviceId)->Y);

_getch();

© TETCOS LLP. All rights reserved

Ver 13.0 Page 224 of 281

Figure 9-56: Code for Print node positions in MANET

Building Mobility project creates libMobility.dll inside the binary folder of NetSim’s current

workspace path <C:\Users\PC\Documents\NetSim_13.0.14_64_std_default\bin\bin_x64> for

64-bit and <C:\Users\PC\Documents\NetSim_13.0.14_32_std_default\bin\bin_x86> for 32-bit.

Create a scenario in MANET and configure the mobility model of the nodes. During simulation

users can notice that the positions of the nodes are displayed in the console w.r.t. the

simulation time.

9.4 Creating a new packet and adding a new event in

NetSim

In this example we show how users can create their own packet & event in 802.15.4 Zigbee.

The same methodology can be applied to any network / protocol.

1. Open the Source codes in Visual studio using the NetSim.sln file.

2. Go to ZigBee project and Open 802_15_4.h file and add a subevent called

“MY_EVENT” inside enum_IEEE802_15_4_Subevent_Type as shown below Figure

9-57.

Figure 9-57: Add “MY_EVENT” inside enum_IEEE802_15_4_Subevent_Type

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 225 of 281

3. To add a new packet in NetSim first user has to initialize their new packet name inside

802_15_4.h file. Let us assume the new packet be “MY_PACKET” and it is a control

packet. So user has to define it inside the following enum as shown below Figure 9-58.

Figure 9-58: Add “MY PACKET” inside enum_IEEE802_15_4_ControlPacket_Type

4. We assume that MY_PACKET has the same fields as a Zigbee Ack and hence we are

adding the following ack frame to 802_15_4.h file(Add this code just above the enum

enum_IEEE_802_15_4_ControlPacket_Type{} defenition):

struct stru_My_Frame

{

 int nBeaconId;

 int nSuperFrameId;

 int nBeaconTime;

 double dPayload;

 double dOverhead;

double dFrameSize;

};

typedef struct stru_My_Frame MY_FRAME;

enum enum_IEEE_802_15_4_ControlPacket_Type

{

5. Open 802_15_4.c file, go to the case TIMER_EVENT and add the following code to

the subevent type :-

case SUBEVENT_GETLINKQUALITY:

{

}

break;

case MY_EVENT:

{

//my event//

© TETCOS LLP. All rights reserved

Ver 13.0 Page 226 of 281

 fprintf(stderr, "My_event");

 pstruEventDetails->dEventTime = pstruEventDetails->dEventTime + 1 *
SECOND;

 pstruEventDetails->nDeviceId = nGlobalPANCoordinatorId;

 pstruEventDetails->nInterfaceId = 1;

 pstruEventDetails->nEventType = TIMER_EVENT;

 pstruEventDetails->nSubEventType = MY_EVENT;

 pstruEventDetails->nProtocolId = MAC_PROTOCOL_IEEE802_15_4;

 fnpAddEvent(pstruEventDetails);

 fn_NetSim_WSN_MY_PACKET();

//my event//

}

break;

Here we are adding a new event inside the timer event, and this event will occur every 1

second in the GlobalPANCoordinator. i.e. sink node. In this event,

fn_NetSim_WSN_MY_PACKET() is called as explained in step 5.

6. Inside 802_15_4.c file, add the following code at the end of the file for sending ack

(broadcast):

int fn_NetSim_WSN_MY_PACKET()

{

 double dTime;

 NETSIM_ID nDeviceId = pstruEventDetails->nDeviceId;

 NETSIM_ID nInterfaceId = pstruEventDetails->nInterfaceId;

 IEEE802_15_4_MAC_VAR *pstruMacVar =
DEVICE_MACVAR(nDeviceId, nInterfaceId);

 IEEE802_15_4_PHY_VAR *pstruPhyVar =
DEVICE_PHYVAR(nDeviceId, nInterfaceId);

 NetSim_PACKET *pstruPacket = pstruEventDetails->pPacket;

 NetSim_PACKET *pstruAckPkt;

 MY_FRAME *pstruAck;

 dTime = pstruEventDetails->dEventTime;

 // Create MY_Frame

 pstruAckPkt = fn_NetSim_Packet_CreatePacket(MAC_LAYER);

 pstruAckPkt->nPacketType = PacketType_Control;

 pstruAckPkt->nPacketPriority = Priority_High;

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 227 of 281

 pstruAckPkt->nControlDataType = MY_PACKET;

 pstruAck = fnpAllocateMemory(1, sizeof(MY_FRAME));

 // Update packet fields

 pstruAckPkt->nSourceId = nDeviceId;

 pstruAckPkt->nTransmitterId = nDeviceId;

 pstruAckPkt->nReceiverId = 0;

 add_dest_to_packet(pstruAckPkt, pstruAckPkt->nReceiverId);

 pstruAckPkt->pstruMacData->Packet_MACProtocol = pstruAck;

 pstruAckPkt->pstruMacData->dArrivalTime = dTime;

 pstruAckPkt->pstruMacData->dStartTime = dTime;

 pstruAckPkt->pstruMacData->dEndTime = dTime;

 pstruAckPkt->pstruMacData->dPacketSize =

 pstruAckPkt->pstruMacData->dOverhead;

 pstruAckPkt->pstruMacData->nMACProtocol =
MAC_PROTOCOL_IEEE802_15_4;

 pstruAckPkt->nPacketId = 0;

 strcpy(pstruAckPkt->szPacketType, "MY_PACKET");

//to see the packet in animation

// Add SEND ACK subevent

 pstruEventDetails->dEventTime = dTime;

 pstruEventDetails->dPacketSize =

pstruAckPkt->pstruMacData->dPacketSize;

 pstruEventDetails->nSubEventType = 0;

 pstruEventDetails->nEventType = PHYSICAL_OUT_EVENT;

 pstruEventDetails->pPacket = pstruAckPkt;

 fnpAddEvent(pstruEventDetails);

 //Free the packet

 fn_NetSim_Packet_FreePacket(pstruPacket);

 pstruPacket = NULL;

 return 0;

}

7. Inside the above function NetSim API

fn_NetSim_Packet_CreatePacket(MAC_LAYER); is used. This is the API which

© TETCOS LLP. All rights reserved

Ver 13.0 Page 228 of 281

creates a new packet in NetSim. Since in this example, new packet is created in MAC

layer, it is passed as an argument. Users can give the respective Layer name for

creating packets in any other layers. In the above code users can see the following

line:

strcpy(pstruAckPkt->szPacketType, "MY_PACKET");

This is used visualize the packet transmission in the packet animation.

8. In 802_15_4.c file, goto fn_NetSim_Zigbee_Init() function and add the following code

in red color to call the timer_event. i.e. MY_EVENT

declspec (dllexport) int fn_NetSim_Zigbee_Init(struct stru_NetSim_Network
*NETWORK_Formal,\NetSim_EVENTDETAILS
*pstruEventDetails_Formal,char *pszAppPath_Formal,\char
*pszWritePath_Formal,int nVersion_Type,void **fnPointer)

{

 pstruEventDetails=pstruEventDetails_Formal;

 NETWORK=NETWORK_Formal;

 pszAppPath =pszAppPath_Formal;

 pszIOPath = pszWritePath_Formal;

 //MY_EVENT

 pstruEventDetails->nDeviceId = nGlobalPANCoordinatorId;

 pstruEventDetails->nInterfaceId = 1;

 pstruEventDetails->dEventTime = pstruEventDetails->dEventTime;

 pstruEventDetails->nEventType = TIMER_EVENT;

 pstruEventDetails->nSubEventType = MY_EVENT;

 pstruEventDetails->nProtocolId = MAC_PROTOCOL_IEEE802_15_4;

 fnpAddEvent(pstruEventDetails);

 //MY_EVENT

fn_NetSim_Zigbee_Init_F(NETWORK_Formal,pstruEventDetails_Formal,psz
AppPath_Formal,\pszWritePath_Formal,nVersion_Type,fnPointer);

 return 0;

}

In the above function, subevent type, “MY_EVENT” is called. So this function calls the

MY_EVENT, timer event to execute.

9. fn_NetSim_Zigbee_Trace() is an API to print the trace details to the event trace. So

inside 802_15_4.c file add the following lines of code in red color inside

fn_NetSim_Zigbee_Trace(int nSubEvent) as shown below:-

_declspec (dllexport) char *fn_NetSim_Zigbee_Trace(int nSubEvent)

{

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 229 of 281

 if (nSubEvent == MY_EVENT)

 return "MY_EVENT";

 return (fn_NetSim_Zigbee_Trace_F(nSubEvent));

}

10. Save the code and build Zigbee project, libZigBee.dll will get created in the bin folder

of NetSim’s current workspace path

<C:\Users\PC\Documents\NetSim_13.0.14_64_std_default\bin\bin_x64> for 64-bit

and <C:\Users\PC\Documents\NetSim_13.0.14_32_std_default\bin\bin_x86> for 32-

bit. Create a basic scenario in WSN with 2 sensors and 1 sink node.

11. While creating the application between two sensors, set

Application Type - Sensor App

Interarrival Time - 5000

12. Run simulation for 10 seconds.

13. Play packet animation. Here users can see that Sink node broadcasts “MY_PACKET”

to the sensor.

Figure 9-59: In animation window Sink node broadcasts “MY_PACKET” to the sensor

14. Also, open packet trace and users can filter the control packet and see all the packet

details of “MY_PACKET” written in the packet trace.

Figure 9-60: Filter the Packet Type to control packet and See “MY_PACKET” in Packet Trace

© TETCOS LLP. All rights reserved

Ver 13.0 Page 230 of 281

15. To analyse the “MY_EVENT” users can open event trace and filter the subevent type

as “MY_EVENT”. Here users can analyse that the event occurs for every 1 seconds.

Figure 9-61: Filter Subevent type to “MY_EVENT”

9.5 NetSim API’s

NetSim provides a wide variety of APIs for protocol developers. These are available in

1. packet.h – Packet related APIs

▪ Create a new packet.

o fn_NetSim_Packet_CreatePacket_dbg(int nLayer,int line,const char* file);

▪ Copy a packet into a new packet.

o fn_NetSim_Packet_CopyPacket_dbg(const NetSim_PACKET* pstruPacket,int

line,const char* file);

▪ Create error in packet.

o fn_NetSim_Packet_DecideError(double dBER, long double dPacketSize);

▪ Free a packet

o fn_NetSim_Packet_FreePacket_dbg(NetSim_PACKET** pstruPacket,int

line,char* file);

2. stack.h – Network / device / link and event related APIs

▪ Calculate distance between nodes.

o fn_NetSim_Utilities_CalculateDistance(NetSim_COORDINATES*

coordinate1,NetSim_COORDINATES* coordinates2);

▪ Stores the event details. Only one-time memory is allocated. Most used variable

o struct stru_NetSim_EventDetails* pstruEventDetails;

▪ Retrieve values from xml file.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 231 of 281

o GetXmlVal(void* var,char* name,void* xmlNode,int flag, XMLDATATYPE type);

3. list.h -- Optimized list operation calls since NetSim uses lists extensively.

▪ Add elments in list.

o list_add(void** list,void* mem,size_t offset,int (*check)(void* current,void* mem));

▪ Sorting the list

o list_sort(void** list,size_t offset,int (*check)(void* current, void* mem));

4. IP_Addressing.h – For setting & getting IP address per the appropriate format.

▪ Set Ip address of any node.

o NETSIM_IPAddress

▪ Checking ip address is broadcast or multicast.

o isBroadcastIP(NETSIM_IPAddress ip);

o isMulticastIP(NETSIM_IPAddress ip);

For detailed help please refer the appropriateheader (.h) files

inside:/NetSim_Standard/src/simulation/include or read through the doxygen source code

documentation available inside NetSim →Help →NetSim source code Help

▪ Include all the header (.h) files from the include folder

▪ NetworkStack.lib is a “import library” file and has the definitions for the functions

present in the NetworkStack.dll

▪ When developing new protocols users should create their own protocol.h and

declare all the protocol specific variables here. Stack & packet related variables

should be used from stack.h and packet.h

NetSim Network Stack calling individual Protocol

Every protocol should provide the following APIs as hooks to the network stack:

▪ int (*fn_NetSim_protocol_init)(conststruct stru_NetSim_Network*,conststruct

stru_NetSim_EventDetails*,constchar*,constchar*,int,constvoid**);

▪ Using this API the stack passes all the relevant pointers to variables, paths etc

needed for the protocol. Inside this function a) local variables should be initialized,

b) Initial events if any should be written, eg: Hello packet in RIP, STP in Ethernet c)

File pointers for reading & writing protocol_specific_IO files.

▪ int (*fn_NetSim_protocol_Configure)(conststruct stru_NetSim_Network*,int

nDeviceId, int nINterfaceID, int nlayertype, fnpAllocateMemory, fnpFreeMemory,

fpConfigLog);

© TETCOS LLP. All rights reserved

Ver 13.0 Page 232 of 281

▪ The stack calls this API when reading the config file. Upon reaching the appropriate

protocol definition in the XML file, the stack calls this and passes all these pointers

to the protocol

▪ int (*fn_NetSim_protocol_run)(): This is called by the stack to run the protocol

▪ char* (*fn_NetSim_protocol_trace)(int): This called by the stack to write the event

trace

▪ int(*fn_NetSim_protocol_CopyPacket)(constNetSim_PACKET*

pstruDestPacket,const NetSim_PACKET* pstruSrcPacket):

▪ This is for copying protocol specific parameters / data into the packed

▪ int (*fn_NetSim_protocol_FreePacket)(const NetSim_PACKET* pstruPacket): The

this to free the protocol specific parameters / data in the packet

▪ (*fn_NetSim_protocol_Metrics)(const FILE* fpMetrics): This is to write the metrics

file upon completion of the simulation

▪ int (*fn_NetSim_protocol_Finish)(): To release all memory after completion

▪ char* (*fn_NetSim_protocol_ConfigPacketTrace)(constvoid* xmlNetSimNode); To

configure the packet packet trace in terms of the parameters to be logged

 char* (*fn_NetSim_protocol_WritePacketTrace)(const NetSim_PACKET*); To

configure the event trace in terms of the parameters to be logged.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 233 of 281

10 Advanced Features

10.1 Random Number Generator and Seed Values

NetSim includes protocol and traffic models which include stochastic behaviour. Typical

examples are a) wi-fi node’s random back-off after collisions, and b) packet error decision by

comparing a random number chosen between 0 and 1 against the packet error probability.

NetSim uses an in-built linear congruential Random Number Generator (RNG) to generate the

randomness. The RNG uses two seeds values to initialize the RNG. Having the same set of

seed values ensures that for a particular network configuration the same output results will be

got, irrespective of the system or time at which the simulation is run. This ensures repeatability

of experimentation.

Modifying the seed value will lead to the generation of a different set of random numbers and

thereby lead to a different sequence of events in NetSim. Therefore, the results are dependent

on the initial seeding of the RNG. Because a particular random seed can potentially result in

an anomalous, or non-representative behavior, it is important for each network scenario to be

simulated with several random number seeds, to ascertain typical performance.

To calculate confidence intervals, users can run multi-seed parametric experiments, where

one or more input parameters are varied, and for each input parameter value, multiple random

number seeds are used to obtain a set of performance metrics.

10.2 Interfacing MATLAB with NetSim (Std/Pro versions)

NetSim provides run-time interfacing with MATLAB so that users don’t have to rewrite code in

C for features that are already available in MATLAB. They can simply reuse MATLAB code.

Lot of work related to machine learning, artificial intelligence and specialized mathematical

algorithms which can be used for networking research, can be carried out using exisiting

MATLAB code.

Figure 10-1: Interfacing MATLAB with NetSim

© TETCOS LLP. All rights reserved

Ver 13.0 Page 234 of 281

This interfacing feature can be used to either replace an existing functionality in NetSim or to

incorporate additional functionalities supported by MATLAB. Any existing

command/function/algorithm in MATLAB or a MATLAB M-script can be used.

In general, the following are done when a user interfaces NetSim to MATLAB:

▪ Initialize a MATLAB engine process in parallel with NetSim,

▪ Execute MATLAB workspace commands,

▪ Pass parameters to MATLAB workspace,

▪ Read parameters from MATLAB workspace,

▪ Generate dynamic three-dimensional plots,

▪ Make calls to functions that are part of MATLAB M-scripts or .m files, and

▪ Terminate the MATLAB engine process at NetSim simulation end.

Pre-requisites for Interfacing NetSim with MATLAB

▪ MATLAB Interfacing requires an installed version of MATLAB. Engine API functions

cannot be run on a machine that only has the MATLAB Runtime.

▪ Both NetSim and MATLAB should use the same build; either 32-bit or 64-bit.

MATLAB functions can be called from NetSim's underlying protocol C source codes using

MATLAB APIs. Following are some of the MATLAB Engine API functions that can be used

from NetSim C source codes:

Engine Type for MATLAB engine

engOpen Start MATLAB engine session

engOpenSingleUse Start MATLAB engine session for single,

nonshared use

engClose Quit MATLAB engine session

engEvalString Evaluate expression in string

engGetVariable Copy variable from MATLAB engine

workspace

engPutVariable Put variable into MATLAB engine

workspace

engGetVisible Determine visibility of MATLAB engine

session

engSetVisible Show or hide MATLAB engine session

engOutputBuffer Specify buffer for MATLAB output

Table 10-1: MATLAB Engine API functions

Guidelines to interface NetSim with MATLAB

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 235 of 281

▪ Analyze what parameters the function or code in MATLAB expects as input.

▪ Identify the relevant variables in NetSim to be passed as input to MATLAB.

▪ Make calls from relevant places of NetSim source code to

o Pass parameters from NetSim to MATLAB.

o To read computed parameters from MATLAB workspace

▪ Identify and update the appropriate simulation variables in NetSim.

10.2.1 Implement Weibull Distribution of MATLAB without using .m file

In this example we will replace the default Rayleigh Fading (part of the path loss calculation)

used in NetSim, with a Fading Power calculated using the Weibull Distribution from

MATLAB.

Note: This example uses 32-bit version of NetSim and MATLAB. Settings will slightly vary in case of 64-bit

version of the software.

Procedure:

1. Create a MATLAB_Interface.c file inside the IEEE802_11 folder which can be found in

the current workspace location of NetSim that you are running and it would be

something like

“C:\Users\PC\Documents\NetSim_13.0.14_64_std_default\src\Simulation\IEEE802_1

1” For more information on NetSim workspace refer Section 4 “Workspaces and

Experiments”. Write the following code inside the MATLAB_Interface.c file:

/*

*

* This is a simple program that illustrates how to call the MATLAB

* Engine functions from NetSim C Code.

*

*/

#include<windows.h>

#include<stdlib.h>

#include<stdio.h>

#include<string.h>

#include"engine.h"

#include"mat.h"

#include"mex.h"

char buf[BUFSIZ];

Engine *ep;

© TETCOS LLP. All rights reserved

Ver 13.0 Page 236 of 281

int status;

mxArray *h = NULL, *i = NULL, *j = NULL, *k = NULL;

mxArray *out;

double *result;

double fn_netsim_matlab_init()

{

 /*

 * Start the MATLAB engine

 */

 fprintf(stderr, "\nPress any key to Initialize MATLAB\n");

 _getch();

 if(!(ep = engOpen(NULL))) {

 MessageBox((HWND)NULL, (LPCWSTR)"Can't start MATLAB engine",

 (LPCWSTR) "MATLAB_Interface.c", MB_OK);

 exit(-1);

 }

 engEvalString(ep, "desktop");

 return 0;

}

double fn_netsim_matlab_run()

{

 //write your own implementation here

 int weibull_noncentrality = 1, weibull_scale = 2;

 engPutVariable(ep, "h", h);

//use ProbDistUnivParam() function for matlab 2016

 sprintf_s(buf, BUFSIZ, "h=ProbDistUnivParam('weibull',[%d %d])",
weibull_noncentrality, weibull_scale);

//use makedist() function for matlab 2017

 //sprintf_s(buf, BUFSIZ, "h=makedist('weibull',%d,%d)", weibull_noncentrality,
weibull_scale);

 status = engEvalString(ep, buf);

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 237 of 281

 engPutVariable(ep, "i", i);

 sprintf_s(buf, BUFSIZ, "i=random(h,1)");

 status = engEvalString(ep, buf);

 out = engGetVariable(ep, "i");

 result = mxGetPr(out);

 return *result;

}

double fn_netsim_matlab_finish()

{

 fprintf(stderr, "\nPress any key to close MATLAB\n");

 _getch();

 status = engEvalString(ep, "exit");

 return 0;

}

Figure 10-2: Create a MATLAB_Interface.c inside the IEEE802_11 folder

2. Now open the code and Based on whether you are using NetSim 32 bit or 64 bit setup

you can configure Visual studio to build 32 bit or 64 bit Dll files respectively.

3. Right click on “IEEE802_11 Project” present in “Solution Explorer” window and select

Add → Existing Item and select the MATLAB_Interface.c file.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 238 of 281

4. MATLAB_Interface.c file contains the following functions.

i. fn_netsim_matlab_init() - Opens the MATLAB Engine

ii. fn_netsim_matlab_run() - Communicates with MATLAB Command Window

iii. fn_netsim_matlab_finish() - Closes the MATLAB Engine

5. In the Solution Explorer double click on the IEEE802_11.c file.

Figure 10-3: Solution Explorer double click on the IEEE802_11.c file

6. Add a call to fn_netsim_matlab_init(); inside the fn_NetSim_IEEE802_11_Init()

function.

Figure 10-4: Added a fn_netsim_matlab_init(); inside the fn_NetSim_IEEE802_11_Init() function

7. Similarly add a call to fn_netsim_matlab_finish(); inside the

fn_NetSim_IEEE802_11_Finish() function.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 239 of 281

Figure 10-5: Added a fn_netsim_matlab_finish(); inside the fn_NetSim_IEEE802_11_Finish() function

8. In the Solution Explorer double click on the IEEE802_11.h file. Add definitions of the

following functions

double fn_netsim_matlab_init();

double fn_netsim_matlab_run();

double fn_netsim_matlab_finish();

Figure 10-6: Added Matlab definitions in IEEE802_11.h file

9. In the Solution Explorer double click on the IEE802_11_PHY.c file.

10. Inside fn_Netsim_IEEE802_11_PHYIn() function comment the lines,

dFadingPower = propagation_calculate_fadingloss(propagationHandle,

© TETCOS LLP. All rights reserved

Ver 13.0 Page 240 of 281

 packet->nTransmitterId,ifid,pstruEventDetails->nDeviceId, pstruEventDetails-

>nInterfaceId);

11. Make a call to the fn_netsim_matlab_run() function by adding the following line,

 dFadingPower = fn_netsim_matlab_run();

Figure 10-7: Call to the fn_netsim_matlab_run() function

12. To compile a MATLAB engine application in the Microsoft Visual Studio (2017)

environment, Right click on the IEEE802_11 project and select PROPERTIES in the

solution explorer. Once this window has opened, make the following changes:

Figure 10-8: Right click on the IEEE802_11 project and select Properties

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 241 of 281

13. Under C/C++ → General, add the following directory to the field ADDITIONAL

INCLUDE DIRECTORIES:

<Path where MATLAB is installed>\extern\include

NOTE: To determine path where MATLAB is installed, entering the following command in the MATLAB command

prompt:

matlabroot

Figure 10-9: MATLAB Command Prompt

Figure 10-10: Determine MATLAB Path in Additional Include Directories

14. Under C/C++ → Precompiled Headers, set PRECOMPILED HEADERS as "Not Using

Precompiled Headers".

Figure 10-11: Select Precompiled Header as “Not Using Precompiled Headers”

© TETCOS LLP. All rights reserved

Ver 13.0 Page 242 of 281

15. Under Linker → General, add the directory to the field ADDITIONAL LIBRARY

DIRECTORIES:

<Path where MATLAB is installed>\extern\lib\win32\microsoft

Figure 10-12: Set Additional Library Directories to <Path where MATLAB is

installed>\extern\lib\win32\microsoft

16. Under Configuration Properties →Debugging, Add the following Target path in the

ENVIRONMENT: <Path where MATLAB is installed>\bin\win32

Figure 10-13: Set Environment to <Path where MATLAB is installed>\bin\win32

17. Under Linker → Input, add the following names to the field marked ADDITIONAL

DEPENDENCIES: libeng.lib;libmx.lib;libmat.lib;

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 243 of 281

Figure 10-14: Set Additional Dependencies as libeng.lib;libmx.lib;libmat.lib;

18. Make sure that the following directory is in the environment variable PATH:

<Path where MATLAB is installed>\bin\win32.

Notes:

1. To do step 14, check the Windows system path by clicking on Start → Right click on Computer →

Properties → Advanced System Settings → Environment variables → System Variables → Open "Path"

for editing.

2. If the machine has more than one MATLAB installed, the directory for the target platform must be ahead

of any other MATLAB directory (for instance, when compiling a 32-bit application, the directory in the

MATLAB 32-bit installation must be the first one on the PATH). To run 64-bit NetSim, users has to change

the above mentioned matlab paths to 64-bit matlab paths.

19. Now Right Click on IEEE802_11 project and select Rebuild.

Figure 10-15: Rebuild IEEE802_11 project

20. A new libIEEE802.11.dll gets created in the bin folder of NetSim’s current workspace

path <C:\Users\PC\Documents\NetSim_13.0.14_64_std_default\bin\bin_x64> for 64-

bit and <C:\Users\PC\\Documents\NetSim_13.0.14_32_std_default\bin\bin_x86> for

32-bit. For more information, follow steps provided in Section 9.1 “Writing your own

code”.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 244 of 281

21. Run NetSim in Administrative mode. Create a Network scenario involving

IEEE802_11 say MANET, right click on the Adhoc link and select properties. Make

sure that the Channel Characteristics is set to PathLoss and Fading and Shadowing.

Figure 10-16: Wireless Link Properties Window

22. Perform Simulation. You will find that once the Simulation starts MATLAB command

window starts and gets closed once the simulation is over.

Note: On Windows systems, engOpen opens a COM channel to MATLAB. The MATLAB software you

registered during installation starts. If you did not register during installation, enter the following

command at the MATLAB prompt:

!matlab -regserver

10.2.2 Debug and understand communication between NetSim and MATLAB

1. In the Solution Explorer double click on MATLAB_Interface.c file and place a

breakpoint inside the fn_netsim_matlab_run() function before the return statement.

Figure 10-17: Place a breakpoint inside the fn_netsim_matlab_run() function

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 245 of 281

2. Rebuild the code.

3. Now run the NetSim Scenario. The simulation window stops for user interrupt.

4. In Visual studio, go to Debug → Attach to Process.

5. From the list of Processes select NetSimCore.exe and click on Attach.

Figure 10-18: Select NetSimCore.exe in Attach to Process Window

6. Now go to the Simulation window and press Enter.

7. MATLAB Command Window and MATLAB Desktop Window will start and breakpoint

in Visual Studio gets triggered.

Figure 10-19: Once Simulation Start and breakpoint gets triggered in Visual Studio

8. Now when debugging (say, by pressing F5 each time) you will find the computation

taking place in the MATLAB Workspace.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 246 of 281

Figure 10-20: MATLAB Workspace

9. This value of i obtained from MATLAB is used to calculate fading power instead of

the already available models in NetSim.

10. Now place another breakpoint after the line dFadingPower = fn_netsim_matlab_run()

Figure 10-21: Added Another breakpoint after the line dFadingPower = fn_netsim_matlab_run()

11. Add the variable dFadingPower in IEEE802_11.Phy.c file, to watch. For this, right

click on the variable dFadingPower and select “Add Watch” option. You will find a

watch window containing the variable name and its value in the bottom left corner.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 247 of 281

Figure 10-22: Right Click on dFadingPower and Select “Add Watch” option

12. Now when debugging (say by pressing F5 each time) you will find that the watch

window displays the value of dFadingPower whenever the control reaches the

recently set breakpoint. You will also find that the value of dFadingPower in the Visual

Studio Watch window and the value of i in the MATLAB workspace window are

similar.

Figure 10-23: The Visual Studio Watch window and the value of i in the MATLAB workspace window
are similar

10.2.3 Implement Weibull Distribution of MATLAB in NetSim using .m file:

Procedure:

1. Create a file named weibull_distribution.m file inside <Path where MATLAB is

installed>. The weibull_distribution.m file contains the following code:

function WLAN= weibull_distribution(noncentrality,scale)

%use ProbDistUnivParam() function for matlab 2016

h=ProbDistUnivParam('weibull',[noncentrality,scale]);

%use makedist() function for matlab 2017

© TETCOS LLP. All rights reserved

Ver 13.0 Page 248 of 281

%h=makedist('weibull',noncentrality,scale);

 i=random(h,1);

WLAN=i;

2. Place this file in the MATLAB’s default working directory. This will usually be MATLAB’s

root directory or the bin folder in MATLAB’s installation path.

NOTE: To determine path where MATLAB is installed, entering the following command in the MATLAB

command prompt:

matlabroot

Figure 10-24: MATLAB Command Prompt

3. You will have to create a MATLAB_Interface.c file in the IEEE802_11 folder similar to

the previous example. The functions fn_netsim_matlab_init() and

fn_netsim_matlab_finish() will remain the same. Modify the function

fn_netsim_matlab_run() that is part of MATLAB_Interfacing.c which was used in the

previous example as shown below:

double fn_netsim_matlab_run()

{

 //write your own implementation here

 int weibull_noncentrality = 1, weibull_scale = 2;

 engPutVariable(ep, "h", h);

 sprintf_s(buf,BUFSIZ, "k=weibull_distribution(%d,%d)", weibull_noncentrality,

weibull_scale);

 status = engEvalString(ep, buf);

 out = engGetVariable(ep, "k");

 result = mxGetPr(out);

 return *result;

}

4. Follow steps 2 to 14 as explained in the section “Implement Weibull Distribution of

MATLAB in NetSim without using .m file” above.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 249 of 281

5. A call to the weibull_distribution () function inside the weibull_distribution.m file is made,

and weibull_noncentrality and weibull_scale parameters are passed from NetSim.

6. Right Click on IEEE802_11 project and select Rebuild.

7. A new libIEEE802.11.dll will get created in the bin folder of NetSim’s current workspace

path <C:\Users\PC\Documents\NetSim_13.0.14_64_std_default\bin\bin_x64> for 64-

bit and <C:\Users\PC\Documents\NetSim_13.0.14_32_std_default\bin\bin_x86> for

32-bit. Open NetSim in Administrative mode. Create a Network scenario involving

IEEE802_11 say MANET, right click on the environment and select properties. Make

sure that the Channel Characteristics is set to PathLoss and Fading and Shadowing.

8. You will find that once the Simulation is run MATLAB Command Window starts and

gets closed once the Simulation is over. You can also debug the code to understand

the communication between NetSim and MATLAB as explained in the DEBUGGING

section above.

10.2.4 Plot a histogram in MATLAB per a Weibull distribution (using .m file)

Procedure:

1. Create a file NETSIM_MATLAB.m file containing the following code:

function WLAN=NETSIM_MATLAB(choice,varargin)

switch(choice)

case'weibull'

 %use ProbDistUnivParam function for matlab 2016

h=ProbDistUnivParam('weibull',[varargin{1},varargin{2}]);

 %use makedist function for matlab 2017

 %h=makedist('weibull',varargin{1}, varargin{2});

i=random(h,1);

fid = fopen('plotvalues.txt','a+');

fprintf(fid,'%f',i);

fprintf(fid,'\r\n');

fclose('all');

WLAN=i;

case'plothistogram'

© TETCOS LLP. All rights reserved

Ver 13.0 Page 250 of 281

fid=fopen('plotvalues.txt');

mx=fscanf(fid,'%f');

hist(mx);

fclose('all');

end

2. Modify the function fn_netsim_matlab_run() that is part of MATLAB_Interfacing.c which

was used in the previous example.

double fn_netsim_matlab_run(char *arr)

{

 //write your own implementation here

 int weibull_noncentrality = 1, weibull_scale = 2;

 if (strcmp(arr, "weibull") == 0)

 {

 engPutVariable(ep, "h", h);

 sprintf_s(buf,BUFSIZ, "h=NETSIM_MATLAB('weibull',%d,%d)",
weibull_noncentrality, weibull_scale);

 status = engEvalString(ep, buf);

 out = engGetVariable(ep, "h");

 result = mxGetPr(out);

 return *result;

 }

 else if (strcmp(arr, "plothistogram") == 0)

 {

 status = engEvalString(ep, "NETSIM_MATLAB('plothistogram')");

 return 0;

 }

 else

 return 0;

}

Follow steps 2 to 11 as explained in the section on “Implement weibull Distribution of MATLAB

in NetSim without using .m file” above.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 251 of 281

▪ A call to the NetSim_MATLAB() function inside the NetSim_MATLAB.m file is made, for

fading power calculation with parameters distribution(‘weibull’), weibull_noncentrality and

weibull_scale parameters are passed from NetSim.

▪ A call to the NetSim_MATLAB() function inside the NetSim_MATLAB.m file is made, for

plotting histogram for the values generated by MATLAB.

▪ Also add the following call to fn_netsim_matlab_run() function along with a _getch() to plot

the histogram before closing the MATLAB Engine.

Figure 10-25: Added fn_netsim_matlab_run() function along with a _getch() to get histogram plot
before closing the MATLAB Engine

▪ Similarly in the call made to fn_netsim_matlab_run() function in IEEE802_11_Phy.c file

add the parameter “weibull” as shown below:-

Figure 10-26: Added the parameter “weibull” in fn_netsim_matlab_run() function in
IEEE802_11_Phy.c file

▪ Also modify the function definition of fn_netsim_matlab_run() function in IEEE802_11.h file

as shown below:

© TETCOS LLP. All rights reserved

Ver 13.0 Page 252 of 281

Figure 10-27: Modify the Function definition of fn_netsim_matlab_run() function in IEEE802_11.h file

▪ Right Click on IEEE802_11 project and select Rebuild will create a new libIEEE802.11. in

the bin folder of NetSim’s current workspace path

<C:\Users\PC\Documents\NetSim_13.0.14_64_std_default\bin\bin_x64> for 64-bit and

<C:\Users\PC\Documents\NetSim_13.0.14_32_std_default\bin\bin_x86> for 32-bit.

▪ Open NetSim in Administrative mode. Create a Network scenario involving IEEE802_11

say MANET, right click on the environment and select properties. Make sure that the

Channel Characteristics is set to PathLoss and Fading and Shadowing.

▪ You will find that once the Simulation is run MATLAB Command Window starts and once

the Simulation is over a histogram is displayed in MATLAB for the values that were

generated using weibull distribution.

Figure 10-28: Histogram plot is displayed in MATLAB

▪ The graph and the MATLAB windows get closed once you press any key.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 253 of 281

You can also debug the code to understand the communication between NetSim and MATLAB

as explained in the DEBUGGING section above.

10.3 Interfacing tail with NetSim

What is a tail command?

The tail command is a command-line utility for outputting the last part of files given to it via

standard input. It writes results to standard output. By default, tail returns the last ten lines of

each file that it is given. It may also be used to follow a file in real-time and watch as new lines

are written to it.

PART 1:

Tail options

▪ The following command is used to log the file.

tail " path_to_file " -f

where -f option is used to watch a file for changes with the tail command pass the -f option.

This will show the last ten lines of a file and will update when new lines are added. This is

commonly used to watch log files in real-time. As new lines are written to the log the console

will update will new lines.

▪ If users don’t want the last ten lines of the file, then use the following command.

tail -n 0 " path_to_file " –f

where –n option is used to show the last n number of lines.

▪ If you want to open more than 1 file then use the following command

tail –n 0 " path_to_file " " path_to_file " –f

PART 2:

Steps to log NetSim files using tail console.

▪ Open bin folder of NetSim’s current workspace path

(<C:\Users\PC\Documents\NetSim_13.0.14_64_std_default\bin\bin_x64> for 64-bit and

<C:\Users\PC\Documents\NetSim_13.0.14_32_std_default\bin\bin_x86> for 32-bit) which

contains tail.exe

▪ Open command window and change the directory to bin path of NetSim’s current

workspace path (bin\bin_x86 for 32-bit and bin\bin_x64 for 64-bit)

▪ Type the following command to open ospf_log.txt file and press enter.

tail -n 0 "C:\Users\PC\AppData\Local\Temp\NetSim\ospf_SPF_log.txt" –f

Note: Users need to change the path of the file. In this example we are using ospf_log.txt file

© TETCOS LLP. All rights reserved

Ver 13.0 Page 254 of 281

Figure 10-29: Enter the ospf_log.txt file path is Command Prompt

▪ Open solution file and add the following line in fn_NetSim_OSPF_Init() function in ospf.c

file present inside OSPF project

Figure 10-30: Add the following line in fn_NetSim_OSPF_Init() function in ospf.c file present inside
OSPF project

▪ Rebuild the project.

▪ Upon rebuilding, libOSPF.dll will get created in the bin folder of NetSim’s current

workspace path <C:\Users\PC\Documents\NetSim_13.0.14_64_std_default\bin\bin_x64>

for 64-bit and <C:\Users\PC\Documents\NetSim_13.0.14_32_std_default\bin\bin_x86> for

32-bit.

▪ Create a scenario in NetSim as per the screenshot below and run simulation.

Figure 10-31: Network Topology

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 255 of 281

▪ In the console window user would get a warning message shown in the below screenshot

Figure 10-32 (because of changed DLL) and then the simulation will pause for user input

(because of _getch() added in the init function)

Figure 10-32: Modified Project DLL Warning Message in NetSim Console

▪ In Visual Studio, put break point inside all the functions in OSPF_SPF.c file present inside

OSPF project.

▪ Go to “Debug->Attach to Process” in Visual studio and attach to NetSimCore.exe.

▪ Press enter in the command window. Then control goes to the project and stops at the

break point in the source code as shown below Figure 10-33.

Figure 10-33: Control goes to the project and stops at the break point in the source code.

▪ Press F5 and check the tail console to watch the ospf_SPF log would look like the following

screenshot Figure 10-34 which calculates the shortest path for Router2.

Figure 10-34: Calculates the shortest path for Router 2 in Console

▪ Keep pressing F5 will add the ospf_SPF log to the tail console. The below screenshot

Figure 10-35 examines the WAN links connected to Router2 i.e., 11.2.1.2 and 11.5.1.2

© TETCOS LLP. All rights reserved

Ver 13.0 Page 256 of 281

Figure 10-35: WAN links connected to Router 2 i.e., 11.2.1.2 and 11.5.1.2

▪ In the above screenshot, the shortest path for Router2 is 11.2.1.2 with Metrics 0 since it is

one of the Router2’s interface.

▪ The below screenshot Figure 10-36 calculates the shortest path for Router5 and examines

the WAN links connected to Router5 i.e., 11.4.1.1 and 11.5.1.1

Figure 10-36: WAN links connected to Router 5 i.e., 11.4.1.1 and 11.5.1.1

▪ In the above screenshot Figure 10-36, the shortest path for Router5 is 11.4.1.1 with

Metrics 0 since it is one of the Router5’s interface.

▪ The below screenshot Figure 10-37 calculates the shortest path for Router1 and examines

the WAN links connected to Router1 i.e., 11.2.1.1 and 11.4.1.2

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 257 of 281

Figure 10-37: WAN links connected to Router1 i.e., 11.2.1.1 and 11.4.1.2

▪ In the above screenshot, the shortest path for Router1 is 11.4.1.2 with Metrics 0 since it is

one of the Router5’s interface.

▪ As shown in the below screenshot, the router1 calculates another new entry i.e. 11.4.1.1

with metrics 100 since it is the next hop (Router5’s 1st interface) connected to Router1

Figure 10-38: Router1 calculates another new entry

▪ Similarly, users can debug the code and observe how the OSPF tables get filled.

▪ Users can also open multiple files by using the command given in Section 1.

10.4 Adding Custom Performance Metrics

NetSim allows users to add additional metrics tables to the Simulation Results window in

addition to the default set of tables that are available at the end of any simulation. This can be

achieved by editing the source codes of the respective protocol.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 258 of 281

General format to add custom metrics in Result window:

Every protocol has a main C file which contains a Metrics () function. For E.g., TCP project will

have a TCP.c file, UDP will have an UDP.c file etc. In the following example we have added a

new table as part of TCP protocol. TCP.c file contains fn_NetSim_TCP_Metrics() function

where code related to custom metrics is added as shown below:

_declspec(dllexport) int fn_NetSim_TCP_Metrics(PMETRICSWRITER metricsWriter)
{

//CUSTOM METRICS
//Set table name
PMETRICSNODE table = init_metrics_node(MetricsNode_Table, "CUSTOM METRICS",
NULL);
//set table headers
add_table_heading(table, "COLUMN_HEADER_1", true, 0);
add_table_heading(table, "COLUMN_HEADER_2", false, 0);
//Add table data
add_table_row_formatted(false, table, "%s,%s,", "ROW_DATA1","ROW_DATA2");
PMETRICSNODE menu = init_metrics_node(MetricsNode_Menu,"CUSTOM_METRICS",
NULL);
//Add table to menu
add_node_to_menu(menu, table);
//Write to Metrics file
write_metrics_node(metricsWriter, WriterPosition_Current, NULL, menu);
delete_metrics_node(menu);
//CUSTOM METRICS
return fn_NetSim_TCP_Metrics_F(metricsWriter);
}

Figure 10-39: Added Custom metrics table to the Simulation Results window

For illustration, an example regarding Wireless Sensor Network is provided. In this example,

parameters such as Sensor Node Name, Residual Energy, State (On/Off) and turn–off time

are tracked and added to a new table in the Simulation Results window.

Refer Section 8.1 on writing your own code, for more information.

After loading the source codes in Visual Studio, perform the following modifications:

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 259 of 281

Step 1: Copy the provided code at the top in 802_15_4.h file.

double NetSim_Off_Time[100]; //Supports upto Device ID 100. Array size can be increased
for higher number of Devices/Device ID's

Step 2:

Add the header file in 802_15_4.c file.

#include "../BatteryModel/BatteryModel.h"

Step 3:

Copy the below code (in red colour) in 802_15_4.c file (inside fn_NetSim_Zigbee_Metrics()

function)

/** This function write the metrics in metrics.txt */

_declspec(dllexport) int fn_NetSim_Zigbee_Metrics(PMETRICSWRITERmetricsWriter)

 {

//CUSTOM METRICS

 ptrIEEE802_15_4_PHY_VAR phy;

 ptrBATTERY battery;

 char radiostate[BUFSIZ];

 NETSIM_ID nDeviceCount = NETWORK->nDeviceCount;

 //Set table name

 PMETRICSNODE table = init_metrics_node(MetricsNode_Table,
"NODE_FAILURE_METRICS", NULL);

 //set table headers

 add_table_heading(table, "Node Name", true, 0);

 add_table_heading(table, "Status(ON/OFF)", true, 0);

 add_table_heading(table, "Residual_Energy (mJ)", true, 0);

 add_table_heading(table, "Time - Turned OFF (microseconds)", false, 0);

 for (int i = 1; i <= nDeviceCount; i++)

 {

 sprintf(radiostate, "ON");

 phy = WSN_PHY(i);

 if (strcmp(DEVICE(i)->type, "SENSOR"))

 continue;

 if (WSN_MAC(i)->nNodeStatus == 5 || phy->nRadioState==RX_OFF)

 sprintf(radiostate, "OFF");

 //Add table data

 add_table_row_formatted(false, table, "%s,%s,%.2lf,%.2lf,", DEVICE_NAME(i),
radiostate, battery_get_remaining_energy((ptrBATTERY)phy->battery), NetSim_Off_Time[i]);

© TETCOS LLP. All rights reserved

Ver 13.0 Page 260 of 281

 }

 PMETRICSNODE menu = init_metrics_node(MetricsNode_Menu, "CUSTOM_METRICS",
NULL);

 add_node_to_menu(menu, table);

 write_metrics_node(metricsWriter, WriterPosition_Current, NULL, menu);

 delete_metrics_node(menu);

 //CUSTOM METRICS

return fn_NetSim_Zigbee_Metrics_F(metricsWriter);

}

Step 4:

Copy the below code (in red colour) at the end of ChangeRadioState.c file.

if(isChange)

 {

 phy->nOldState = nOldState;

 phy->nRadioState = nNewState;

 }

 else

 {

 phy->nRadioState = RX_OFF;

 WSN_MAC(nDeviceId)->nNodeStatus = OFF;

NetSim_Off_Time[nDeviceId] = ldEventTime;

 }

 return isChange;

 }

Step 5:

Build DLL with the modified code and run a Wireless Sensor Network scenario. After

Simulation, user will notice a new Performance metrics named “Custom Metrics” is added. The

newly added NODE_FAILURE_METRICS table is shown below Figure 10-40.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 261 of 281

Figure 10-40: Added Custom metrics table to the Simulation Results window

10.5 Simulation Time and its relation to Real Time (Wall

clock)

The notion of time in a simulation is not directly related to the actual time that it takes to run a

simulation (as measured by a wall-clock or the computer's own clock), but is a variable

maintained by the simulation program. NetSim uses a virtual clock which ticks virtual time.

Virtual time starts from zero progresses as a positive real number.

This virtual time is referred to as simulation time to clearly distinguish it from real (wall-clock)

time. NetSim is a discrete event simulator (DES), and in any DES, the progression of the model

over simulation time is decomposed into individual events where change can take place. The

flow of time is only between events and is not continuous. Therefore, simulation time is not

allowed to progress during an event, but only between events. In fact, the simulation time is

always equal to the time at which the current event occurs. Therefore, simulation time can be

viewed as a variable that "jumps" to track the time specified for each new event.

The answer to the question "Will NetSim run for 10 seconds if Simulation time is set to 10

sec?" is, the simulation may take more than 10 seconds (Wall clock) if the network scenario is

very large and heavy traffic load. It may take a much shorter time (wall clock) for small networks

with low traffic loads.

Note that when running in "Emulation mode" simulation time and wall clock will be exactly

synchronized since it involves the transfer of real packets across the virtual network in NetSim.

In NetSim, the current simulation time can be got using -pstruEventDetails->dEventTime

© TETCOS LLP. All rights reserved

Ver 13.0 Page 262 of 281

10.6 Adding Custom Plots

NetSim’s plot option can be used to obtain Link and application throughput plots, which can

be accessed from the results dashboard after the simulation. In addition, TCP Congestion

Window plots and Buffer occupancy plots can be obtained by enabling the respective option

in the device properties.

Users can also log additional parameters with respect to time and get them plotted in NetSim

results dashboard. Following are some of the API’s which are part of NetSim_Plots.h file that

can be used for this purpose:

▪ fn_NetSim_Install_Metrics_Plot() - This function creates a plot log file and returns a value

of type PNETSIMPLOT which can be stored in a pointer and be used for adding values

using add_plot_data_formatted(). This function can generally be called at simulation start.

This function can be called one time for each plot that is to be generated.

For Eg: If a plot is to be generated for each node. Then this function needs to be called

the number of device times.

▪ add_plot_data_formatted() - This function can be used to add values to the plot log created

using the call to fn_NetSim_Install_Metrics_Plot(). This function needs to be called each

time you want to add new values to the plot log file. The call should be made at appropriate

section of code where the value being plotted changes with time.

10.6.1 Plotting SNR for each UE-gNB pair in 5G NR

SNR measured by UE’s from each gNB can be logged and plotted as part of NetSim results

window without having to use additional tools. Following is one such example where we log

the SNR for each UE-gNB pair and obtain plots at the end of the simulation.

Step 1: Open NetSim source code in NetSim current workspace. For more information, please

refer section “3.12 How does a user open and modify source codes”.

Step 2: Go to LTE_NR project through the solution explorer and open the LTE_NR.c file. In

the function fn_NetSim_LTE_NR_Init(), modify code as shown below:

_declspec(dllexport) int fn_NetSim_LTE_NR_Init()

{

 //custom plot

 int ret = fn_NetSim_LTE_NR_Init_F();

 for (NETSIM_ID r = 0; r < NETWORK->nDeviceCount; r++)

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 263 of 281

 {

 for (NETSIM_ID rin = 0; rin < DEVICE(r + 1)->nNumOfInterface; rin++)

 {

 if (!isLTE_NRInterface(r + 1, rin + 1))

 continue;

 ptrLTENR_PROTODATA data = LTENR_PROTODATA_GET(r + 1, rin + 1);

 switch (data->deviceType)

 {

 case LTENR_DEVICETYPE_UE:

 {

 for (NETSIM_ID r1 = 0; r1 < NETWORK->nDeviceCount; r1++)

 {

 for (NETSIM_ID rin1 = 0; rin1 < DEVICE(r1 + 1)->nNumOfInterface; rin1++)

 {

 if (!isLTE_NRInterface(r1 + 1, rin1 + 1))

 continue;

 ptrLTENR_PROTODATA data = LTENR_PROTODATA_GET(r1 + 1, rin1 + 1);

 switch (data->deviceType)

 {

 case LTENR_DEVICETYPE_GNB:

 {

 char heading[BUFSIZ], plotname[BUFSIZ];

 sprintf(heading, "UE_%d_GNB_%d_SNR", r + 1, r1 + 1);

 sprintf(plotname, "plot_UE_%d_GNB_%d_SNR", r + 1, r1 + 1);

 fn_NetSim_Install_Metrics_Plot(Plot_Custom, "LTE_NR SNR Plot", heading,
"SNR(dB)", 1, plotname);

 }

 break;

 default:

 break;

© TETCOS LLP. All rights reserved

Ver 13.0 Page 264 of 281

 }

 }

 }

 break;

 default:

 break;

 }

 break;

 }

 }

 }

 return ret;

 //custom plot

}

Step 3: In the file LTENR_GNBRRC.c go to the function

fn_NetSim_LTENR_RRC_GENERATE_UE_MEASUREMENT_REPORT() and add the lines

of code highlighted in red as shown below:

void fn_NetSIM_LTENR_RRC_GENERATE_UE_MEASUREMENT_REPORT()

{

 NETSIM_ID d = pstruEventDetails->nDeviceId;

 NETSIM_ID in = pstruEventDetails->nInterfaceId;

 ptrLTENR_UERRC ueRRC = LTENR_UERRC_GET(d, in);

 ptrLTENR_GNBRRC gnbRRC = LTENR_GNBRRC_GET(ueRRC->SelectedCellID, ueRRC-
>SelectedCellIF);

 ptrLTENR_RRC_UE_MEASUREMENT_REPORT report = NULL;

 ptrLTENR_RRC_UE_MEASUREMENT_REPORT temp = NULL;

 ptrLTENR_GNBPHY phy = NULL;

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 265 of 281

 for (NETSIM_ID r = 0; r < NETWORK->nDeviceCount; r++)

 {

 for (NETSIM_ID rin = 0; rin < DEVICE(r + 1)->nNumOfInterface; rin++)

 {

 if (!isLTE_NRInterface(r + 1, rin + 1))

 continue;

 ptrLTENR_PROTODATA data = LTENR_PROTODATA_GET(r + 1, rin + 1);

 switch (data->deviceType)

 {

 case LTENR_DEVICETYPE_GNB:

 temp = MEASUREMENT_REPORT_ALLOC();

 temp->ueID = d;

 temp->cellID = r + 1;

 temp->cellIF = rin + 1;

 temp->rs_type = RS_TYPE_SSB;

 temp->reportAmount = ReportAmount_r1;

 temp->reportInteval = gnbRRC->ueMeasReportInterval;

 phy = LTENR_GNBPHY_GET(r + 1, rin + 1);

 temp->sinr = LTENR_PHY_RRC_RSRP_SINR(r + 1, rin + 1, d, in);

 //custom plot

© TETCOS LLP. All rights reserved

Ver 13.0 Page 266 of 281

 char plotname[BUFSIZ];

 sprintf(plotname, "%s\\plot_UE_%d_GNB_%d_SNR.txt",pszIOPath, d, r + 1);

 FILE* fp = fopen(plotname, "a+");

 if (fp)

 {

 fprintf(fp, "%lf,%lf\n",pstruEventDetails->dEventTime,temp->sinr);

 fclose(fp);

 }

 //custom plot

 LIST_ADD_LAST((void**)&report, temp);

 break;

 default:

 break;

 }

 }

 }

 ptrLTENR_RRC_Hdr hdr = calloc(1, sizeof * hdr);

 hdr->msg = report;

 hdr->msgType = LTENR_MSG_RRC_UE_MEASUREMENT_REPORT;

 hdr->SenderID = d;

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 267 of 281

 hdr->SenderIF = in;

 fn_NetSIm_LTENR_RRC_ADD_HDR_INTO_PACKET(pstruEventDetails->pPacket, hdr,
ueMEASID, LTENR_MSG_RRC_UE_MEASUREMENT_REPORT);

 LTENR_CallPDCPOut();

}

Step 4: In LTENR.c add the following lines #include "NetSim_Plot.h".

Step 5: Save the changes and right-click on the LTE_NR module in the solution explorer and

select Rebuild.

Step 6: Upon a successful build, NetSim will automatically update the modified binaries in the

respective binary folder.

Step 7: Now on running any simulation in LTE/5G NR networks, you will get individual SNR

plots for each UE-GNB/UE-ENB pair, in the NetSim Metrics window under Plots ->LTE_NR

SNR Plot shown below Figure 10-41.

Figure 10-41: LTE_NR SNR Plots in Result Window

© TETCOS LLP. All rights reserved

Ver 13.0 Page 268 of 281

Figure 10-42: SNR Plot

The above results are based on the Handover in 5G NR Experiment which is part of NetSim

v13.0 experiment manual. The plot shows how the SNR drops as UE 3 moves away from GNB

1.

10.7 Environment Variables in NetSim

1. NETSIM_PACKET_FILTER = <filter_string> //used by NetSim developers to debug.

Emulator code to passes filter string to windivert. See windivert doc for more information.

2. NETSIM_EMULATOR_LOG = <log_file_path> // Used by Real time sync function to log

get event and add event. Used by NetSim developers to debug.

3. NETSIM_EMULATOR = 1 // Set by application dll or user to notify NetSim internal modules

to run in emulation mode

4. NETSIM_CUSTOM_EMULATOR = 1 // To notify NetworkStack to not load emulation dll

and to only do time sync.

5. NETSIM_SIM_AREA_X = <int> // Area used by Mobility functions for movement of device.

Set by config file parser or user.

6. NETSIM_SIM_AREA_Y = <int> // Same as above

7. NETSIM_ERROR_MODE = 1 // if set then windows won't popup gui screen for error

reporting on exception.

8. NETSIM_BREAK = <int> // Event id at which simulation will break and wait for user input.

Equivalent to -d command in CLI mode.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 269 of 281

9. NETSIM_AUTO = <int> // If set NetSim will not ask for keypress after simulation. //Useful

to run batch simulations.

10. NETSIM_IO_PATH = <path> // IO path of NetSim from where it will read Config file and

write output file. Equivalent to -IOPATH command in CLI mode.

11. NETSIM_MAP = 1 // Set by Networkstack to inform other modules that simulation is

running per map view.

12. NETSIM_ADVANCE_METRIC // If set, NetSim provides a set of extra metrics.

In application metrics, you can see duplicate packets received.

13. NETSIM_CONFIG_NAME = <FILE NAME> // Config file name. This file must present in

IOPath. If not set default value is Configuration.netsim

14. NETSIM_NEG_ID = 1 // If set, then control packets will have negative id.

15. NETSIM_PACKET_DBG = 1 // If set, then Simulation engine will log the packet creation

and freeing

16. NETSIM_MEMCHECK = 1 // If set, then simulation will enable memory check.

17. NETSIM_MEMCHECK_1 = x // Lower event id

18. NETSIM_MEMCHECK_2 = x // Upper event id

10.8 Best practices for running large scale simulations

As we scale simulations, the number of events processed and the memory consumed

increase. Simulation scale can be defined in terms of:

1. Number of Nodes

▪ End nodes

▪ Intermediate devices

2. Total traffic in the network

▪ Number of traffic sources

▪ Average generation rate per source

3. Simulation time

The simulators performance is additionally affected by:

▪ Protocols running

▪ Network Parameters such as Topology, Mobility, Wireless Channel etc.

▪ Enabling/Disabling - Animation, Plots, Traces and Logs

▪ External Interfacing – MATLAB, Wireshark, SUMO

NetSim GUI limitation on total number of Nodes is as follows:

▪ NetSim Academic – 100

© TETCOS LLP. All rights reserved

Ver 13.0 Page 270 of 281

▪ NetSim Standard – 500

▪ NetSim Professional – No software limit

Recommended best practices for running large scale simulations are:

▪ Run 64-bit Build of NetSim

▪ Use the latest Windows 10 Build.

▪ Use a system running a high-end processor with minimum 32 GB RAM

▪ Disable Animation – NetSim writes one file per node and windows limits the number of

simultaneously opened files to 512.

▪ Disable plots, traces and logs to speed up the simulation.

▪ If plots are enabled NetSim writes one file for each link and for each application.

Therefore, it is recommended users only select those links/applications for which they

wish to plot output performance. Plots for all other applications/links should be

disabled.

▪ NetSim writes one packet trace and one event trace file per simulation. If users wish to

open this file in MS-Excel, please note Excel’s limit of 1 Million rows.

▪ Packet trace and Event trace can be disabled to speed up the simulation.

▪ Running simulations via CLI mode will save memory.

10.9 Batch experimentation and automated simulations

NetSim Batch Automation allows users to execute a series of simulations without manual

intervention. Consider a requirement, where a user wishes to create and simulate hundreds of

network scenarios and store and analyse the performance metrics of each simulation run. It is

impossible to do this manually using the GUI. This requirement can be met using NetSim Batch

Automation script which runs NetSim via CLI.

A related requirement of advanced simulation users is a multi-parameter sweep. When

you sweep one or more parameters, you change their values between simulation runs, and

compare and analyze the performance metrics from each run.

The documentation and codes for batch experimentation script is available TETCOS -

https://www.tetcos.com/file-exchange.html

https://www.tetcos.com/file-exchange.html

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 271 of 281

11 NetSim Emulator

NOTE: Emulator will be featured in NetSim only if license for Emulator Add-on is available

11.1 Introduction

A network simulator mimics the behavior of networks but cannot connect to real networks.

NetSim Emulator enables users to connect NetSim simulator to real hardware and interact

with live applications.

11.1.1 Simulating and Analyzing Emulation Examples

To simulate the different types of Emulations Examples such as PING (both one-way and two-

way communications), Video (one-way communication), File transfer using FileZilla, Skype

etc.

1. Refer to the Emulation Technology Library document, which explains the following:

i. Introduction to Emulation.

ii. How to set up and configure Emulation Server in NetSim

iii. NetSim Emulation Features with added examples

iv. Latest FAQs

2. To access the Emulation Technology Library document,

i. You can access from the Technology Libraries link present under Documentation in

NetSim Homescreen

ii. From the Help Menu inside the design window, choose Technology Libraries Manuals

→ Emulation.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 272 of 281

12 Troubleshooting in NetSim

This section discusses some common issues and solutions:

12.1 CLI mode

While running NetSim via CLI for the scenarios described in the Configuration file, you may

bump into few problems.

Note that while running NetSim via CLI, try to ensure that there are no errors in the

Configuration.netsim file. The file, ConfigLog.txt, written to the windows temp path would show

errors, if any, found by NetSim’s config parser.

12.2 I/O warning displayed in CLI mode

Reason: While typing the CLI command if you enter wrong I/O Path, or if there is no

Configuration.netsim file then the following error is thrown

Figure 12-1: I/O warning displayed in CLI mode

Solution: Please check the I/O path.

12.2.1 Connection refused at server<-111> error displayed

Reason: Unable to communicate with the license server

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 273 of 281

Figure 12-2: Connection refused at server<-111> error displayed

Solution: In this example, license server IP address is 192.168.0.185 but it is given as

192.168.0.180. Here server IP address is wrong. Same error message is shown for wrong port

number, wrong tag name like–apppath,-iopath,-license. For example, if –appppath is typed

instead of –apppath then this message will be shown. So, check those details.

12.2.2 Unable to load license config dll(126)

Reason: Apppath and I/O path have white spaces

Figure 12-3: Unable to load license config dll

Solution: If the folder name contains white space, then mention the folder path within double

quotes while specifying the folder name in the command prompt. For example, if app path

contains white space, then the app path must be mentioned within double quotes in the

command prompt.

12.2.3 “Error in getting License” error in CLI mode

Simulation does not commence. “No license for product (-1)” is displayed in the command

prompt.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 274 of 281

Example:

Figure 12-4: “Error in getting License” error in CLI mode

Solution: NetSim is based on the client-server architecture. When NetSim runs in the client

machine, it will check for the license in the same machine, first. If license is not available in the

same machine, then “No license for product (-1)” will be displayed in the command prompt and

the server machine will be checked for the availability of license. If no license is available in

the server machine also, then again “No license for product (-1)” will be displayed in the

command prompt.

If “No license for product(-1)” is displayed in the command prompt two times, then check in the

NetSim license server to know about the availability of license and adjust the number of current

users of NetSim, in order to get the license.

12.2.4 Unable to load license config dll displayed

Reason: If the command/iopath provided by the user is first written in MS Word and then copy

pasted to Command prompt, some special characters (not visible in command prompt) gets

inserted and on execution, license config dll is not found.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 275 of 281

Figure 12-5: Unable to load license config dll

Solution: Type the command manually or copy paste the command/iopath from notepad.

12.3 Configuration.netsim

12.3.1 Invalid attribute in configuration file attributes

Specific attributes in the Configuration file are highlighted with zigzag lines

Reason: If invalid input is given in the Configuration file, then the corresponding attribute is

highlighted as blue lines as shown in the figure given below Figure 12-6.

Figure 12-6: Invalid attribute in configuration file

Solution: To resolve this issue mouse over the corresponding attribute, in order to get the tool

tip that furnishes the details about the valid input for that attribute.

Note: If the schema file and the configuration file are not present in the same folder, the zigzag lines won’t appear.

So, place the Configuration file and Schema File in the same location or change the path of schema file in the

configuration file.

12.3.2 Error in tags in configuration file attributes

Simulation does not commence, and error is displayed at the command prompt. Also, red lines

appearing at the tag specifying the Layer in the Configuration file

Reason: This issue arises mainly when the closing tag is not specified correctly for a particular

layer in the Configuration file.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 276 of 281

Example: If the closing tag is not specified for the Data link Layer, then the zigzag lines appear

at the starting tags of Data link Layer and the Network Layer.

Figure 12-7: Error in tags in configuration file

When NetSim is made to run through CLI, then the following error gets displayed in the

command prompt.

Figure 12-8: NetSim Run through CLI and following error displayed in the command prompt

Solution: The bug can be fixed by setting the closing tag correctly in the Configuration file

12.3.3 Error lines in configuration.xsd in the Configuration file

Blue lines appear at configuration.xsd in the Configuration file.

Reason: This issue arises when the schema and the configuration file are not in the same

folder.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 277 of 281

Figure 12-9: Error lines in configuration.xsd in the Configuration file

Solution: The bug can be fixed by placing the Configuration file and schema in the same

folder.

12.4 Simulation terminates and “NetSim Backend has

stopped working” displayed

Simulation terminates and exhibits unpredictable behavior. An error message stating, “An exe

to run NetSim backend has stopped working” is thrown.

Example:

Figure 12-10: Simulation terminates and “NetSim Backend has stopped working” displayed

This problem arises if there is any flaw in the Configuration.netsim or in the dll.

Solution: Check whether the desired scenario has been configured properly in the

Configuration.netsim.

12.5 Monitor screen resolution is less than 1024X768

While starting NetSim, error shows the monitor screen resolution is less than 1024 X 768.

Reason: This error will come if monitor resolution is less than 1024 X 768. For example, 1260

X 720 will also show this error.

© TETCOS LLP. All rights reserved

Ver 13.0 Page 278 of 281

Solution: Change your monitor resolution to 1024 X 768 or above.

12.6 Licensing

12.6.1 No License for product (-1) error

NetSim dongle is running in the server system. When running the NetSim in the Client system

showing “No License for product (-1)” error.

Possible Reasons:

1. Firewall in the client system is blocking the Network traffic.

2. No network connection between Client and Server.

3. License Server is not running in the Server system.

Solution:

1. The installed firewall may block traffic at 5053 port used for licensing. So, either the

user can stop the firewall, or may configure it to allow port 5053.

2. Contact the Network-in-charge and check if the Server system can be pinged from

client.

3. Check whether License Server is running in the Server system or not.

12.7 Troubleshooting VANET simulations that interface

with SUMO

12.7.1 Guide for Sumo

▪ Link for the Sumo Website - http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-

9883/16931_read-41000/for help related to Sumo.

▪ In case sumo Configuration files do not open, Right click on any Sumo Configuration

file, go to properties→open with→sumo.

▪ While Running NetSim Vanet Simulation – If any message pops up as

“SUMO_HOME” Not found→ Go to My computer → System Properties → Advanced

system settings → Environment Variables. Add an Environment variable as

“SUMO_HOME”.

▪ Sumo Configuration File must contain the paths of the Vehicle routes and Networks

file.

▪ Set the exact End Time for Sumo Simulation in Sumo Configuration File.

http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/
http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 279 of 281

12.7.2 Guide for Python

▪ Any Python 2.7 version Installer would work fine for running simulations.

▪ If you have installed python by an external Installer, make sure the Python Path is set.

It would be set automatically by python installer that comes with NetSim.

▪ In case “Pywin 32” is not getting installed, or during simulation, error occurs as “win32

modules not found” try the code below (Run it as a python Code).

import sys

from _winreg import *

tweak as necessary

version = sys.version[:3]

installpath = sys.prefix

regpath = "SOFTWARE\\Python\\Pythoncore\\%s\\" % (version)

installkey = "InstallPath"

pythonkey = "PythonPath"

pythonpath = "%s;%s\\Lib\\;%s\\DLLs\\" % (

 installpath, installpath, installpath

)

def RegisterPy():

 try:

 reg = OpenKey(HKEY_CURRENT_USER, regpath)

 except EnvironmentError as e:

 try:

 reg = CreateKey(HKEY_CURRENT_USER, regpath)

 SetValue(reg, installkey, REG_SZ, installpath)

 SetValue(reg, pythonkey, REG_SZ, pythonpath)

 CloseKey(reg)

 except:

 print "*** Unable to register!"

 return

 print "--- Python", version, "is now registered!"

 return

 if (QueryValue(reg, installkey) == installpath and

 QueryValue(reg, pythonkey) == pythonpath):

 CloseKey(reg)

 print "=== Python", version, "is already registered!"

 return

© TETCOS LLP. All rights reserved

Ver 13.0 Page 280 of 281

 CloseKey(reg)

 print "*** Unable to register!"

 print "*** You probably have another Python installation!"

if __name__ == "__main__":

 RegisterPy()

12.7.3 VANET Simulation

i. Changing Vehicle (Node) Names, Moving or deleting vehicles etc. are disabled in

Vanets Simulation.

ii. On running simulation, Backend calls Python file.

iii. NetSim protocol engine waits for the Pipes connection to be established.

12.7.4 Python

▪ SUMO_HOME Environment variable is checked. If Environment variable is not

present, Error is displayed as “key interrupt error” in SUMO_HOME.

▪ Python File waits for Pipes connection. (“waiting for pipes to connect”).

▪ It reads initial data as GUI enable/disable from simulation engine.

▪ “Checking sumo” is printed. If the environment variable SUMO_HOME points to wrong

directory, error is displayed.

▪ Sumo Simulation is started where Sumo Binary is checked (To check Sumo.exe or

Sumo GUI are working in the system or not). Then a TCP connection is made

▪ A while loop runs – It follows the following procedure.

i. Send Garbage value to Backend to clear pipe buffers (pipes).

ii. Read Vehicle name from NetSim (pipes).

iii. Compare with each vehicle present in Sumo. If vehicle is present –Then write

confirmation (pipes) and read its position from NetSim (2pipes for X and Y

coordinates). Also, sumo is stepped forward for every first vehicle in the list of

current vehicles in sumo.

▪ If vehicle not present, fail (‘f’) is sent.

▪ Pipes and TCP closed.

12.7.5 NetSim Core Protocol Library

▪ After establishing the connection, NetSim VANET Library checks for GUI flag, and

sends ‘1’ if animation status is online.

▪ As simulation proceeds, NetSim VANET library sends vehicle name to python, and

receives XY positions, which are passed from python.

▪ Positions are updated and simulation proceeds.

 © TETCOS LLP. All rights reserved

Ver 13.0 Page 281 of 281

13 NetSim Videos

In order to have a better understanding of NetSim, users can access YouTube channel of

Tetcos at www.youtube.com/tetcos and check out the various videos available.

14 R&D projects in NetSim

Example R & D projects in NetSim is available in www.tetcos.com/file-exchange.

15 NetSim FAQ/Knowledgebase

NetSim knowledgebase with hundreds on FAQs on how NetSim works is available at

https://tetcos.freshdesk.com/support/home

List of known issues in v13.0 is available at

https://support.tetcos.com/support/solutions/articles/14000101817-list-of

http://www.youtube.com/tetcos
http://www.tetcos.com/file-exchange
https://tetcos.freshdesk.com/support/home
https://support.tetcos.com/support/solutions/articles/14000101817-list-of

	1 NetSim – Introduction
	1.1 Introduction to modeling and simulation of networks
	1.2 Versions of NetSim – Academic, Standard & Pro
	1.3 Components (Technology Libraries) in Pro and Standard versions

	2 Installation and License Server Set-up
	2.1 System Requirements
	2.1.1 NetSim Client (installs locally)
	2.1.2 License Server (for running Host-ID/ Dongle locked floating licenses, not applicable for node locked licenses)

	2.2 Installing NetSim
	2.2.1 Silent installation
	2.2.2 Import Compatible Workspaces

	2.3 Setting up License Server
	2.3.1 Installing NetSim RLM Dongle Driver Software (Dongle Based Licenses)
	2.3.2 Running NetSim License Server
	2.3.3 Running NetSim Software

	3 NetSim GUI
	3.1 Menus in the NetSim Home Screen
	3.1.1 Creating “New” Simulations
	3.1.2 Environment Settings
	3.1.2.1 The Gird

	3.2 Modeling and Simulating a simple network
	3.2.1 Creating a Network scenario
	3.2.2 Configuring devices and links in the scenario
	3.2.3 Display Settings
	3.2.4 Copy/Paste
	3.2.5 Modeling Application Traffic
	3.2.6 Logging Packet/ Event Trace
	3.2.7 Run Simulation
	3.2.8 ACL Configuration
	3.2.8.1 ACL Commands
	3.2.8.2 Step to Configure ACL
	3.2.8.3 Results

	3.3 Saving & Opening experiments and Printing results
	3.3.1 Opening Saved Experiments:
	3.3.2 Saving an Experiment

	3.4 NetSim Keyboard Shortcuts
	3.5 NetSim Interactive Simulation
	3.5.1 Simulation specific (Not applicable for file based interactive simulation)
	3.5.2 Ping Command
	3.5.2.1 Ping Command Results

	3.5.3 Route Commands

	4 Workspaces and Experiments
	4.1 What is an Experiment and what is a workspace in NetSim?
	4.2 How does a user create and save an experiment in workspace?
	4.3 Should each user have a workspace?
	4.4 How does a user export an experiment?
	4.5 How does a user delete an Experiment in a workspace?
	4.6 How does a user create a new workspace?
	4.7 How does a user switch between workspaces?
	4.8 How does a user export a workspace?
	4.9 How does a user import a workspace?
	4.10 How does a user import an experiment?
	4.11 How does a user delete a workspace?
	4.12 How does a user open and modify source codes?
	4.13 Can I use NetSim's default code for my experiments?

	5 Simulating different networks in NetSim
	5.1 Internetworks
	5.1.1 Internetworks Examples
	5.1.2 Internetwork Documentation

	5.2 Legacy Networks
	5.2.1 Legacy Networks Examples
	5.2.2 Legacy Network Documentation

	5.3 Cellular Networks
	5.3.1 Cellular Networks Examples
	5.3.2 Cellular Networks Documentation

	5.4 Advanced Routing
	5.4.1 Advanced Routing Examples
	5.4.2 Advanced Routing Documentation

	5.5 MANETs
	5.5.1 MANET Examples
	5.5.2 MANET Documentation

	5.6 Wireless Sensor Networks (WSN)
	5.6.1 Wireless Sensor Networks (WSN) Examples
	5.6.2 WSN Library Documentation

	5.7 Internet of Things
	5.7.1 Internet of Things (IOT) Examples
	5.7.2 IOT Library Documentation

	5.8 Software Defined Networks (SDN)
	5.8.1 Software Defined Networks (SDN) Examples
	5.8.2 SDN Library Documentation

	5.9 Cognitive Radio
	5.9.1 Cognitive Radio Examples
	5.9.2 Cognitive Radio Library Documentation

	5.10 LTE
	5.10.1 LTE Examples
	5.10.2 LTE Library Documentation

	5.11 5G NR
	5.11.1 5G NR Examples
	5.11.2 5G NR Library Documentation

	5.12 VANETs
	5.12.1 VANET Examples
	5.12.2 VANET Library Documentation

	5.13 Satellite Communication
	5.13.1 Satellite Communication Examples
	5.13.2 Satellite Communication Documentation

	5.14 TDMA Radio Networks
	5.14.1 TDMA Radio Network Examples
	5.14.2 TDMA Radio Network Library Documentation

	6 Applications (Network Traffic Generator)
	6.1 Common properties for all applications
	6.2 Application Types
	6.3 Network Traffic Generation Rate for Different Applications
	6.4 Priority and QoS of Applications
	6.5 Capture real applications and simulate in NetSim
	6.6 Modelling Poisson arrivals in NetSim
	6.7 Application Configuration – Special Conditions

	7 Running Simulation via Command Line Interface
	7.1 Running NetSim via CLI
	7.1.1 Running in CLI Mode when using floating licenses
	7.1.2 Running in CLI Mode when using node-locked or cloud licenses
	7.1.3 Quick edit for copy pastes in CLI mode

	7.2 Understanding the Configuration.netsim file
	7.2.1 How to use Visual Studio to edit the Configuration file?
	7.2.2 Sections of Configuration file
	7.2.3 Sample Configuration file
	7.2.4 Configuration.xsd file

	8 Outputs: Results, Plots and Data Files
	8.1 Result Window and Plots Windows
	8.1.1 Application and Link Throughput Plots
	8.1.2 Buffer Occupancy Plot
	8.1.3 TCP Congestion Window Plot
	8.1.4 Notes on plots
	8.1.5 Link metrics
	8.1.6 Queue Metrics
	8.1.7 Protocol Metrics
	8.1.8 Device Metrics
	8.1.9 Cellular Metrics
	8.1.10 Channel metrics
	8.1.11 Sensor metrics
	8.1.12 Battery Model
	8.1.13 CR metrics
	8.1.13.1 Base station Metrics
	8.1.13.2 CPE metrics
	8.1.13.3 Incumbent Metrics
	8.1.13.4 Channel Metrics

	8.1.14 Application Metrics
	8.1.15 IP Metrics
	8.1.16 Advanced Metrics
	8.1.17 Notes on metrics
	8.1.18 The different results files written at the end of simulation

	8.2 Export to .csv
	8.3 Packet Animation
	8.3.1 Packet animation Table
	8.3.2 Packet animation – Display Settings
	8.3.3 Example on how to use NetSim packet animation feature:
	8.3.4 How to record and save Packet animation as a Video file

	8.4 Packet Trace
	8.4.1 How to set filters to NetSim trace file
	8.4.2 Observing packet flow in the Network through packet trace file
	8.4.3 Analysing Packet Trace using Pivot Tables
	8.4.4 Packet Transmitted / Received Analysis
	8.4.5 Delay analysis
	8.4.6 Throughput analysis
	8.4.7 Plotting with Pivot Charts
	8.4.8 Packet Trace Fields

	8.5 Event Trace (only in Standard/Pro Version)
	8.5.1 NetSim Network Stack and Discrete Event Simulation working
	8.5.2 Event Trace
	8.5.3 Calculation of Delay and Application throughput from event trace
	8.5.3.1 Application Delay Analysis:
	8.5.3.2 Application Throughput Analysis

	8.6 Packet Capture & analysis using Wireshark
	8.6.1 Enabling Wireshark Capture in a node for packet capture
	8.6.2 Viewing captured packets
	8.6.3 Filtering captured packets
	8.6.4 Analyzing packets in Wireshark
	8.6.4.1 Analyzing Conversation using graphs

	8.6.5 Window Scaling
	8.6.5.1 Comparing the packet lengths
	8.6.5.2 Creating IO graphs
	8.6.5.3 Creating Flow graphs

	9 Writing Custom Code in NetSim
	9.1 Writing your own code
	9.1.1 Microsoft Visual Studio 2019 Installation Settings
	9.1.2 Modifying code
	9.1.3 Building Dlls
	9.1.4 Running Simulation
	9.1.5 Source Code Dependencies
	9.1.6 Enabling Additional Security Checks

	9.2 Implementing your code - Examples
	9.2.1 Hello World Program
	9.2.2 Introducing Node Failure in MANET

	9.3 Debugging your code
	9.3.1 Via GUI
	9.3.1.1 Using _getch()
	9.3.1.2 Using Environment Variable

	9.3.2 Via CLI
	9.3.3 Co-relating with Event Trace
	9.3.4 Viewing & Accessing variables
	9.3.5 Print to console window in NetSim

	9.4 Creating a new packet and adding a new event in NetSim
	9.5 NetSim API’s

	10 Advanced Features
	10.1 Random Number Generator and Seed Values
	10.2 Interfacing MATLAB with NetSim (Std/Pro versions)
	10.2.1 Implement Weibull Distribution of MATLAB without using .m file
	10.2.2 Debug and understand communication between NetSim and MATLAB
	10.2.3 Implement Weibull Distribution of MATLAB in NetSim using .m file:
	10.2.4 Plot a histogram in MATLAB per a Weibull distribution (using .m file)

	10.3 Interfacing tail with NetSim
	10.4 Adding Custom Performance Metrics
	10.5 Simulation Time and its relation to Real Time (Wall clock)
	10.6 Adding Custom Plots
	10.6.1 Plotting SNR for each UE-gNB pair in 5G NR

	10.7 Environment Variables in NetSim
	10.8 Best practices for running large scale simulations
	10.9 Batch experimentation and automated simulations

	11 NetSim Emulator
	11.1 Introduction
	11.1.1 Simulating and Analyzing Emulation Examples

	12 Troubleshooting in NetSim
	12.1 CLI mode
	12.2 I/O warning displayed in CLI mode
	12.2.1 Connection refused at server<-111> error displayed
	12.2.2 Unable to load license config dll(126)
	12.2.3 “Error in getting License” error in CLI mode
	12.2.4 Unable to load license config dll displayed

	12.3 Configuration.netsim
	12.3.1 Invalid attribute in configuration file attributes
	12.3.2 Error in tags in configuration file attributes
	12.3.3 Error lines in configuration.xsd in the Configuration file

	12.4 Simulation terminates and “NetSim Backend has stopped working” displayed
	12.4 Simulation terminates and “NetSim Backend has stopped working” displayed
	12.5 Monitor screen resolution is less than 1024X768
	12.6 Licensing
	12.6.1 No License for product (-1) error

	12.7 Troubleshooting VANET simulations that interface with SUMO
	12.7.1 Guide for Sumo
	12.7.2 Guide for Python
	12.7.3 VANET Simulation
	12.7.4 Python
	12.7.5 NetSim Core Protocol Library

	13 NetSim Videos
	14 R&D projects in NetSim
	15 NetSim FAQ/Knowledgebase

