
 © TETCOS LLP. All rights reserved

Ver 13.2 Page 1 of 304

NetSim®
Accelerate Network R & D

User Manual

A Network Simulation & Emulation Software

By

© TETCOS LLP. All rights reserved

Ver 13.2 Page 2 of 304

The information contained in this document represents the current view of TETCOS LLP on the

issues discussed as of the date of publication. Because TETCOS LLP must respond to changing

market conditions, it should not be interpreted to be a commitment on the part of TETCOS LLP,

and TETCOS LLP cannot guarantee the accuracy of any information presented after the date of

publication.

This manual is for informational purposes only.

The publisher has taken care in the preparation of this document but makes no expressed or

implied warranty of any kind and assumes no responsibility for errors or omissions. No liability is

assumed for incidental or consequential damages in connection with or arising out of the use of

the information contained herein.

Warning! DO NOT COPY

Copyright in the whole and every part of this manual belongs to TETCOS LLP and may not be

used, sold, transferred, copied or reproduced in whole or in part in any manner or in any media

to any person, without the prior written consent of TETCOS LLP. If you use this manual you do

so at your own risk and on the understanding that TETCOS LLP shall not be liable for any loss or

damage of any kind.

TETCOS LLP may have patents, patent applications, trademarks, copyrights, or other intellectual

property rights covering subject matter in this document. Except as expressly provided in any

written license agreement from TETCOS LLP, the furnishing of this document does not give you

any license to these patents, trademarks, copyrights, or other intellectual property. Unless

otherwise noted, the example companies, organizations, products, domain names, e-mail

addresses, logos, people, places, and events depicted herein are fictitious, and no association

with any real company, organization, product, domain name, email address, logo, person, place,

or event is intended or should be inferred.

Rev 13.2 (V), Jul 2022, TETCOS LLP. All rights reserved.

All trademarks are property of their respective owner.

Contact us at

TETCOS LLP

214, 39th A Cross, 7th Main, 5th Block Jayanagar,

Bangalore - 560 041, Karnataka, INDIA.

Phone: +91 80 26630624

E-Mail: sales@tetcos.com

Visit: www.tetcos.com

mailto:sales@tetcos.com
http://www.tetcos.com/

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 3 of 304

Table of Contents

1 NetSim – Introduction .. 10

1.1 Introduction to modeling and simulation of networks ... 10

1.2 Versions of NetSim – Academic, Standard & Pro .. 10

1.3 Components (Technology Libraries) in Pro and Standard versions 12

2 Installation and License Server Set-up ... 14

2.1 System Requirements ... 14

2.1.1 NetSim Client (installs locally) .. 14

2.1.2 License Server ... 14

2.2 Installing NetSim ... 14

2.2.1 Express Installation .. 16

2.2.2 Custom (Step-by-step) installation ... 20

2.2.3 Silent installation .. 35

2.3 Setting up License Server ... 37

2.3.1 Installing NetSim RLM Dongle Driver Software (Dongle Based Licenses) 37

2.3.2 Running NetSim License Server .. 40

2.3.3 Running NetSim Software .. 40

3 NetSim GUI .. 41

3.1 Menus in the NetSim Home Screen ... 41

3.1.1 Creating “New” Simulations .. 45

3.1.2 Environment Settings ... 46

3.2 Modeling and Simulating a simple network .. 49

3.2.1 Creating a Network scenario .. 50

3.2.2 Configuring devices and links in the scenario ... 52

3.2.3 Display Settings ... 54

3.2.4 Copy/Paste .. 54

3.2.5 Modeling Application Traffic ... 55

3.2.6 Logging Packet/ Event Trace ... 56

3.2.7 Run Simulation ... 56

3.3 Saving & Opening experiments and Printing results .. 57

3.3.1 Opening Saved Experiments: ... 57

3.3.2 Saving an Experiment .. 57

3.4 NetSim Keyboard Shortcuts .. 58

3.5 NetSim Interactive Simulation .. 59

3.5.1 Simulation specific (Not applicable for file based interactive simulation) ... 61

3.5.2 Ping Command .. 62

© TETCOS LLP. All rights reserved

Ver 13.2 Page 4 of 304

3.5.3 Route Commands .. 64

3.5.4 ACL Configuration .. 65

3.5.5 Interactive Simulation using file .. 70

4 Workspaces and Experiments ... 74

4.1 What is an Experiment and workspace in NetSim? ... 74

4.2 How does a user create and save an experiment in a workspace? 75

4.3 Should each user have a workspace? ... 80

4.4 How does a user export an experiment? ... 81

4.5 How does a user delete an Experiment in a workspace? 82

4.6 How does a user create a new workspace? .. 82

4.7 How does a user switch between workspaces? ... 84

4.8 How does a user export a workspace? .. 85

4.9 How does a user import experiment and workspace?.. 87

4.9.1 Importing Configuration.netsim file from experiment folder 88

4.9.2 Import workspace or multiple experiments file .. 89

4.10 Import Experiments or Workspace folder ... 92

4.11 Import into current workspace vs. creating a new workspace 93

4.12 How does a user delete a workspace? .. 93

4.13 How does a user open and modify source codes? .. 94

4.14 How do I reset my code changes? ... 95

5 Simulating different networks in NetSim .. 96

5.1 Internetworks ... 96

5.1.1 Internetworks Examples ... 96

5.1.2 Internetwork Documentation .. 97

5.2 Legacy Networks ... 97

5.2.1 Legacy Networks Examples ... 97

5.2.2 Legacy Network Documentation ... 98

5.3 Cellular Networks .. 98

5.3.1 Cellular Networks Examples .. 98

5.3.2 Cellular Networks Documentation .. 98

5.4 Advanced Routing ... 99

5.4.1 Advanced Routing Examples ... 99

5.4.2 Advanced Routing Documentation ... 99

5.5 MANETs .. 99

5.5.1 MANET Examples .. 100

5.5.2 MANET Documentation ... 100

5.6 Wireless Sensor Networks (WSN) ... 100

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 5 of 304

5.6.1 Wireless Sensor Networks (WSN) Examples ... 100

5.6.2 WSN Library Documentation .. 101

5.7 Internet of Things .. 101

5.7.1 Internet of Things (IOT) Examples ... 101

5.7.2 IOT Library Documentation .. 102

5.8 Software Defined Networks (SDN) .. 102

5.8.1 Software Defined Networks (SDN) Examples ... 102

5.8.2 SDN Library Documentation ... 102

5.9 Cognitive Radio ... 103

5.9.1 Cognitive Radio Examples ... 103

5.9.2 Cognitive Radio Library Documentation ... 103

5.10 LTE/LTE-A .. 104

5.10.1 LTE Examples .. 104

5.10.2 LTE Library Documentation .. 104

5.11 5G NR ... 104

5.11.1 5G NR Examples ... 105

5.11.2 5G NR Library Documentation ... 105

5.12 VANETs .. 105

5.12.1 VANET Examples .. 105

5.12.2 VANET Library Documentation .. 105

5.13 Satellite Communication .. 106

5.13.1 Satellite Communication Examples .. 106

5.13.2 Satellite Communication Documentation .. 106

5.14 Underwater Acoustic Networks .. 107

5.14.1 UWAN Documentation ... 107

5.15 TDMA Radio Networks .. 107

5.15.1 TDMA Radio Network Examples .. 107

5.15.2 TDMA Radio Network Library Documentation .. 108

5.16 Network Emulator Add On ... 108

5.16.1 Emulation Library Documentation .. 108

6 Applications (Network Traffic Generator) ... 109

6.1 Common properties for all applications .. 110

6.2 Application Types .. 113

6.2.1 Voice Models ... 117

6.2.2 Video Models ... 118

6.3 Network Traffic Generation Rate for Different Applications 120

6.4 Priority and QoS of Applications .. 123

© TETCOS LLP. All rights reserved

Ver 13.2 Page 6 of 304

6.5 Capture real applications and simulate in NetSim .. 123

6.6 Modelling Poisson arrivals in NetSim ... 123

6.7 Application Configuration – Special Conditions .. 125

7 Running Simulation via Command Line Interface .. 126

7.1 Running NetSim via CLI .. 126

7.1.1 Running in CLI Mode when using floating licenses 127

7.1.2 Running in CLI Mode when using node-locked or cloud licenses 127

7.1.3 Quick edit for copy pastes in CLI mode .. 129

7.2 Understanding the Configuration.netsim file .. 129

7.2.1 How to use Visual Studio to edit the Configuration file? 129

7.2.2 Sections of Configuration file .. 130

7.2.3 Sample Configuration file ... 131

7.2.4 Configuration.xsd file .. 131

8 Outputs: Results, Plots and Data Files ... 133

8.1 Result Window and Plots Windows ... 133

8.1.1 Application and Link Throughput Plots ... 133

8.1.2 Buffer Occupancy Plot ... 135

8.1.3 TCP Congestion Window Plot .. 136

8.1.4 Notes on plots .. 138

8.1.5 Link metrics .. 138

8.1.6 Queue Metrics .. 139

8.1.7 Protocol Metrics ... 139

8.1.8 Device Metrics ... 139

8.1.9 Cellular Metrics .. 140

8.1.10 Channel metrics ... 140

8.1.11 Sensor Metrics (IEEE802.15.4_Metrics) ... 141

8.1.12 Battery Model ... 141

8.1.13 CR metrics ... 142

8.1.14 Application Metrics ... 144

8.1.15 LTENR Cell Metrics .. 145

8.1.16 IP Metrics ... 145

8.1.17 Advanced Metrics .. 146

8.1.18 Notes on metrics .. 146

8.1.19 The different results files written at the end of simulation 147

8.2 Export to .csv... 147

8.3 Packet Animation .. 149

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 7 of 304

8.3.1 Packet animation Table .. 150

8.3.2 Packet animation – Display Settings .. 151

8.3.3 Example on how to use NetSim packet animation feature: 151

8.3.4 How to record and save Packet animation as a Video file 154

8.4 Packet Trace ... 156

8.4.1 How to Enable Packet trace ... 157

8.4.2 How to set filters to NetSim trace file .. 159

8.4.3 Observing packet flow in the Network through packet trace file 160

8.4.4 Analysing Packet Trace using Pivot Tables .. 161

8.4.5 Packet Transmitted / Received Analysis .. 164

8.4.6 Delay analysis .. 166

8.4.7 Throughput analysis ... 171

8.4.8 Plotting with Pivot Charts ... 173

8.4.9 Packet Trace Fields ... 175

8.5 Event Trace (only in Standard/Pro Version) ... 178

8.5.1 NetSim Network Stack and Discrete Event Simulation working 178

8.5.2 Event Trace.. 179

8.5.3 Calculation of Delay and Application throughput from event trace 181

8.6 Packet Capture & analysis using Wireshark .. 189

8.6.1 Enabling Wireshark Capture in a node for packet capture 189

8.6.2 Viewing captured packets .. 189

8.6.3 Filtering captured packets .. 190

8.6.4 Analyzing packets in Wireshark.. 191

8.6.5 Window Scaling ... 192

9 Writing Custom Code in NetSim .. 196

9.1 Writing your own code ... 196

9.1.1 Microsoft Visual Studio 2019 Installation Settings 196

9.1.2 Modifying code ... 197

9.1.3 Building DLLs ... 198

9.1.4 Running Simulation .. 200

9.1.5 Source Code Dependencies .. 201

9.1.6 Enabling Additional Security Checks .. 202

9.2 Implementing your code - Examples .. 203

9.2.1 Hello World Program .. 203

9.2.2 Introducing Node Failure in MANET ... 204

9.3 Debugging your code .. 206

9.3.1 Via GUI .. 206

© TETCOS LLP. All rights reserved

Ver 13.2 Page 8 of 304

9.3.2 Via CLI ... 214

9.3.3 Co-relating with Event Trace .. 217

9.3.4 Viewing & Accessing variables ... 220

9.3.5 Print to console window in NetSim ... 227

9.4 Creating a new packet and adding a new event in NetSim 227

9.5 NetSim API’s ... 233

10 Advanced Features .. 236

10.1 Random Number Generator and Seed Values .. 236

10.2 Confidence in simulation results and error bars ... 236

10.3 Interfacing MATLAB with NetSim (Std/Pro versions) ... 237

10.3.1 NetSim-MATLAB Socket Interface ... 238

10.3.2 NetSim-MATLAB COM Interface .. 253

10.4 Interfacing tail with NetSim .. 277

10.5 Adding Custom Performance Metrics .. 281

10.6 Simulation Time and its relation to Real Time (Wall clock) 284

10.7 Adding Custom Plots ... 285

10.7.1 Plotting SNR for each UE-gNB pair in 5G NR .. 285

10.8 Environment Variables in NetSim .. 291

10.9 Best practices for running large scale simulations ... 292

10.10 Batch experimentation and automated simulations .. 293

11 NetSim Emulator... 295

11.1 Introduction ... 295

11.1.1 Simulating and Analyzing Emulation Examples 295

12 Troubleshooting in NetSim .. 296

12.1 CLI mode ... 296

12.2 Warnings when running CLI mode ... 296

12.2.1 I/O warning .. 296

12.2.2 Error in getting License displayed .. 296

12.2.3 Unable to load license config dll(126) ... 297

12.2.4 “License is NULL” error in CLI mode .. 297

12.3 Configuration.netsim.. 298

12.3.1 Invalid attribute in configuration file attributes ... 298

12.3.2 Error in tags in configuration file attributes ... 299

12.3.3 Error lines in configuration.xsd in the Configuration file 299

12.4 Simulation terminates and “NetSim Backend has stopped working” displayed .. 300

12.5 Licensing ... 301

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 9 of 304

12.5.1 No License for product (-1) error .. 301

12.6 Troubleshooting VANET simulations that interface with SUMO 301

12.6.1 Guide for Sumo .. 301

12.6.2 Guide for Python .. 301

12.6.3 VANET Simulation ... 303

12.6.4 Python .. 303

12.6.5 NetSim Core Protocol Library ... 303

13 NetSim Videos .. 304

14 R&D projects in NetSim ... 304

15 NetSim FAQ/Knowledgebase ... 304

© TETCOS LLP. All rights reserved

Ver 13.2 Page 10 of 304

1 NetSim – Introduction

1.1 Introduction to modeling and simulation of networks

A network simulator1 enables users to virtually create a network comprising of devices, links,

applications etc., and study the behavior and performance of the Network.

Some example applications of network simulators are:

▪ Protocol performance analysis

▪ Application modeling and analysis

▪ Network design and planning

▪ Research and development of new networking technologies

▪ Test and Verification

The typical steps followed when simulating any network are:

▪ Building the model: Create a network with devices, links, applications etc.

▪ Running the simulation: Run the discrete event simulation (DES) and log different

performance metrics.

▪ Visualizing the simulation: Use the packet animator to view the flow of packets.

▪ Analyzing the results: Examine output performance metrics such as throughput, delay,

loss etc. at multiple levels - network, link, queue, application etc.

▪ Developing your own protocol / algorithm: Extend existing algorithms by modifying the

simulator’s source C code.

1.2 Versions of NetSim – Academic, Standard & Pro

NetSim is used by people from different areas such as industry, defense, and academics to

design, simulate, analyze and verify the performance of different networks.

NetSim comes in three versions: Academic, Standard and Pro. The academic version is used

for lab experimentation and teaching. The standard version is used for R&D at educational

institutions while, NetSim Pro version addresses the needs of defense and industry. The standard

and pro versions are available as components in NetSim v13.2 from which users can choose and

assemble. A comparison of the features in the three versions are tabulated below Table 1-1.

1 To be technically precise, NetSim is an end-to-end, full-stack, packet level, continuous time, discrete event network
simulator.

http://tetcos.com/netsim_comp.html

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 11 of 304

Table 1-1: A comparison of the features of NetSim Academic, Standard and Pro versions

Features Academic Standard Pro

Technology Coverage

Internetworks Y Y Y

Legacy & Cellular Networks Y Y Y

Mobile Adhoc networks Y Y Y

Software Defined Networks Y Y Y

Wireless Sensor Networks Y Y Y

Internet of Things Y Y Y

Cognitive Radio Networks Y Y Y

LTE Networks Y Y Y

5G NR N Y Y

VANET N Y Y

Satellite Communication Networks N Y Y

Underwater Acoustic Networks N Y Y

Performance Reporting
Performance metrics available for Network and
Sub-networks

Y Y Y

Packet Animator
Used to animate the packet flow in network

Y Y Y

Packet Trace
Available in tab ordered .csv format for easy post
processing

Y Y Y

Event Trace
Available in tab ordered .csv format for easy post
processing

N Y Y

Protocol Library Source Codes with
Documentation
Protocol C source codes and appropriate header
files with extensive documentation

N Y Y

External Interfacing
Interfacing with SUMO

N

Y Y
MATLAB N

Wireshark Y

Integrated debugging
Users can write their own code, link their code to
NetSim and debug using Visual Studio

N Y Y

Plots
Allows users to plot the value of a parameter over
simulation time

Y Y Y

Simulation Scale 100 Nodes 500 Nodes
~ 10,0000
Nodes

Custom Coding and Modeling Support N Y Y

Emulator (Add on)
Connect to real hardware running live application

N Y Y

TDMA Radio Networks (Add On)
TDMA and DTDMA

N N Y

Target Users and Segment
Educational
(Lab
Experimentation)

Educational
(Research)

Commercial
(Industrial
and Defense)

© TETCOS LLP. All rights reserved

Ver 13.2 Page 12 of 304

1.3 Components (Technology Libraries) in Pro and Standard

versions

Users can choose and assemble components (technology libraries) in NetSim Standard and Pro

versions as shown Table 1-2.

Component No Networks / Protocols Supported
Reference
International
Standards

Component 1
(Base. Required
for all
components)

Internetworks
Ethernet - Fast & Gigabit, ARP, Routing - RIP, OSPF,
WLAN - 802.11 a / b / g /p / n / ac & e,
Propagation models - HATA Urban / Suburban,
COST 231 HATA urban / Suburban, Indoor Home /
Office / Factory, Friis Free Space, Log Distance.
Shadowing - Constant, Lognormal. Fading - Rayleigh,
Nakagami
IPv4, Firewalls, Queuing - Round Robin, FIFO,
Priority, WFQ,
TCP, - Old Tahoe, Tahoe, Reno, New Reno, BIC,
CUBIC, Window Scaling, SACK
UDP
Common Modules
Traffic Generator: Voice, Video, FTP, Database,
HTTP, Email, P2P, Custom, CBR.
Virtual Network Stack,
Simulation Kernel,
Command Line Interface
Command Line Interpreter
Metrics Engine with packet and event trace
Plot Generator
Packet Animator,
Packet Encryption
External Interfaces: MATLAB, Wireshark

IEEE 802.3

IEEE 802.11
a/b/g/n/ac/p/e

RFCs 2453, 2328,
826, 793, 2001 and
768

Component 2

Legacy & Cellular Networks
Aloha – (Pure & Slotted)
GSM
CDMA

3GPP, ETSI, IMT-MC,
IS-95 A/B, IxRTT, 1x-
EV-Do, 3xRTT

Component 3

Advanced Routing
Multicast Routing - IGMP, PIM, Access Control Lists,
Detailed Layer 3 switch mode, Virtual LAN (VLAN),
Public IP, Network Address Translation (NAT)

IETF RFC’s 1771 &
3121

Component 4
Mobile Adhoc Networks
MANET - DSR, AODV, OLSR, ZRP

IETF RFC 4728, 3561,
3626

Component 5

Software Defined Network (SDN)

Based on Open Flow
v1.3

Component 6
(Component 4
required)

Internet of things (IOT) with RPL protocol
Wireless Sensor Networks (WSN)

IEEE 802.15.4 MAC,
MANET in L3
RFC 6550

Component 7
Cognitive Radio Networks
WRAN

IEEE 802.22

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 13 of 304

Component 8 Long-Term Evolution Networks: LTE 3GPP

Component 9
(Component 4
required)

VANETs: IEEE 1609 WAVE, Basic Safety Message
(BSM) protocol per J2735 DSRC, Interface with
SUMO for road traffic simulation

IEEE 1609

Component 10
(Components 8
required)

5G NR :3GPP 38 Series. Full Stack covering SDAP,
PDCP, RLC – UM, TM, MAC, PHY – FR1 and FR2,
mmWave propagation.

3GPP 38.xxx

Component 11
(Component 3
required)

Satellite Communication Networks: Geo Stationary
Satellite. Forward link TDMA in Ku Band and Return
link MF-TDMA in Ka band per DVB S2. Markov Loo
Fading model. Device models for Satellite, Satellite
Gateway, and Satellite User Terminals

DVB S2

Component 12
(Component 2 &
3 required)

Underwater Acoustic Network IEEE 802.11

TDMA Radio
Networks Add
on (Pro version
only)

TDMA Radio Networks
TDMA Link 16, Dynamic TDMA, Frequencies – HF,
VHF, UHF Bands,
Frequency Hopping

Network
Emulator
Add On

Network Emulator
Connect real hardware running live applications to
NetSim Simulator. IP based, data plane, flow through
emulator.

Table 1-2: Different Components (Technology Libraries) in Pro and Standard versions of NetSim

© TETCOS LLP. All rights reserved

Ver 13.2 Page 14 of 304

2 Installation and License Server Set-up

2.1 System Requirements

2.1.1 NetSim Client (installs locally)

▪ Hardware: i3 equivalent or above, RAM: 4 GB (Min). 8GB Recommended.

▪ Monitor resolution: Min - 1024*768, Max - 1920*1080. Optional Scale and layout setting:

100%

▪ Operating system: 64 bit. Win 8 or Win 10, Win 11, Language English

▪ Software: MS Office, Adobe Reader

▪ Development Tools: Visual Studio

o NetSim v8 / v8.1 / v8.3 / v9 / v9.1: Microsoft Visual Studio 2010 (or higher)

o NetSim v10 / v11 / v11.1: Microsoft Visual Studio 2015 (or higher)

o NetSim v12 / v12.1 / v12.2: Microsoft Visual Studio 2019 (or higher)

o NetSim v13 / v13.1 / v13.2: Microsoft Visual Studio 2021 (or higher)

Visual Studio Community edition (or higher) is required for writing and debugging custom code.

2.1.2 License Server

This is applicable when running Host-ID/ Dongle locked floating licenses, and are not applicable

for node locked licenses.

Any one system will have to be made as the license server, and it is to this PC that the license is

locked, either via its MAC ID or via a dongle. The dongle is a USB device which controls the

licensing. The system(hardware/OS) requirements are same as that applicable for NetSim clients.

USB Port is required for connecting and running the dongle. Client systems should be able to

communicate with license server through the network.

2.2 Installing NetSim

Install 64-bit build of NetSim. The start window will show (i) Version type (Pro, Standard,

Academic), (ii) Version Number and build number (Eg: 13.2.9) followed by (iii) Currently supports

64bit in v13.2.

For example, you will see NetSim_Standard_13_2_15_HW_64bit.exe for a Standard version

install. Double click on the setup file. Click on Yes button to install the software.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 15 of 304

Figure 2-1: User Account Control message window appears and select Yes button.

Setup prepares the installation wizard and software installation begins with a Welcome Screen.

Click on Next button to continue with the installation.

Figure 2-2: Select Next button to continue with the installation

License agreement will be displayed. Read the agreement carefully, scroll down to read the

complete license agreement. Click on I Agree button else quit the setup by clicking Cancel button.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 16 of 304

Figure 2-3: Select I Agree button

If you agree with the license agreement, you will be prompted to select either one of the installation

options, Express (Single-click installation) or Custom (Step-by-Step installation).

Express Installation will install the third-party tools silently along with NetSim without displaying

any prompts for the user.

Custom Installation is a step-by-step approach in which a user will be prompted to carry out the

installation process and the same applies to the installation of the third-party tools which happens

alongside with NetSim.

Both the installation methods are explained below:

2.2.1 Express Installation

Figure 2-4: Select Express (Single click) radio button and click on install

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 17 of 304

NetSim installation starts, and users can see that the third-party tools download information

window click on OK to proceed with the installation.

Figure 2-5: Click on the OK button to proceed installation process of NetSim

The third-party tools like Wireshark, SUMO, python, Winmerge, pywin, and Microsoft.Net will

begin to install. Before that, the installer will look for the third-party tools at the same folder where

NetSim.exe is present if found, the next step of installation proceeds.

Else, the third-party tools will get downloaded from our NetSim servers and installed if the PC/VM

is connected to the Internet.

Figure 2-6: Sumo is being downloaded

Figure 2-7: python is being downloaded

Figure 2-8: pywin is being downloaded

Figure 2-9: Winmerge is being downloaded

Figure 2-10: Wireshark is being downloaded

NetSim installation starts, and users can see that the third-party tools get installed one by one.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 18 of 304

Figure 2-11: Wireshark gets installed silently

Figure 2-12: Python gets installed silently

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 19 of 304

Figure 2-13: Sumo gets installed silently

After the third-party installations, NetSim installation proceeds. Once it is completed, NetSim-

complete setup wizard appears as shown below. Click on Finish button to complete the

installation process of NetSim.

Figure 2-14: Select Finish button to complete the installation process of NetSim.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 20 of 304

2.2.2 Custom (Step-by-step) installation

Figure 2-15: Select Custom Radio button

Now the user will be prompted to select the components to be installed. The list of components

is available for selection and assembly only in the Standard and Pro versions of NetSim. NetSim

Academic version is available as a single package.

Note: In Standard and Pro Versions of NetSim, the Choose Components screen will display only those

components for which the licenses are obtained by the user. Also, Network Emulator and Real Time

Protocol are available as Add-On along with NetSim.

Figure 2-16: list of components is available for selection and assembly only in the Standard and Pro

versions

Note: Select all the supporting applications for complete installation of the software as shown below:

Click on the Next button.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 21 of 304

Figure 2-17: list of third-party tools

Note: Sumo, Python and Winmerge comes only as a part of Standard and Pro Version Install.

In the next screen, you will be requested to enter the installation path. Select the path in which

the software needs to be installed and click on Next button.

Figure 2-18: NetSim installation directory path

In the next screen, you will be requested to enter the Start Menu folder name. By default, it shows

NetSim Standard for Standard version install of NetSim. Click on the Install button to start the

installation.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 22 of 304

Figure 2-19: Start Menu folder name

The installation process begins.

Figure 2-20: NetSim Standard v13.1 being installed.

After the installation of required NetSim files, the installation of third-party tools begins.

For NetSim Academic Version, Npcap and Wireshark will be installed.

For NetSim Standard and Pro Versions, along with WinPcap and Wireshark installation, Dot net,

Sumo, Python installation will start automatically. (If not deselected during 3rd party software

selection)

If the PC/VM is connected to the Internet third party tools will get downloaded from our NetSim

servers (If the third-party tools are not found in folder where NetSim.exe is present) and proceeds

with installation.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 23 of 304

Click on Install button to start Dot NET (.NET) installation

Figure 2-21: Select install button to install Dot NET (.NET)

Installation process begins.

Figure 2-22: Dot NET (.NET) installation begins

Figure 2-23: Dot NET (.NET) installation

successfully completed

After the successful installation of Dot NET (.NET) and click on close button then Wireshark

installation window appears. Click on Next button to begin

© TETCOS LLP. All rights reserved

Ver 13.2 Page 24 of 304

Figure 2-24: Select Next button to start Wireshark installation

Wireshark License Agreement appears. Click on I Agree button.

Figure 2-25: Wireshark License Agreement window

Make sure that all the components are selected and click on Next button.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 25 of 304

Figure 2-26: Choose Wireshark features

Click on Next button.

Figure 2-27: Select Next button

Select the path in which Wireshark needs to be installed and click on Next button.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 26 of 304

Figure 2-28: Wireshark installation directory path

Select Install Npcap 0.995 and click on Next button.

Figure 2-29: Select Install Npcap 1.55 in Wireshark window

Select Install USBPcap 1.3.0.0 and click on Install button.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 27 of 304

Figure 2-30: Select Install USBPcap 1.5.4.0 in Wireshark window

The installation process begins.

Figure 2-31: Wireshark installation process begins

Npcap License Agreement window appears. Click on I Agree button and proceed with the

installation.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 28 of 304

Figure 2-32: Npcap License Agreement window

USBPcap Driver License Agreement window appears. Click on I accept the terms of the License

Agreement check box and click on Next button.

Figure 2-33: USBPcap Driver License Agreement window

USBPcap CMD License Agreement window appears. Click on I accept the terms of the License

Agreement check box and click on Next button.

Figure 2-34: USBPcap CMD License Agreement

window

Figure 2-35: USBPcap installation is completed

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 29 of 304

The Installation Complete dialog box appears once the installation process is completed

successfully. Click on the Next button.

Figure 2-36: Installation Complete dialog box and select next button

You will get the Wireshark Completing Setup window. Select the option I want to manually

reboot later.

Figure 2-37: Select the option I want to manually reboot later and Click on Finish button

This completes the Installation of Wireshark software. NetSim complete Setup wizard appears as

shown above. After click on Finish button to begin with WinMerge installation.

Next the WinMerge License Agreement appears. Click on Next button

© TETCOS LLP. All rights reserved

Ver 13.2 Page 30 of 304

Figure 2-38: WinMerge License agreement window

Select the path in which WinMerge needs to be installed and click on Next button

Figure 2-39: Select the location where should WinMerge be installed

Once WinMerge installation completes, click on Finish button

Figure 2-40: Click on Finish button to completes WinMerge installation

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 31 of 304

Click on Next button to start SUMO installation.

Figure 2-41: Sumo Installation starts

SUMO License Agreement appears. Accept the terms in license agreement and click on Next

to proceed installation

Figure 2-42: SUMO License Agreement window

Once SUMO installation completes, click on Finish button

© TETCOS LLP. All rights reserved

Ver 13.2 Page 32 of 304

Figure 2-43: Complete SUMO Installation

Click on Next button to start with Python 3.7.4 installation.

Figure 2-44: Select “install Now” option to install Python

The installation begins once you click on Install option.

Figure 2-45: Python installation begins

Figure 2-46: Python installation successfully
completed

Once the installation is finished, click on Close button to start the installation pywin 32

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 33 of 304

Figure 2-47: pywin 32-224 installation wizard window

Click on Next button to select the directory to be used.

Figure 2-48: Python directory path

Click on Next button to start the installation.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 34 of 304

Figure 2-49: Select Next button to install of pywin32

Once the installation is finished, click on Finish button.

Figure 2-50: Select Finish button to complete pywin installation

This completes the Installation of pywin software. NetSim complete Setup wizard appears as

shown below. Click on Finish button to complete the installation process of NetSim.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 35 of 304

Figure 2-51: NetSim complete Setup wizard

After this, to run NetSim, double click on the NetSim icon present in the desktop or right click and

choose Run as administrator option. A NetSim License Server Information screen appears to

start with NetSim.

Figure 2-52: Enter NetSim License Server IP Address/Host name/Select NetSim License file

Enter the NetSim License Server IP Address, i.e. the system in which the License files are

present and the rlm.exe file is running (Refer Section 2.3.1 to set up NetSim License Server). In

case of Cloud/Node-locked/Evaluation license browse the provided LIC file and click on OK

button. Once this is done, NetSim Home screen will appear.

2.2.3 Silent installation

Steps for silent installation in NetSim are as follows.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 36 of 304

1. For example, let us take the NetSim_Standard_13_1_19_HW_64bit.exe setup. Right click on

NetSim Standard 64-bit setup → Go to properties and copy the Location as shown below.

Figure 2-53: NetSim Standard 64-bit setup location

2. Open command prompt and paste the copied location as shown below.

Figure 2-54: Enter setup location in command prompt

3. Run/Execute Command with the following parameters:

NetSim_Standard_13_1_19_HW_64bit.exe/S /silent=1

><setup location/S<space>/silent=1

i. silent=1: It will install NetSim and third-party tools silently.

ii. /S: It will Install NetSim itself silently.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 37 of 304

Figure 2-55: Silent installation command in command prompt

4. Press the Enter key. The following User Account Control message window appears. Click on

Yes button to begin silent installation of NetSim.

 Figure 2-56: User Account Control message window appears and select Yes

Note: Complete installation of NetSim may take up to 2 or 3 minutes.

2.3 Setting up License Server

2.3.1 Installing NetSim RLM Dongle Driver Software (Dongle Based Licenses)

This section guides you to install the RLMDongle Driver software from the CD-ROM.

1. Insert the CD-ROM disc in the CD drive.

2. Double click on My Computer and access the CD Drive.

3. Double click on Driver_Software folder.

4. Double click on HASPUserSetup.exe

Each prompt displayed during the process tells you what it is about to do and prompts to either

continue or exit.

Setup prepares the installation wizard and the driver software installation begins with a Welcome

Screen. Click on Next button.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 38 of 304

Figure 2-57: Sentinel Runtime Setup window and select Next button

Note: Any other program running during the installation of the Dongle will affect the proper installation of

the software.

Sentinel Runtime Setup License Agreement appears. Read the license agreement carefully, scroll

down to read the complete license agreement. If the requirement of the license agreement is

accepted, Click on I accept the license agreement and click on Next button else quit the setup by

clicking Cancel button.

Figure 2-58: Sentinel Runtime Setup License Agreement window appears and select Next button

The installation process begins.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 39 of 304

Figure 2-59: Installation process begins

Once the Sentinel Runtime is installed successfully, click on Finish button.

Figure 2-60: Sentinel Runtime is installed successfully and select Finish button

Now the RLM driver software is installed successfully. If the driver has been successfully installed,

then upon connecting the Dongle in the USB port, a red light will glow (Refer picture below Figure

2-61). If the driver is not properly installed, this light will not glow when the dongle is connected

to the USB Port.

Figure 2-61: Connecting the Dongle in the USB Port

© TETCOS LLP. All rights reserved

Ver 13.2 Page 40 of 304

2.3.2 Running NetSim License Server

▪ Copy the NetSim License Server folder and paste it on Desktop. Check that it has the

license file. If not copy the paste the license file into the License server folder

▪ Double click on NetSim License Server folder from Desktop.

▪ Double click on rlm.exe

▪ For hardware dongle-based users: After the Driver Software installation, connect the RLM

dongle to the system USB port. Double click on My Computer and access the CD Drive.

This CD contents will have the NetSim License server folder.

Note: For running NetSim, rlm.exe must be running in the server (license server) system and the server

system IP address must be entered correctly. Without running rlm.exe, NetSim won’t run.

While running rlm.exe, the screen will appear as shown below Figure 2-62.

Figure 2-62: When NetSim license server system running, window appears

2.3.3 Running NetSim Software

After running rlm.exe, double click the NetSim icon in the Desktop. The screen given below will

be obtained. Enter the Server IP address where the rlm.exe is running and click OK.

Figure 2-63: Enter NetSim License Server IP Address

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 41 of 304

3 NetSim GUI

The graphical user interface (GUI) allows users to interact with the simulator for creating,

modifying and saving, simulation experiments and workspaces. This is much easier to use when

compared to command line or text-based simulator interfaces. NetSim GUI comprises of the

Home Screen, Design Window, Results Window, Animation Window and Plots Window.

3.1 Menus in the NetSim Home Screen

You see the NetSim Home Screen when you run NetSim software for the first time, after checking

out a license from the NetSim License Server.

See the following image for an example of the NetSim Home screen as shown below Figure 3-1.

Figure 3-1: NetSim Home screen

You see the following items on the NetSim Home screen:

1. New Simulation: Use this menu to simulate different types of networks in NetSim. You can

simulate the following the types of networks: Internetworks, Legacy Networks, Mobile Adhoc

networks, Cellular Networks, Wireless Sensor Networks, Internet of Things, Cognitive Radio

Networks, LTE/LTE-A Networks, 5G NR, VANETs, Satellite Communication and Underwater

Network (newly added component in v13). Only the networks (components) for which licenses

are available will be shown. The networks (components) shown at the bottom with grey

background cannot be directly clicked and entered. These features can be accessed through

other components given the dependencies.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 42 of 304

2. Your work: Use this menu to load saved configuration files from the current workspace. You

can view, modify or re-run existing simulations. Along with this, users can also export the saved

files from the current workspace to their preferred location on their PC’s.

3. Examples: Use this menu to perform simulations of different kinds categorized technology-

wise. Users can choose any network which they want to work. Expand and click on file name

to display simulation examples. Then click on a tile in middle panel to load simulation, users

can run and analyze the results. Users can click on the book icon present in the right-hand

side of each network which opens the corresponding pdf files. This helps the users with all

information about the current simulation as well as the entire network technology.

Figure 3-2: Featured Examples List Window

4. Experiment: Users can use this menu to find experiments section which has various

experiments covering all the technologies in NetSim. Users can choose their experiment by

Expand and click on file name to display the experiment. Then click on a tile in middle panel

to load simulation. All the settings to carry out the experiment are already done. Users can

click on the book icon present in the right-hand side of each experiment. This will open the

corresponding pdf file for the experiment which consists of detailed description of that

experiment.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 43 of 304

Figure 3-3: Experiments List Window

5. License Settings: Use this menu to perform the following. Click on License Settings provides

users with three sub-menus related to License information.

License Server Information: Use this menu to view details about the NetSim License Server

from where the client is checking out licenses.

Figure 3-4: NetSim License Server Information window

You will see the following details on the NetSim Home screen, if you click the License Server Info

menu item: the type of platform on which NetSim is running, the version of RLM, the Dongle RLM

© TETCOS LLP. All rights reserved

Ver 13.2 Page 44 of 304

ID, the IP address of the NetSim License Server, and the path to the license files in the server

hosting NetSim License Server.

End User License Agreement: Use this menu to view the end user license agreement. You will

see the following details on NetSim Home screen, if you click the End User License Agreement

menu item: Grant of License and Use of the Services, License Restrictions, License Duration,

Upgrade and Support Service etc.

Configure Installed Components/Libraries: Use this menu to allow NetSim users to simulate

only specific types of networks (by the licenses and libraries associated with the types of

networks). You control access to types of networks by selecting libraries for specific types of

networks that NetSim License Server checks out when NetSim users start NetSim.

NetSim Home screen displays libraries for components for which you have purchased licenses.

Note: You can select or clear libraries and control access to NetSim users, only if you are using floating

licenses.

See the following image for an example of what the NetSim Home screen displays, if you click

the Configure Installed Components/Libraries menu item.

Figure 3-5: The Installed Component (Libraries) of NetSim

Use the License Settings menu as follows:

▪ Select the checkboxes for the component libraries (types of networks) that NetSim users

must be allowed to simulate.

▪ Clear the checkboxes for the component libraries (types of networks) that NetSim users

must not be allowed to simulate.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 45 of 304

The Internetwork component is greyed out. You cannot clear the Internetworks component

because Internetworks is a base component that is required for all the other components to work.

6. Exit: Use this option to close opened Netsim tabs.

7. Documentation: Use this section to open the following NetSim help documents: These

include the User Manual which consists of complete description about all the features in

NetSim and how it can be used by the end users, the Technology Libraries which provides

users with an access to a detailed description of various Network Technologies present in

NetSim through individual pdf files, and Source code help which comes along with Standard

and Pro Versions of NetSim, allows users to gain a better understanding of the underlying code

structure for in-depth analysis.

8. Learn: Use this section to learn more about the software which includes the following: Videos

section can be used to view videos related to NetSim in TETCOS LLP YouTube channel. This

channel helps users by providing frequent updates on what’s new in NetSim, topics related to

various network technologies covering different versions of NetSim, and monthly webinars.

The Experiments Manual section grants you access to a well-designed experiments manual

covering various networking concepts which helps users to easily understand different

networks and also gain ideas to carry out their own experimentations in NetSim.

9. Support: Use this section to reach TETCOS LLP helpdesk. Contact Technical Support link

can be used to raise a trouble ticket, you can also write to us via Email to

support@tetcos.com, and Answers/FAQ link grants you access to our Knowledge Base

which contains answers to all your questions most of the time. Users can utilize the wealth of

information present in it, which are further classified into the following: FAQs,

Technologies/Protocols, Modelling/UI/Results, and Writing your own code in NetSim.

10. Contact Us: Use this section to contact us and know more information about our product. You

can write to us via Email to sales@tetcos.com or contact us via Phone to our official number

+91 76760 54321.

Website: Use this link www.tetcos.com to visit our website which consists of vast information

that will assist you through all walks of NetSim.

3.1.1 Creating “New” Simulations

The Simulation window loads up once user selects the desired network technology from the New

Menu. Click on New Simulation and select the desired kind of network to simulate.

mailto:support@tetcos.com
mailto:sales@tetcos.com
http://www.tetcos.com/

© TETCOS LLP. All rights reserved

Ver 13.2 Page 46 of 304

Figure 3-6: NetSim Home Screen

Save

Figure 3-7: To save experiment, Select File >Save. Save As etc

To save experiment, select File → Save, then specify the Experiment Name, Description

(Optional) and click Save. The short cut for the same is Ctrl + S.

Save as

To save an already existing/saved experiment by a different name after performing required

modifications/changes to it (without overwriting the existing copy), Save As option can be used.

Select File → Save As, then specify the Experiment Name, Description (Optional) and click Save.

The short cut for the same is Shift + Ctrl + S and F12.

3.1.2 Environment Settings

The settings menu provides user’s access to the simulation environment settings.

Figure 3-8: Environment settings

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 47 of 304

The Environment Settings window is used to switch between Grid View and Map View

backgrounds in supported network technologies. For Grid view, users can configure the Grid

environment length in meters as shown Figure 3-9.

Figure 3-9: Grid View Setting

3.1.2.1 The Gird

The Grid coordinate system has its origin at the upper left of the drawing area, and positive Y is

down while positive X is to the right.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 48 of 304

Figure 3-10: NetSim Design window

For Map view users can configure the latitude and longitude respectively.

Figure 3-11: Map View Setting

Users can zoom in and out of the map to add devices in specific geographical locations.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 49 of 304

Figure 3-12: Map Design window

Learn

This menu contains link to NetSim Videos on TETCOS LLP YouTube Channel and NetSim

Experiments manual.

Documentation

This menu contains link to NetSim User Manual, Technology Libraries and NetSim Source Code

Help.

3.2 Modeling and Simulating a simple network

This section will demonstrate how to create a basic network scenario and analyze the results. Let

us consider Internetworks. To create a new scenario, Go to New Simulation → Internetworks

as shown below Figure 3-13.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 50 of 304

Figure 3-13: NetSim Home Screen

3.2.1 Creating a Network scenario

In this example, a network with two subnets is designed. Let us say the subnet 1 consists of two

wired nodes connected via a Switch and the other subnet consists of one wired node. Both the

subnets are connected using a Router. Traffic in the Network flows from a wired node in subnet

1 to the wired node in subnet 2.

Figure 3-14: Network Topology in this experiment

Perform the following steps to create this network design.

Step 1: Drop the devices. Click on Node icon and select → Wired Node.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 51 of 304

Figure 3-15: Internetworks Device Palette in GUI

Click on the environment (the grid) where you want the Wired Node to be placed. In this way,

place two more wired nodes. Similarly, to place a Switch and a Router, click on the respective

device and click on the environment at the desired location.

Figure 3-16: Dropped Devices on GUI

Note that NetSim takes the (x, y) position of any device on the grid is the position of top left corner

of the icon and not the center of the icon.

Step 2: Connecting devices: Select the link and then left click on one device, free the mouse

button, then click on the second device and free the mouse button. The wired links may disappear

if you right click anywhere in the environment. Clicking and dragging without freeing the mouse

pointer would displace the device in the environment.

Figure 3-17: To Connect devices select wired/wireless links

For example, select link and the click on Switch followed by router to connect them. In this manner,

continue to link all devices.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 52 of 304

Figure 3-18: Network Topology

3.2.2 Configuring devices and links in the scenario

Step 1: To configure any device, right click on the device and select properties as shown Figure

3-19.

Figure 3-19: Right click on the device and select properties

The default properties of any device can be modified per requirement. Then click on OK.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 53 of 304

Figure 3-20: Network layer Properties window for wired node

Step 2: To configure the links, right click on any Link and select Properties as shown Figure 3-21.

Figure 3-21: Wired Link properties window for links

Note: In NetSim, the properties of devices fall under one of the following categories:

1. Local: Changes that are done in one device do not affect any other device in the network

scenario.

2. Global: Changes that are done in one device affect all the other devices of similar type in

the network scenario.

3. Link: Changes that are done in one device affect other devices of similar type that are

connected to the same Wireless/Adhoc link.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 54 of 304

3.2.3 Display Settings

In NetSim, users can Turn-On or Turn-Off display information such as IP Address of the devices,

link speed etc. For doing this click on Display settings as shown below Figure 3-22.

Figure 3-22: Turn-On or Turn-Off display information such as IP Address of the devices, link speed etc

In NetSim the device ID serves as a “device identifier” while the IP Address is an “Interface

identifier”

3.2.4 Copy/Paste

In NetSim simple copy paste can be used. Using this feature users can copy all the properties of

a device and create a new device with similar properties.

Right click on the device, click on copy and then right click and click paste. The sequence is

shown below Figure 3-23/Figure 3-24/Figure 3-25/Figure 3-26/Figure 3-27.

Figure 3-23: Devices present on GUI

Figure 3-24: Right click on the user device and

Select copy

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 55 of 304

Figure 3-25: Right click on the GUI and Select

Paste

Figure 3-26: Devices Pasted in GUI

Remove in the device options, is used to delete the device from the grid environment. Given below

is an example of removing the device User_Device_4 which was previously pasted.

Figure 3-27: Right click on User_Device_4 and Select Remove

3.2.5 Modeling Application Traffic

After the network is configured, user needs to model traffic from Wired Node 2 to Wired Node 3.

This is done using the application icon. Click on the Application icon present on the ribbon as

shown below Figure 3-28.

Figure 3-28: Select Application icon present on ribbon

In screen shot shown below the Application type is set to CBR, Source_ID is 2 and Destination_ID

is 3. Click on OK.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 56 of 304

Figure 3-29: Application Configuration window

3.2.6 Logging Packet/ Event Trace

Packet and Event Trace files are useful for detailed simulation analysis. By default, these are not

enabled since it slows down the simulation. To enable logging of Packet Trace / Event Trace click

on the icon in the tool bar as shown below. Set the file name and select the required attributes to

be logged. For more information, please refer sections 8.4 and 8.5 respectively.

Figure 3-30: Packet Trace and Event Trace options present on ribbon

3.2.7 Run Simulation

For simulating the network scenario created, click on Run Simulation present in the Ribbon.

Figure 3-31: Run Simulation icon in the Ribbon

Set the Simulation Time to 10 seconds. Click on OK.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 57 of 304

Figure 3-32: Run Simulation window

3.3 Saving & Opening experiments and Printing results

3.3.1 Opening Saved Experiments:

Click on Your work (Ctrl+O).

Figure 3-33: Select Your work

Click on the saved experiment file you wish to open.

3.3.2 Saving an Experiment

During Simulation: Users can save by using the short cut CTRL + S.

After Simulation: From Network Window: Click on File > Save button on the top left. Next,

specify the Experiment Name, Description (Optional) and click on Save.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 58 of 304

Figure 3-34: Save popup window

Upon saving several files would get saved inside the folder, including:

▪ Configuration file (xml) & metrics file (xml)

▪ Trace Files (csv), if enabled, and

▪ Plot data (txt)

3.4 NetSim Keyboard Shortcuts

NetSim keyboard shortcuts can be used for frequently performed tasks. The keyboard shortcuts

that are currently supported are listed in the table below Table 3-1.

Keys Function

Home Screen

Ctrl + N Open a New Network

Ctrl + O Open a Saved Network

Design Window (Any Network)

Ctrl + C Copy

Ctrl + V Paste

Ctrl + R Open Run Simulation Window

Ctrl + S Save the Experiment

Shift + Ctrl + S Save As (To Save under different name)

Ctrl + P
Open Image/Screenshot of the network scenario
that is designed in the GUI

Alt+ F4 Close Window

F1 User Manual Help

Ctrl + '+/-' Zoom In/Zoom Out

Mouse Click (Left) Select a device

Ctrl + A Select All devices in the design environment

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 59 of 304

Ctrl + Mouse Click
(Left) and Drag

Select devices within a selected area

Delete
Deletes the selected devices in the Environment
along with any links it may have

Simulation Console

Ctrl + C
Terminates Simulation in Mid way. Results will be
calculated till the time at which the simulation is
terminated

Packet Animation Window

Space bar To Play/Pause animation

Table 3-1: NetSim keyboard shortcuts

3.5 NetSim Interactive Simulation

NetSim allows users to interact with the simulation at runtime via a socket or through a file. User

Interactions make simulation more realistic by allowing command execution to view/modify certain

device parameters during runtime.

This section will demonstrate how to perform Interactive simulation for a simple network scenario.

Let us consider Internetworks. To create a new scenario, go to New → Internetworks. Click &

drop Wired Nodes and Router onto the Simulation Environment and link them as shown below

Figure 3-35 or otherwise Open the scenario for Interactive Simulation which is available in

“<NetSim Install Dir>\Docs\ Sample_Configuration\Internetworks\Interactive Simulation”.

Figure 3-35: Network Topology

▪ Click on Application icon present in the top ribbon and set the Application type as CBR. The

Source_Id is 1 and Destination_Id is 2.

▪ Set Start Time as 30 Sec

▪ Enable Plots and Packet trace options

▪ Click on run simulation option and In the Run time Interaction tab set Interactive Simulation

as True and click on Accept as shown below Figure 3-36.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 60 of 304

Figure 3-36: Run time Interaction tab set Interactive Simulation as True

▪ Click on run simulation and set Simulation Time as 500 sec. (It is recommended to specify

a longer simulation time to ensure that there is sufficient time for the user to execute the

various commands and see the effect of that before Simulation ends) and click OK.

▪ Simulation (NetSimCore.exe) will start running and will display a message “waiting for first

client to connect” as shown below Figure 3-37.

Figure 3-37: Waiting for first client to connect

▪ After Simulation window opens, goto Network scenario and right click on Router_3 or any

other node and select NetSim Console option as shown Figure 3-38.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 61 of 304

Figure 3-38: Select NetSim Console option

▪ Now client (NetSimCLI.exe) will start running and it will try to establish connection with

NetSimCore.exe. After connection is established, the window will look similar like this shown

below Figure 3-39.

Figure 3-39: Connection is established

▪ After this the command line interface can be used to execute the supported commands

Note: Commands are not a case sensitive

3.5.1 Simulation specific (Not applicable for file based interactive simulation)

▪ Pause

▪ PauseAt

▪ Continue

▪ Stop

▪ Exit

▪ Reconnect

Pause: To pause the currently running simulation

PauseAt: To pause the currently running simulation with respect to particular time (Ex: To Pause

simulation at 70.2 sec use command as PauseAt 70.2)

Continue: To start the currently paused simulation. When a user pauses simulation and then

continue using the pause/continue commands, it may appear as if simulation was running in the

background. This is not true. When interactive simulation is run, the simulation clock in NetSim is

© TETCOS LLP. All rights reserved

Ver 13.2 Page 62 of 304

Min (Wall Clock, Simulation Clock). Thus, before pausing simulation may have been running at

Wall clock (real time) speed even though the simulation could have run much faster. On typing

the continue command simulation will run at it usual (much faster) speed till it equals Wall clock

(Real time). This behaviour sometimes can be confusing to users.

Stop: To stop the currently running simulation (NetSimCore.exe)

Exit: To exit from the client (NetSimCLI.exe)

Reconnect: To reconnect client (NetSimCLI.exe) to simulation (NetSimCore.exe) when we rerun

simulation again

3.5.2 Ping Command

▪ The ping command is one of the most often used networking utilities for troubleshooting

network problems.

▪ You can use the ping command to test the availability of a networking device (usually a

computer) on a network.

▪ When you ping a device, you send that device a short message, which it then sends back

(the echo)

▪ If you receive a reply then the device is in Network, if you don’t then the device is faulty,

disconnected, switched off, incorrectly configured.

▪ You can use the ping cmd with an IP address or Device name.

▪ ICMP_Status should be set as True in all nodes(Wired_Node and Router)

Figure 3-40: Set ICMP_Status to True in Network layer window.

▪ Right click on Wired_Node_1 and go to properties. Under General properties enable

Wireshark Capture option as “Online”

Ping <IP address> e.g. ping 11.4.1.2

Ping <NodeName> e.g. ping Wired_Node_2

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 63 of 304

3.5.2.1 Ping Command Results

Figure 3-41: Pinging to Wired_Node_2

▪ After simulation open packet trace and filter ICMP_EchoRequest and ICMP_EchoReply

from CONTROL_PACKET_TYPE/APP_NAME column

Figure 3-42: ICMP Control Packets in Packet Trace

▪ Open Wireshark and apply filter ICMP. We can see the ping request and reply packets in

Wireshark.

Figure 3-43: ICMP Control Packets in Wireshark

© TETCOS LLP. All rights reserved

Ver 13.2 Page 64 of 304

3.5.3 Route Commands

▪ route print

▪ route delete

▪ route add

In order to view the entire contents of the IP routing table, use following commands route print.

route print

Figure 3-44: Network Route Print

▪ You will see the routing table entries with network destinations and the gateways to which

packets are forwarded when they are headed to that destination. Unless you’ve already

added static routes to the table, everything you see here will be dynamically generated.

▪ In order to delete route in the IP routing table you will type a command using the following

syntax

Route delete destination_network

▪ So, to delete the route with destination network 11.5.1.2, all we’d have to do is type this

command.

route delete 11.5.1.2

▪ To check whether route has been deleted or not check again using route print command.

▪ To add a static route to the table, you will type a command using the following syntax.

route ADD destination_network MASK subnet_mask gateway_ip METRIC metric_cost IF

interface_id

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 65 of 304

▪ So, for example, if you wanted to add a route specifying that all traffic bound for the 11.5.1.2

subnet went to a gateway at 11.5.1.1

route ADD 11.5.1.2 MASK 255.255.0.0 11.5.1.1 METRIC 100 IF 2

▪ If you were to use the route print command to look at the table now, you would see your

new static route.

Figure 3-45: Route added into Network

Note: Entry added in IP table by routing protocol continuously gets updated. If a user tries to remove a

route via route delete command, there is always a chance that routing protocol will re-enter this entry again.

Users can use ACL / Static route to override the routing protocol entry if required.

3.5.4 ACL Configuration

Routers provide basic traffic filtering capabilities, such as blocking Internet traffic, with access

control lists (ACLs). An ACL is a sequential list of permit or deny statements that apply to

addresses or upper-layer protocols. These lists tell the router what types of packets to: permit or

deny. When using an access-list to filter traffic, a permit statement is used to “allow” traffic, while

a deny statement is used to “block” traffic.

ACL Commands

▪ To view ACL syntax use: acl print.

▪ Before using ACL’s, we must first verify that acl option enabled. A common way to enable

ACL use command: acl enable.

▪ Enters configuration mode of ACL using: aclconfig

▪ To view ACL Table: Print

▪ To exit from ACL configuration use command: exit

▪ To disable ACL use command: acl disable (use this command after exit from acl

configuration)

© TETCOS LLP. All rights reserved

Ver 13.2 Page 66 of 304

To view ACL usage syntax use: acl print

[PERMIT, DENY] [INBOUND, OUTBOUND, BOTH] PROTO SRC DEST SPORT DPORT

IFID

3.5.4.1 Step to Configure ACL

▪ Create Network scenario as shown in below figure.

Figure 3-46: Network Scenario

▪ To create a new rule in the ACL use command as shown below to block UDP packet in

Interface_3 of the Router_3.

▪ Click on the Application icon present in the top ribbon/toolbar.

o CBR Application from Wired Node 1 to Wired Node 2 with 10 Mbps Generation Rate

(Packet Size: 1460, Inter Arrival Time: 1168µs).

o Set Transport Protocol to UDP.

o Set Start Time as 30 Sec

▪ Click on run simulation option and In the Run time Interaction tab set Interactive Simulation

as True and click on Accept.

▪ Set the Simulation Time as 200sec or more. Click Ok.

▪ Right click on Router_3 and select NetSim Console. Use the command as follows:

NetSim>acl enable

ACL is enable

NetSim>aclconfig

ROUTER_3/ACLCONFIG>acl print

Usage: [PERMIT, DENY] [INBOUND, OUTBOUND, BOTH] PROTO SRC DEST SPORT

DPORT IFID

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 67 of 304

ROUTER_3/ACLCONFIG>DENY BOTH UDP ANY ANY 0 0 3

OK!

ROUTER_3/ACLCONFIG>print

DENY BOTH UDP ANY/0 ANY/0 0 0 3

ROUTER_3/ACLCONFIG>exit

NetSim>acl disable

ACL is disable

NetSim>

Figure 3-47: ACL Configuration command

3.5.4.2 Results

The impact of ACL rule applied over the simulation traffic can be observed in the

IP_Metrics_Table in the simulation results window, In Router_3 number of packets blocked by

firewall has been shown below.

Note: Results will vary based on time of ACL command are executed

© TETCOS LLP. All rights reserved

Ver 13.2 Page 68 of 304

Figure 3-48: IP Metrics Table in result window

Check Packet animation window whether packets has been blocked in Router_3 for period

when the ACL rule is applied. In the Below figure you can observe that packets are getting

discarded at Router_3.

Figure 3-49: NetSim Animation Window when ACL rules are applied

Then packet transmission is allowed through same Interface_3 once after ACL is disabled.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 69 of 304

Figure 3-50: NetSim Animation Window After ACL Disabled

The impact of ACL rule applied over the simulation traffic can be observed in the Application

throughput plot. Throughput graph will show a drop after ACL is set. If ACL is disabled after a

while, application packets will start flowing across the router. The Application throughput plot will

show a drop and increase(Moving througput graph) in throughput after setting ACL and disabling

ACL respectively.

Example: ACL rule applied at around 120sec user can see the drop in throughput in the graph,

since router blocks UDP packets in the plot. Once ACL has been disabled at around 185sec router

permits packets and hence increase in throughput can be observed in the plot shown below

Figure 3-51.

Figure 3-51: CBR Application throughput plot

© TETCOS LLP. All rights reserved

Ver 13.2 Page 70 of 304

3.5.5 Interactive Simulation using file

Interactive simulation using file allows users to pass commands as input through a text file. In the

text file users can provide the commands along with the device in which it has to be executed by

specifying the time stamps. This provides the user to have control over the scenario to execute

commands at a specified time.

In the Interactive simulation text file, user should specify the exact time in seconds, along with the

name of the device.

Format of the input text file for one device.

TIME=<SIMULATION TIME IN SECONDS>

DEVICE=<DEVICE_NAME>

<COMMAND TO BE EXECUTED>

The below Network scenario explains how to perform the Interactive simulation using file as input.

Figure 3-52: Network Topology

▪ The scenario comprises of 4 Routers, 2 Wired Node

▪ In Router Application layer, the routing protocol is set as RIP, since it is global property,

routing protocol will be set as RIP in all Routers.

▪ Right click on the Application Flow App1 CBR and select Properties or click on the

Application icon present in the top ribbon/toolbar.

▪ A CBR Application is generated from Wired Node 1 i.e., Source to Wired Node 2 i.e.,

Destination with Packet Size remaining 1460Bytes and Inter Arrival Time remaining

20000µs. Transport Protocol is set to UDP.

o Additionally, Set start time as 1 sec.

▪ In order to set static routes to forward packets from Router 3 to the destination Wired Node

via Router 5 instead of Router_4, such that the packets flow from Router 3=> Router

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 71 of 304

5=>Router 6=>Router4 =>Wired node 2 from a specified time say 25 seconds, the following

input can be provided:

TIME= 25

DEVICE=Router_3

route ADD 11.5.1.2 MASK 255.255.255.0 11.2.1.2 metric 1 if 2

▪ Create a text file with the above input and save it as input.txt file.

▪ Enable packet trace and Open the Run tab and switch to run time simulation tab select the

Interactive simulation using file.

Figure 3-53: Run time Interaction tab with Interactive Simulation option set as True (Using File)

▪ Browse the Saved input.txt file in file path and select Accept button.

Figure 3-54: Run time Interaction tab with Interactive Simulation File Path set

▪ Open the packet trace, you can observe that till 25 seconds the data packets are transmitted

from Wired Node 1=>Router 3=> Router 4=> Wired Node 2.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 72 of 304

Figure 3-55: Data packets are transmitting from Wired Node 1=>Router 3=> Router 4=> Wired Node 2 in

packet trace before 25th seconds

▪ After 25th second you can observe that, the routing happens according to the command

specified in the input file.

▪ The data (APP 1 CBR) packets are transmitted from Wired Node 1=>Router 3=>Router

5=>Router 6=>Router 4=>Wired Node 2

Figure 3-56: After 25th sec routing is initiating according to the command mentioned in input file

▪ The same can be observed in Animation window.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 73 of 304

Figure 3-57: NetSim Animation window

▪ From the above example we can see that until the specified time mentioned in the input text

file, the network considers the path formed by the routing protocol i.e RIP. From 25th Second

onwards packets are routed according to the modified path specified in interactive

simulation input text file.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 74 of 304

4 Workspaces and Experiments

4.1 What is an Experiment and workspace in NetSim?

After users design and simulate a network in NetSim it can be saved as an experiment. This

experiment is saved in a Workspace. A workspace also contains the source codes, executable

files, icons, data files, etc. A workspace can contain one or more experiments. While NetSim

supports multiple workspaces, users generally work in the default workspace. The default

workspace of NetSim will have the master source code and the master binaries (compiled library,

executable and DLL files).

New workspaces need to be created when:

▪ The user wants to modify the underlying source code of NetSim.

▪ A user chooses to organize a large number of saved experiments. The experiments can be

saved in a different workspace.

▪ NetSim running on one PC/VM is time-shared between multiple users. Each user has

his/her own workspace.

As mentioned earlier, NetSim stores your experiments (projects) in a folder termed as a

Workspace. Default workspace is created in a user selected directory when NetSim is run for the

first time after installation. Choose the path and enter the workspace name where you want the

default workspace to be created.

Figure 4-1: Default workspace created in Documents folder

This default workspace contains the following folders:

1. \src - contains protocol source codes.

2. \bin_x64 contains NetSim binaries for 64-bit.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 75 of 304

Figure 4-2: Default workspace containing the different folders

4.2 How does a user create and save an experiment in a

workspace?

To create an experiment, select New Simulation - <Any Network> in the NetSim Home Screen as

shown Figure 4-3.

Figure 4-3: NetSim Home Screen

The created experiment can be saved by clicking on File > Save button on the top left corner of

the design window.

Figure 4-4: Save/Save As an experiment by clicking on File

© TETCOS LLP. All rights reserved

Ver 13.2 Page 76 of 304

A save pop-up window appears which asks the user to input an Experiment Name and Description

for the experiment. The workspace path is also shown in the window.

Figure 4-5: Save popup window

User needs to input the Experiment Name (Description is optional) and then click on Save. The

workspace path is non-editable. The experiment will be saved in the current workspace directory.

Users can also select the files which are to be saved into the experiment folder.

▪ The Configuration file will be mandatorily saved into the experiment folder.

▪ Optional: Simulation output files such as Metrics.xml, Animation files, Event Trace file,

Packet Trace file and Plot data (if enabled).

▪ Optional: Protocol logs (if written) or Custom Log files (if codes have been modified for

logging)

In our example, we saved the experiment with the name MANET and this experiment can be

found in the default workspace path as shown below Figure 4-6.

Figure 4-6: Manet Example Saved in Workspace

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 77 of 304

Users can also see the saved experiments in Your Work menu as shown below Figure 4-7.

Figure 4-7: Saved experiments in Your work menu

If a Description was provided while saving the experiment, it will be displayed on Description panel

on the right. Users can also edit the description for an experiment in the description panel.

Figure 4-8: Description will be displayed on the right side of the description panel

The “Save As” option is also available to save the current experiment with a different name.

Users can Open file location where the experiment is saved, delete the experiment, Export the

experiment or Cut (and paste inside a different folder), Free up Space is used to delete the files

© TETCOS LLP. All rights reserved

Ver 13.2 Page 78 of 304

that may not be important there by reducing the folder size, an experiment by right-clicking on

the experiment in the Your Work window as shown below in Figure 4-9.

Figure 4-9: Right click on experiment name to view different options like “Open file location, Cut, Delete,

Export” and Free up Space etc.

If the user wants to move the experiment into a New folder, create a New folder by right clicking

on the experiment panel (either in the white space below the experiment list or on the header) or

click on the New folder icon which is present in Your Work as shown below in Figure 4-10.

Figure 4-10: Create a “New Folder” using New Folder icon

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 79 of 304

Figure 4-11: Create a “New Folder” by right clicking on the experiment panel

After creating a New Folder cut and paste the experiment inside it as shown below in Figure 4-12

Figure 4-12: Cut and Paste the experiment in New Folder

Users can also free up space by deleting files which may not be important. Select the files and

click on run. The deleted files can be regenerated by running the simulation again.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 80 of 304

Figure 4-13: Free up space window

In this example, we have saved all the files related to the experiment. You can see the various

files stored in the experiment folder in Figure 4-14.

Figure 4-14: Simulation output files in experiment folder

4.3 Should each user have a workspace?

There is no strict association between users and workspaces. A single user can have multiple

workspaces (and in turn experiments in each workspace), or multiple users can operate in one

workspace.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 81 of 304

4.4 How does a user export an experiment?

To save experiments in a different location, you have to first save the experiment in the current

workspace and then use the export option present under Your work in the NetSim Home Screen

as shown in Figure 4-15.

Figure 4-15: Export option present in Your work in NetSim Home Screen

If you click on the Export option, an Export Experiment panel appears where you can select the

files to be exported. You can also select the source code and binaries if required. While the

Configuration file is mandatory, other files are optional.

Figure 4-16: Export Experiment pop-up window

You need to give the destination path and name of the experiment while exporting. The exported

experiments will be saved with a .netsimexp extension.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 82 of 304

Figure 4-17: Select Export file and Path in export window

4.5 How does a user delete an Experiment in a workspace?

Users can delete experiments by clicking on the delete icon as shown below in Figure 4-18.

Figure 4-18: Delete an Experiment in a workspace

It displays a popup window as shown in Figure 4-19. Click on YES.

Figure 4-19: Delete experiment confirmation window popup

4.6 How does a user create a new workspace?

To create a new workspace, click on Workspaces present in Your work Menu shown as below

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 83 of 304

Figure 4-20: Workspace options present in Your work Menu window

Then select List of Workspaces Options

Figure 4-21: Select List of Workspaces option in Your work window

And select New Workspace

© TETCOS LLP. All rights reserved

Ver 13.2 Page 84 of 304

Figure 4-22: Select New Workspace option

A New Workspace pop-up window appears where you can input the Workspace Name,

Description and Workspace Path as shown below

Figure 4-23: New Workspace pop-up window

4.7 How does a user switch between workspaces?

Users can switch from one workspace to another. Select Your work >> Workspaces >> List of

Workspaces and click on the workspace you want to switch to

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 85 of 304

Figure 4-24: Switch between workspaces

And then select Set as Current symbol (the green tick mark) as shown below

Figure 4-25: Select Green button to “Set as Current” workspace

4.8 How does a user export a workspace?

Users can export only the workspace by selecting Your Work >> Workspaces >> Export Current

Workspace as shown below in Figure 4-26.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 86 of 304

Figure 4-26: Select Export option in Your work window

This will show the export workspace window panel in the right with all the existing experiments in

that particular workspace. This option is similar to exporting an experiment. You can select the

files which are to be exported as part of the workspace and then can select the source code and

binaries if required. The Configuration file is mandatory and other files are optional.

Figure 4-27: Adding default binaries, source code and icons to Selected Experiments list

Users can enter the name and path in which the workspace is to be exported and then click on

Export.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 87 of 304

Figure 4-28: Enter the workspace name and select the export location

The workspace will be exported to the path selected. It will have the extension .netsimexp as

shown in Figure 4-29.

Figure 4-29: Workspace exported to Location.

If you want to remove an experiment from the workspace being exported, right click on that

experiment and click on remove as shown in Figure 4-30.

Figure 4-30: In Export list window Right click on experiment and select Remove

4.9 How does a user import experiment and workspace?

You can import only an exported workspace, import experiments and workspaces by first

selecting Your work and then selecting the Import option as shown in Figure 4-31.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 88 of 304

Figure 4-31: Select Import option in Your work window

4.9.1 Importing Configuration.netsim file from experiment folder

Once you click the import option from Your work the following window will open. Click on

Experiment/Workspace file option and import the Configuration file. Enter the path from where

the configuration file has to be imported as shown in Figure 4-32.

Note that

• Only files with “.netsim” extension can be imported.

• By Selecting “Copy all files available in the folder” option user can import all files

present along with Configuration.netsim.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 89 of 304

Figure 4-32: Importing configuration files

The imported experiment file will be available in the current workspace. It can be seen by clicking

on Your Work as shown below

Figure 4-33: Imported experiment file in the current workspace

4.9.2 Import workspace or multiple experiments file

This section explains how (i) You can import multiple experiments into your current workspace,

and (ii) Import a complete workspace. Click Your work and then select Import option as shown

below

© TETCOS LLP. All rights reserved

Ver 13.2 Page 90 of 304

Figure 4-34: Import workspace/multiple experiments option in Your work window

You need to input the path from where (i) the experiments (a single folder) or (ii) the workspace

will be imported. To import multiple experiments into the current workspace, click on the option

as shown in Figure 4-35.

Note that

• Only previously exported experiment/workspaces with “. netsim_exp” extension can be

imported.

• By Selecting “Import source and binaries also” user can import source code and

binaries present along with the exported experiments or workspace.

Figure 4-35: Window for importing multiple experiments or workspace into current workspace

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 91 of 304

If the user wants to import the experiments into the new workspace, select the option as shown

in Figure 4-36, and proceed accordingly.

Figure 4-36: Create a new workspace, and import experiments and source code/binaries, into the new
workspace

If you import the experiments into the current workspace then experiments will be displayed in

the Your Work menu of the current workspace as shown below.

Figure 4-37: Imported experiments shown in Your Work of current workspace

If you create a new workspace and import experiments and binaries/source code then, these

experiments will be shown in the Your Work Menu of the new workspace

Figure 4-38: Imported experiments shown in Your Work menu of a newly created workspace

© TETCOS LLP. All rights reserved

Ver 13.2 Page 92 of 304

4.10 Import Experiments or Workspace folder

User can import an experiment folder or a workspace folder by choosing the following option in

the experiment import window as shown below

Figure 4-39: Option to import Experiment/Workspace folder

You should give the path from where the workspace/experiment folder must be imported. Then

click on import as shown below

Figure 4-40: Window for navigation of experiments/workspace into current workspace

If you want to import the folder into new workspace, choose the option as shown below

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 93 of 304

Figure 4-41: Importing the Experiment folder into new workspace

4.11 Import into current workspace vs. creating a new

workspace

A new workspace generally needs to be created when the underlying source code is likely to be

modified. If you are importing only experiments, then they can be imported into your existing

workspace. However, if you wish to import experiments plus the binaries/source codes then we

recommend you create a new workspace for the same.

4.12 How does a user delete a workspace?

You can delete a workspace by clicking on the delete icon shown below

Figure 4-42: Delete a workspace by clicking on the delete icon in Your work window

Deleting a workspace will delete all the saved experiments and code modifications done in that

workspace.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 94 of 304

The following window appears if the current workspace is deleted or removed after re-installation

of NetSim.

Figure 4-43: Relocation workspace window

The “Relocate the workspace” option will allow the user to select a new location for the workspace

which was removed/ deleted. User can also ignore the message by selecting “Ignore” option and

clicking on OK button.

4.13 How does a user open and modify source codes?

You can modify the source codes within a workspace. For doing this, select Your work ->Source

code ->Open Code as shown below

Figure 4-44: Open code option is available in Your work window

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 95 of 304

This opens the C source codes in MS Visual Studio. You can then modify the protocol codes and

compile the codes. Then create a network in NetSim or open the saved experiment which

simulates the protocol that has been modified. Run the simulation. This simulation will run per the

modified code. Note that the changes in the source codes applies to the current workspace only.

4.14 How do I reset my code changes?

Each workspace has two Reset options. They are reset:

1. Binaries (compiled files) to default

2. Code (source C codes) to default

© TETCOS LLP. All rights reserved

Ver 13.2 Page 96 of 304

5 Simulating different networks in NetSim

The following table lists the networking technologies available in the different versions of NetSim.

Type of Network NetSim Versions

Internetwork All versions

Legacy Network All versions

Cellular Network All versions

MANET All versions

Wireless Sensor Network All versions

Software Defined Network All versions

Internet of Things All versions

Cognitive Radio All versions

LTE All versions

5G NR Available only with NetSim Standard and NetSim Pro versions

VANET Available only with NetSim Standard and NetSim Pro versions

Satellite Communication Available only with NetSim Standard and NetSim Pro versions

Underwater Acoustic Network Available only with NetSim Standard and NetSim Pro versions

Network Emulator (Add On) Available only with NetSim Standard and NetSim Pro versions

TDMA Radio Networks (Add on) Available only with NetSim Pro version

Table 5-1: Networking technologies available in the different versions of NetSim

NetSim comes with inbuilt examples to help you understand how the different types of networks

work.

The devices models in NetSim represent common networking devices in a generic way and do

not model any specific vendor’s implementation of the device. In real-world networks, each device

has specific vendor implementation of networking protocols.

5.1 Internetworks

An Internetwork is a collection of two or more computer networks (typically Local Area Networks

or LANs) which are interconnected to form a bigger network.

Internetwork’s library in NetSim covers Ethernet, Address Resolution Protocol (ARP), Wireless

LAN – 802.11 a / b / g / n / ac and e, Internet Protocol (IP), Transmission Control Protocol (TCP),

Virtual LAN (VLAN), User Datagram Protocol (UDP), and routing protocols such as Routing

Information Protocol (RIP), Open Shortest Path First (OSPF), Internet Group Management

Protocol (IGMP), and Protocol Independent Multicast (PIM).

To simulate Internetworks, click on New Simulation and then click on Internetworks.

5.1.1 Internetworks Examples

To simulate the Examples for different types of Internetworks

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 97 of 304

2. Click the Internetwork example you wish to simulate. NetSim UI loads the example.

5.1.2 Internetwork Documentation

To view help documentation users can either click on “Technology Libraries” under

documentation in the home screen or click the ‘Book’ link located next to Internetworks in

examples. The help documentation explains the following:

▪ Introduction

▪ Simulation GUI

▪ Model Features

▪ Featured Examples

▪ Internetworks Experiments in NetSim

▪ Reference Documents

▪ Latest FAQ available online

5.2 Legacy Networks

Legacy networks cover older generation protocols which are rarely used today and not part of the

TCP/IP protocol suite. With the advent of TCP/IP as a common networking platform in the mid-

1970s, most legacy networks are no longer used.

NetSim Legacy Network library cover Pure Aloha and Slotted Aloha.

ALOHA is a protocol that was developed at the University of Hawaii and used for satellite

communication systems in the Pacific. ALOHA protocol was designed to send and receive

messages between multiple stations, on a shared medium. Slotted ALOHA is improvised version

of pure ALOHA designed to reduce the chances of collisions when sending data between the

sender and the receiver.

To simulate Legacy Networks, click on New Simulation and then under Legacy networks click on

either Pure Aloha or Slotted Aloha

5.2.1 Legacy Networks Examples

To simulate Pure ALOHA and Slotted ALOHA Examples:

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

2. Click the Legacy Network example you want to simulate. NetSim UI loads the example.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 98 of 304

5.2.2 Legacy Network Documentation

To view help documentation either click on “Technology Libraries” under documentation in the

home screen or click the ‘Book’ link located next Legacy Networks in examples. The help

documentation explains the following:

▪ Introduction

▪ Simulation GUI

▪ Legacy Networks Experiments in NetSim

▪ Note: Release on Unsupported Basis

▪ Latest FAQ available online

5.3 Cellular Networks

A cellular network (also known as a mobile network) is a communication network where the last

link is wireless. The network is distributed over land areas called cells. Every cell is served by at

least one fixed-location transceiver known as a base station. These cells together provide radio

coverage over larger geographical areas. User equipment’s such as mobile phones can

communicate even if the user is moving across different cells.

NetSim cellular networks library covers Global System for Mobile communication (GSM) and

Code-Division Multiple Access (CDMA).

To simulate Cellular Networks, click on New Simulation and then under Cellular networks click on

either GSM or CDMA.

5.3.1 Cellular Networks Examples

To simulate GSM and CDMA Examples:

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

2. Click the Cellular Network example you want to simulate. NetSim UI loads the example.

5.3.2 Cellular Networks Documentation

To view help documentation either click on “Technology Libraries” under documentation in the

home screen or click the ‘Book’ link located next Cellular Networks in examples. The help

documentation explains the following:

▪ Introduction

▪ Simulation GUI

▪ Featured Examples

▪ Cellular Networks Experiments in NetSim

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 99 of 304

▪ Note: Release on Unsupported Basis

▪ Latest FAQ available online

5.4 Advanced Routing

NetSim supports the following advanced routing protocols.

▪ Multicast Routing

o Internet Group Management Protocol (IGMP)

o Protocol Independent Multicast (PIM)

▪ Access Control Lists (ACLs)

▪ Virtual LAN (VLAN)

▪ Public IP and Network Address Translation (NAT)

To simulate the above-mentioned routing protocols, click on New Simulation and then

Internetworks.

5.4.1 Advanced Routing Examples

To simulate the Examples for different types of Advanced Routing protocols

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

2. Click the Advanced-Routing example you wish to simulate. NetSim UI loads the example.

5.4.2 Advanced Routing Documentation

To view help documentation users can either click on “Technology Libraries” under

documentation in the home screen or they can click the ‘Book’ link located next to Advanced

Routing in examples. The help documentation explains the following:

▪ Simulation GUI

▪ Model Features

▪ Featured Examples

▪ Advanced Routing Experiments in NetSim

▪ Reference Documents

▪ Latest FAQ available online

5.5 MANETs

Mobile Ad-hoc Network (MANET) is an ad hoc network that can change locations and configure

itself on the fly. Because MANETS are mobile, they use wireless connections to connect to

various networks.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 100 of 304

NetSim MANET library covers:

▪ L3 Routing Protocols – DSR, AODV, OLSR and ZRP

▪ MAC Layer – IEEE 802.11

▪ MANET using Bridge_Node (Wired) and Bridge_Node (Wireless)

To simulate MANET, click on New Simulation and then select Mobile Adhoc networks.

5.5.1 MANET Examples

To simulate MANET Examples:

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

2. Click the Mobile-Adhoc-Networks example you want to simulate. NetSim UI loads the

example.

5.5.2 MANET Documentation

To view help documentation either click on “Technology Libraries” under documentation in the

home screen or click the ‘Book’ link located next MANET Networks in examples. The help

documentation explains the following:

▪ Introduction

▪ Simulation GUI

▪ Model Features

▪ Featured Examples

▪ Reference Documents

▪ Latest FAQ available online

5.6 Wireless Sensor Networks (WSN)

Wireless Sensor Network (WSN) is a group of spatially dispersed sensors that monitor and collect

the physical conditions of the environment and transmit the data they collect to a central location.

WSNs measure environmental conditions such as temperature, sound, pollution levels, humidity,

wind, and so on.

WSN in NetSim is part of NetSim’s IOT library and covers 802.15.4 MAC, PHY with MANET

routing protocols.

To simulate WSN, click on New Simulation and then Wireless Sensor Networks.

5.6.1 Wireless Sensor Networks (WSN) Examples

To simulate Wireless Sensor Networks Examples:

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 101 of 304

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

2. Click the IOT-WSN > Wireless-Sensor-Networks example you want to simulate. NetSim

UI loads the example.

5.6.2 WSN Library Documentation

To view help documentation either click on “Technology Libraries” under documentation in the

home screen or click the ‘Book’ link located next to IOT-WSN examples. The help documentation

explains the following:

▪ Introduction

▪ Simulation GUI

▪ Model Features

▪ Featured Examples

▪ IOT-WSN Experiments in NetSim

▪ Reference Documents

▪ Latest FAQ available online

5.7 Internet of Things

Internet of things (IoT) is a network of object such as vehicles, people, home appliances that

contain electronics, software, actuators that are accessible from the public Internet. The objects

are embedded with suitable technology and use IP addresses to interact and exchange data

without manual assistance or intervention. The objects can also be remotely monitored and

controlled.

In NetSim, IOT is modeled as a WSN that connects to the internet via a 6LowPAN Gateway. WSN

for IoT uses the following protocols: AODV and RPL with IPv6 addressing at the L3 layer and

802.15.4 at the MAC & PHY layers. WSN sends data to the LowPAN Gateway which uses a

Zigbee (802.15.4) interface and a WAN Interface. The Zigbee interface connects wirelessly to the

WSN and the WAN interface connects to the Internet. Additionally, users can also simulate and

analyze energy model for IoT.

To simulate IOT, click on New Simulation and then Internet of Things.

5.7.1 Internet of Things (IOT) Examples

To simulate IOT Examples:

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 102 of 304

2. Click the IOT-WSN > Internet-of-Things example you want to simulate. NetSim UI loads

the example.

5.7.2 IOT Library Documentation

To view help documentation either click on “Technology Libraries” under documentation in the

home screen or click the ‘Book’ link located next to IOT-WSN examples. The help documentation

explains the following:

▪ Introduction

▪ Simulation GUI

▪ Model Features

▪ Featured Examples

▪ IOT-WSN Experiments in NetSim

▪ Reference Documents

▪ Latest FAQ available online

5.8 Software Defined Networks (SDN)

Software-defined networking (SDN) is an architecture that makes networks agile and flexible.

SDN decouples the network control and forwarding functions. SDN allows you to program your

network control and abstracts the physical infrastructure for applications and network services.

This approach enables enterprises and service providers to respond quickly to the changing

business requirements.

Unlike other technologies, and due to the way SDN works it is not available as a menu item under

New Simulation. SDN can be configured when running Internetworks, MANET, IOT, WSN,

Cognitive Radio, LTE or VANETs

5.8.1 Software Defined Networks (SDN) Examples

To simulate Software Defined Networks Examples:

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

2. Click the Software-Defined-Networks example you want to simulate. NetSim UI loads the

example.

5.8.2 SDN Library Documentation

To view help documentation either click on “Technology Libraries” under documentation in the

home screen or click the ‘Book’ link located next to Software Defined Network examples. The

help documentation explains the following:

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 103 of 304

▪ About SDN

▪ SDN in NetSim

▪ Featured Examples

▪ Latest FAQ available online

5.9 Cognitive Radio

Cognitive Radio (CR) is an adaptive, intelligent radio and network technology that automatically

detects available channels in a wireless spectrum and changes transmission parameters to

enable higher levels of communication. Cognitive Radio can be programmed and configured

dynamically to use the best wireless channels in its vicinity to avoid user interference and

congestion.

NetSim Cognitive Radio module is based on the IEEE 802.22 standard. Additionally, you can

connect a Cognitive Radio with Internetwork devices and run all the protocols supported in

Internetworks.

To simulate Cognitive Radio, click on New Simulation and then Cognitive Radio Networks

5.9.1 Cognitive Radio Examples

To simulate Cognitive Radio Examples:

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

2. Click the Cognitive-Radio example you want to simulate. NetSim UI loads the example.

5.9.2 Cognitive Radio Library Documentation

To view help documentation either click on “Technology Libraries” under documentation in the

home screen or click the ‘Book’ link located next to Cognitive Radio examples. The help

documentation explains the following:

▪ Introduction

▪ Simulation GUI

▪ Model Features

▪ Featured Examples

▪ Cognitive Radio Networks Experiments in NetSim

▪ Reference Documents

▪ Latest FAQ available online

© TETCOS LLP. All rights reserved

Ver 13.2 Page 104 of 304

5.10 LTE/LTE-A

Long Term Evolution (LTE) is a standard for 4G wireless broadband technology that offers

increased network capacity and speed to mobile device users. LTE offers higher peak data

transfer rates -- up to 100 Mbps downstream and 30 Mbps upstream.

NetSim LTE Library support LTE/LTE-Advanced Networks.

Additionally, you can connect an LTE Network with Internetwork devices and run all the protocols

supported in Internetworks.

To simulate LTE/LTE-A networks, click on New Simulation and then select LTE/LTE-A Networks.

5.10.1 LTE Examples

To simulate LTE Examples:

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

2. Click the LTE and LTE-A example you want to simulate. NetSim UI loads the example.

5.10.2 LTE Library Documentation

To view help documentation either click on “Technology Libraries” under documentation in the

home screen or click the ‘Book’ link located next to LTE and LTE-A examples. The help

documentation explains the following:

▪ Introduction

▪ Simulation GUI

▪ Model Features

▪ Featured Examples

▪ Reference Documents

▪ Latest FAQ available online

5.11 5G NR

NetSim 5G library features full stack, end-to-end, packet level simulation of 5G NR networks. The

5G library is based on Rel 15 / 3GPP 38.xxx series.

NetSim 5G library models all layers of the protocol stack as well as applications running over the

network. This 5G library is architected to connect to the base component of NetSim (and in turn

to other components) which provides functionalities such as TCP/IP stack protocols, Wireless

protocols, Routing algorithms, Mobility, Output Metrics, Animation, Traces etc.

To simulate 5G NR networks, click on New Simulation and then 5G NR.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 105 of 304

5.11.1 5G NR Examples

To simulate 5G NR Examples:

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

2. Click the 5G NR example you want to simulate. NetSim UI loads the example.

5.11.2 5G NR Library Documentation

To view help documentation either click on “Technology Libraries” under documentation in the

home screen or click the ‘Book’ link located next to 5G NR examples. The help documentation

explains the following:

▪ Introduction

▪ Simulation GUI

▪ Model Features

▪ Featured Examples

▪ Omitted Features

▪ 5G NR Experiments in NetSim

▪ Reference Documents

5.12 VANETs

Vehicular Ad-Hoc Network (VANET) is a subset of a Mobile Ad-Hoc Network or MANET that

allows vehicle-to-vehicle and vehicle-to-roadside communications to ensure safe transportation.

To simulate VANET click on New Simulation and then click on VANET.

5.12.1 VANET Examples

To simulate VANET Examples:

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

2. Click the VANETs example you want to simulate. NetSim UI loads the example.

5.12.2 VANET Library Documentation

To view help documentation either click on “Technology Libraries” under documentation in the

home screen or click the ‘Book’ link located next to VANET examples. The help documentation

explains the following:

▪ Introduction

▪ Simulation GUI

© TETCOS LLP. All rights reserved

Ver 13.2 Page 106 of 304

▪ Model Features

▪ Featured Examples

▪ Reference Documents

▪ Latest FAQ available online

5.13 Satellite Communication

NetSim satellite library models end-to-end, full stack, packet level communication between

terrestrial nodes and Geostationary satellites.

The satellite can be thought of as a relay station. It operates on the bent-pipe (transparent star)

principle, sending back to Earth what comes in, with only amplification and a shift from uplink to

downlink frequency.

The Satellite MAC layer protocol supported in NetSim is TDMA for forward link and MF-TDMA for

return link (based on the DVB S2 standards). The forward link is in the Ku band (12 – 18 GHz)

while the return link is in the Ka band (26 – 40 GHz)

To simulate Satellite Communication networks, click on New Simulation and then click on Satellite

Comm. Networks

5.13.1 Satellite Communication Examples

To simulate the Examples for different types of Internetworks

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

2. Click the Satellite-Communication example you wish to simulate. NetSim UI loads the

example.

5.13.2 Satellite Communication Documentation

To view help documentation users can either click on “Technology Libraries” under

documentation in the home screen or click the ‘Book’ link located next to Satellite-Communication

in examples. The help documentation explains the following:

▪ Introduction

▪ Simulation GUI

▪ Model Features

▪ Featured Examples

▪ Reference Documents

▪ Latest FAQ available online

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 107 of 304

5.14 Underwater Acoustic Networks

NetSim’s UWAN library enables users to design, simulate and analyze performance of

underwater networks that use acoustic communication.

UWAN is architected to interface with NetSim component 2 (Legacy networks) which provides L2

functionality and component 3 (Advanced switching and routing) which provides the L3 static

routing functionality.

The UWAN library is available as Component 12 and is currently available only in NetSim

standard and NetSim Pro versions. NetSim’s protocol source C code shipped along with (standard

/ pro versions) is modular and customizable to help researchers to design and test their own

UWAN protocols.

5.14.1 UWAN Documentation

To view help documentation users can either click on “Technology Libraries” under

documentation in the home screen or click the ‘Book’ link located next to UWAN in examples. The

help documentation explains the following:

▪ Introduction

▪ Simulation GUI

▪ Model Features

▪ Featured Examples

▪ Reference Documents

▪ Latest FAQ available online

5.15 TDMA Radio Networks

NetSim TMDA Radio Network module uses TDMA/DTDMA in MAC/PHY along with MANET

Routing protocols in Layer 3.

To simulate TDMA Radio Networks, click on New Simulation → TDMA Radio Networks and

select TDMA/DTDMA in MAC/PHY layer of the devices.

Note: TDMA Radio Network component is available only in NetSim pro version.

5.15.1 TDMA Radio Network Examples

To simulate TDMA Radio Networks Examples:

1. Go to the NetSim UI and click Examples.

The Example Simulation pane appears at the right.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 108 of 304

2. Click the TDMA Radio Networks example you want to simulate. NetSim UI loads the

example.

5.15.2 TDMA Radio Network Library Documentation

To view help documentation either click on “Technology Libraries” under documentation in the

home screen or click the ‘Book’ link located next to TDMA Radio Networks examples. The help

documentation explains the following:

▪ Introduction

▪ Simulation GUI

▪ Model Features

▪ Featured Examples

▪ Model Limitations

▪ Latest FAQ available online.

5.16 Network Emulator Add On

A network simulator mimics the behavior of networks but cannot connect to real networks. NetSim

Emulator enables users to connect NetSim simulator to real hardware and interact with live

applications.

▪ NetSim emulator is an IP based, data plane, flow-through emulator. This means:

▪ It can interact with IP based devices.

▪ It can emulate data place functionality and not control plane functionality.

▪ The source and destination for traffic should be external. A virtual device within NetSim

cannot be a source or sink for traffic.

5.16.1 Emulation Library Documentation

To view help documentation either click on “Technology Libraries” under documentation in the

home screen, The Emulation documentation explains the following:

▪ Introduction

▪ Emulation Set-up

▪ Model Features

▪ Featured Examples

▪ Trouble shooting

▪ Latest FAQ available online.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 109 of 304

6 Applications (Network Traffic Generator)

Applications are the sources of traffic in the network. This traffic is modeled as individual packets.

These packets flow from the source to the destination over the designed network. As it flows

through the network, depending on the devices, link bandwidths and networking protocols, the

packets would experience network effects such as delay, error, loss etc.

Applications are generally parameterized in terms of packet size, inter-packet arrival time, priority,

transport protocol running below etc. Therefore, each application has its own distinctive traffic

pattern and creates its own unique load on the network.

Different applications have differing levels of complexity. Some applications are used to quickly

model basic requirements while in other cases parameters can be accurately modeled to carefully

reproduce real world characteristics. For example, if the goal is to analyze protocol behavior, then

using a simple CBR application (that generates a certain number of packets every second of a

fixed size) would suffice.

NetSim allows users to model and simulate different types of applications.

1. CBR

2. Custom

3. COAP

4. Database

5. FTP

6. Email

7. HTTP

8. PEER_TO_PEER

9. Video

10. Voice

11. Sensor App

12. Erlang Call

13. BSM

14. Emulation (available only if Emulator Add-on is licensed)

To set up the application click on the application icon from the tool bar as shown below Figure

6-1.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 110 of 304

Figure 6-1: Application icon from the tool bar

Figure 6-2: Application Configuration Window

This properties window allows you to model the application traffic. There may be more than one

application you may require for your simulation study. You can add (or) delete one or more

applications by clicking on the “+” or “-” symbols present on top left-hand side next to the

Application.

These application models have default values set, for the various application properties, to model

standard application behavior. Users can modify the parameters to model their own applications.

6.1 Common properties for all applications

Application Method: It specifies the type of Application method Unicast/Multicast/Broadcast.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 111 of 304

Application Type: It specifies the type of application such as CBR, Custom, Peer to Peer, COAP,

Email, HTTP, FTP, Voice, Video, Database, Erlang Call, Sensor App, BSM, and Emulation.

Application ID: This property represents the unique identification number of the application.

Application Name: It specifies the name of the application.

Source Count: This property represents number of sources for the application. Voice, Video,

FTP, Database and Custom applications have only one source.

Source ID: This property represents the unique identification number of the source.

Destination Count: This property represents number of destinations for the application. Voice,

Video, FTP, Database and Custom applications have only one destination.

Destination ID: This property represents the unique identification numbers of the destination.

• For Unicast Applications, users can select the ID of a device in the network as the

Destination ID.

• For Broadcast Applications, the Destination ID, is set to ‘0’.

• For Multicast Applications, users can enter the number of multicast destinations in the

Destination Count filed and specify the Device IDs of the destination devices separated by

comma (“,”) in the Destination ID field. E.g., 6, 7, 8

Start time: This property represents the start time of the application in seconds.

End time: This property represents the end time of the application in seconds.

For example, if Start time is 1s and end time is 10s then application starts generating traffic at the

1st second and stops at the 10th second.

Encryption: Encrypts Application packet payload using algorithms such as AES, DES, XOR and

TEA. The effect of encryption can be analyzed by enabling Wireshark option in either the source

or the destination devices. Refer Section 8.7 on “Packet Capture and Analysis Using Wireshark”

for further details.

In NetSim the packet size remains constant when encrypting using these algorithms. Therefore,

using different encryption models will not have any impact on the network performance metrics

that NetSim outputs. NetSim does not perform decryption of the packet at the receiver end since

it does not have any impact on the performance metrics generated.

Random Startup: If random start up is set true, application will start at a random time between 0

and inter-arrival time. Having a random start-up time provides more realism to the model since all

applications need not necessarily start at time = 0 in the real world.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 112 of 304

QoS: NetSim provides QoS differentiation for the different types of applications through four

defined scheduling service types, also called QoS classes as shown below Table 6-1.

QoS Class Description Priority

UGS - Unsolicited
Grant Service

The UGS scheduling service type is designed to support
real-time data streams consisting of fixed-size data packets
issued at periodic intervals.

High

rtPS - Real-time
Polling Service

The rtPS scheduling service type is designed to support real-
time data streams consisting of variable-sized data packets
that are issued at periodic intervals. This would be the case,
for example, for MPEG (Moving Pictures Experts Group)
video transmission.

Medium

ertPS - Extended
real-time Polling
Service

The ertPS is a scheduling mechanism that builds on the
efficiency of both UGS and rtPS. UGS allocations are fixed in
size, ertPS allocations are dynamic. The ertPS is suitable for
variable rate real-time applications that have data rate and
delay requirements.

Normal

nrtPS - Non-real-
time Polling
Service

The nrtPS is designed to support delay-tolerant data streams
consisting of variable-size data packets for which a minimum
data rate is required. The standard considers that this would
be the case, for example, for an FTP transmission.

Low

BE - Best Effort

The BE service is designed to support data streams for
which no minimum service guarantees are required and
therefore may be handled on a best basis.

Low

Table 6-1: Different QoS classes with Description and Priority in NetSim

Priority: The priority is automatically set based on the QoS class set by the user. Depending on

the scheduling algorithm the router would process packets, with different priorities, differently.

Session Protocol: Session Protocol is applicable only for applications that support RTP (Real-

time Transport Protocol)

Transport Protocol: This parameter is newly added to the Applications window where by default

it selects the Transport Layer Protocol (either TCP or UDP) depending on the application that is

set by the user.

Note: Users can also change the value of this parameter according to the transport protocol they intend to

run a particular application.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 113 of 304

6.2 Application Types

Brief explanation of application types as shown below Table 6-2.

Application
Type

Properties Units Description

CBR –
Constant bit
Rate

Packet size (Constant
distribution) – A fixed packet
size

bytes Packets of constant size are generated
at constant inter arrival times.

The generation times would be as
follows:

Packet 1: Application start time.
Packet 2: Packet 1 + Interarrival Time
Packet 3: Packet 2 + Interarrival Time
....
Packet (n+1): Packet n + Interarrival
Time

Ends at Application end time.

Inter Arrival Time (Constant
distribution) – A fixed time
gap between two successive
packets

µs

Custom Packet size (Constant,
Exponential, Uniform and
Normal distribution) – Packet
sizes are drawn from the
respective distribution

bytes It is user defined application where the
packet sizes and inter-packet arrival
times can be fixed (constant
distribution) or can be a random
variable (exponential, uniform or normal
distribution) Inter Arrival Time

(Constant, Exponential,
Uniform and Normal
distribution) – The time gap
between two successive
packets are drawn from the
respective distribution

µs

Peer to Peer File size distribution
(Constant, Exponential
distribution)

- Peer-to-peer network does not have the
notion of clients or servers but only
equal peer nodes that simultaneously
functioning as both "clients" and
"servers" to the other nodes on the
network.
Ex – Torrent, LimeWire etc.

Value – Size of the file bytes

Piece size - Each file is
divided into equal sized
pieces. This property
represents the size of each
piece

bytes

Email Email send/receive
Represents the rate at which
emails are sent/receive

- Email is a client-server configuration,
not a source-destination confirmation.
Both sides can send and receive.

Ex – Outlook, Apple mail, Gmail etc.

Duration (Constant,
Exponential distribution)
Time between two
successive emails

Seconds

Email size (Constant,
Exponential distribution) Size
of an email

Bytes

HTTP – Hyper
Text Transfer
Protocol

Inter Arrival Time
(Constant, Exponential
distribution). It is the time gap
between two successive
HTTP requests

seconds HTTP is a request-response
application; it uses a client-server
configuration, not a source-destination
confirmation. The client node sends a
page request to the server, and the

© TETCOS LLP. All rights reserved

Ver 13.2 Page 114 of 304

Page size (Constant,
Exponential distribution) It is
the size of each page

bytes server responds with the pages (whose
size is in bytes).
HTTP utilizes TCP to transfer its
information between computers
(usually Web servers and clients). TCP
should mandatorily be set as the
transport layer protocol.
In the application metrics as part of an
HTTP application, users can see two
rows of metrics, one corresponding to
requests from the client to the server
and the other corresponding to the
replies from the server to the client

Page count – Represents
the number of pages

-

COAP –
Constrained
Application
Protocol

Inter Arrival Time
(Constant, Exponential
distribution) – It is the time
b//w two successive COAP
requests.

seconds

It is a specialized web transfer protocol
for use with constrained nodes and
constrained (e.g., low-power, lossy)
networks and designed for M2M
applications.

Page size (Constant,
Exponential distribution) – It
is the size of each page.

bytes

Response time – It is the
time taken by a device to
generate response

ms

Multicast response –
Represents the server
responds to multicast
response or not

-

NSTART – Limit the number
of simultaneous outstanding
interactions that a client
maintains to a given server

-

DEFAULT_LEISURE – This
setting is only relevant in
multicast scenarios, outside
the scope of the EST-coaps
draft

-

PROBING_RATE: A
parameter which specifies
the rate of re-sending Non-
confirmable messages.

-

Ack required – It represents
whether the ack for the
request/response to be sent
or not

-

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 115 of 304

FTP – File
Transfer
Protocol

File size (Constant,
Exponential distribution) – It
is the size of the file

bytes It is a standard network protocol used
for the transfer of files between a client
and server
Note: Devices must have TCP enabled
as the transport layer protocol.
Ex – FileZilla

The generation times would be as
follows:

File 1: Application start time.
File 2: File 1 + Interarrival Time
File 3: File 2 + Interarrival Time
....
File (n+1): File n + Interarrival Time

Ends at Application end time

The files are in-turn fragmented into
packets during the simulation.

Users can generate one file by setting

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐸𝑛𝑑 𝑇𝑖𝑚𝑒
< (𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑆𝑡𝑎𝑟𝑡 𝑇𝑖𝑚𝑒
+ 𝐹𝑖𝑙𝑒 𝐼𝑛𝑡𝑒𝑟𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑇𝑖𝑚𝑒)

File Inter Arrival Time size
(Constant, Exponential
distribution) – It is the gap
between two files

seconds

Database Transaction size (Constant,
Exponential distribution) - It
represents the size of each
transaction

bytes A database application is a computer
program whose primary purpose is
entering and retrieving information from
a computerized database.
Ex – MS Excel, MySQL etc. Transaction Inter Arrival

Time (Constant, Exponential
distribution) – It is the time
gap between two successful
transactions

µs

Voice Packet size (Constant,
Exponential) – It is the size of
the packet

bytes It allows users to configure voice
application between client and server.

Note – Distribution is constant only for
all codec types except custom.

Ex – Skype

Packet Inter Arrival Time
(Constant, Exponential
distribution) - It is the gap
between two successful
packets

µs

Service type – CBR, VBR -

Suppression models
available for VBR –
Deterministic, Markov chain

-

Success ratio - Sets the
ratio of the packets that are
not silenced during VBR calls

%

Video Model Type –
Independent Gaussian
First order dependent
gaussian
H_261, H_263,
MPEG1_Low_Res,
MPEG1_High_Res,
MPEG2_Low_Res,
MPEG2_High_Res,
Buffered video streaming 1
Buffered video streaming 2

- It allows users to configure video
application between client and server.
Ex – Skype

https://en.wikipedia.org/wiki/Network_protocol
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Client%E2%80%93server_model

© TETCOS LLP. All rights reserved

Ver 13.2 Page 116 of 304

Buffered video streaming 3
Buffered video streaming 4
Buffered video streaming 5
Buffered video streaming 6

Erlang Call Packet size (Constant,
Exponential distribution) – It
is the size of the packet

bytes The erlang is a unit of traffic density in
a telecommunications system. One
erlang is the equivalent of one call

Note – Distribution is constant only for
all codec types except custom

Packet Inter Arrival Time
(Constant, Exponential
distribution) - It is the gap
between two successful
packets

µs

Call duration (Constant,
Exponential distribution) – It
is the duration of each call

seconds

Call Inter Arrival Time
(Constant, Exponential
distribution) - It is the gap
between two successful calls

seconds

Service type – VBR, CBR -

Suppression model
available for VBR –
Deterministic, Markov chain

-

Success ratio - Sets the
ratio of the packets that are
not silenced during VBR calls

%

Sensor App Packet size (Constant,
Uniform and Normal
distribution) – It is the size of
the packet

bytes Used to create application between two
sensors.
Ex – Smart home, Smart water etc.

Packet Inter Arrival Time
(Constant, Uniform and
Normal distribution) - It is the
gap between two successful
packets

µs

BSM – Basic
safety
message

Packet size (Constant,
Uniform and Normal
distribution) – It is the size of
the packet

bytes The BSM Application class sends and
receives the IEEE 1609 WAVE
(Wireless Access in Vehicular
Environments) Basic Safety Messages
(BSMs). The BSM is a 20-byte packet
that is generally broadcast from every
vehicle at a nominal rate of 10 Hz.
Note - Available only with VANET
component.
Ex – Traffic management

Packet Inter Arrival Time
(Constant, Uniform and
Normal distribution) - It is the
gap between two successful
packets

µs

Emulation Source Real IP - Specifies
the real IP Address of source
device in Emulation

- NetSim Emulation application enables
users to connect NetSim simulator to
real devices and interact with live
applications.

Note - Will be present only when
Emulator Add-on is licensed

Source Port - Specifies the
Port no used for transmission
by Application running in
source device

Destination Real IP -
Specifies the real IP Address
of destination device in
Emulation

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 117 of 304

Destination Port - Specifies
the Port no used for
reception by Application
running in destination device

Table 6-2: Brief explanation of application types

6.2.1 Voice Models

Codec stands for Coder-decoder. Codecs are devices which encode / decode digital data

streams. Codec is the component of any voice system that translates between analog speech

and the bits used to transmit them. Every codec transmits a burst of data in a packet that can be

reconstructed into voice.

Various voice codecs are available in NetSim to choose from. Packet size and Inter-arrival time

value will vary depending on the codec value chosen.

▪ G.711: G.711 is a Pulse code modulation (PCM) of voice frequencies on a 64-kbps channel.

G.711 uses a sampling rate of 8,000 samples per second. Non-uniform quantization with 8

bits is used to represent each sample, resulting in a 64-kbps bit rate.

▪ G.729: The G.729 speech codec uses audio data compression algorithm and compress the

data at bit rates that vary between 6.4 and 12.4 kbps. Coding of speech at 8 kbps using

conjugate-structure algebraic-code-excited linear prediction (CS-ACELP).

▪ G.723: G.723 is an ITU standard for speech codecs that uses the ADPCM method and

provides good quality audio at 24 and 40 Kbps.

▪ GSM-FR: GSM–Full Rate (GSM-FR). The codec operates on each 20ms frame of speech

signals sampled at 8 KHz and generates compressed bit-streams with an average bit-rate

of 13 kbps. The codec uses Regular Pulse Excited – Long Term Prediction – Linear

Predictive Coder (RPE-LTP) technique to compress speech.

▪ GSM-EFR: GSM enhanced full rate speech codec is a speech coding standard that was

developed in order to improve the quite poor quality of GSM-Full Rate (FR) codec. Working

at 12.2 kbps the EFR provides wire like quality in any noise free and background noise

conditions. The EFR 12.2 kbps speech coding standard is compatible with the

highest AMR mode (both are ACELP).

▪ CELP: Code excitation linear prediction. This model has a packet size of 18 B and inter-

packet arrival time of 30 ms.

▪ MELP: Mixed excitation linear prediction. This model has a packet size of 8 B and an inter-

packet arrival time of 22.5 ms.

▪ CUSTOM: It is similar to the CUSTOM application type explained in the table above.

https://en.wikipedia.org/wiki/Speech_encoding
https://en.wikipedia.org/wiki/GSM
https://en.wikipedia.org/wiki/Full_Rate
https://en.wikipedia.org/wiki/Adaptive_Multi-Rate
https://en.wikipedia.org/wiki/Algebraic_Code_Excited_Linear_Prediction

© TETCOS LLP. All rights reserved

Ver 13.2 Page 118 of 304

6.2.2 Video Models

Introduction to Video Models

A digital video source (e.g., a movie stored on a computer disk, or a live video from a

teleconference) essentially comprises a sequence of images, called frames. Each frame is a

digital image comprising an array of pixels. A video source is characterized by the frame rate,

expressed in frames per second (fps), and the number of pixels per frame (ppf). Typical values of

the frame rate are 30, 50, and 60, whereas typical values of pixels per frame are in the range of

105 to 106.

Each pixel is encoded into a number of bits to represent the intensity and colour at that point in

the image. If the “raw” bits for all the pixels are put together, the number of bits per frame become

very large, and it becomes impractical to handle digital video on packet communication networks.

Various intraframe and interframe coding techniques are used to reduce the number of bits that

need to be sent for each frame.

6.2.2.1 Video Models in NetSim

In NetSim the following video models are available:

1. Basic bits per pixel models:

o Independent Gaussian (termed as continuous normal VBR prior to v13)

o First order dependent Gaussian (termed as Continuous State Autoregressive Markov prior

to v13)

2. Video Codec Models: H.261, H.263, MPEG1 Low Res, MPEG1 High Res, MPEG2 Low Res,

MPEG2 High Res

3. Buffered Video Streaming Model: Options BV1 through BV6

Note: Quantized State Continuous Time Markov and Simple IPB Composite Model were

discontinued from v13 onwards. If older config files with these entries are imported, then NetSim

would automatically replace them with the Independent gaussian model with default parameters

set.

Basic bits per pixel models

Since, for a given video, the number of pixels per frame remains constant from frame to frame, it

is convenient to consider the number of bits per pixel (obtained by dividing the number of bits

generated for a frame by the number of pixels). This measure is also illustrative as it permits

comparison between the number “raw” bits generated for each pixel, and the average number of

bits per pixel after data compression. This results in a sequence of bits per pixel, say 𝑏𝑘, where k

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 119 of 304

is the sequence number of the frame. For simulating a video stream in a communication network

simulation, we need a statistical model of the sequence 𝑏𝑘, k=0,1, 2, ⋯ The bits emitted for each

frame (obtained by multiplying the generated bits per pixel by the number of pixels per frame; we

denote this sequence by 𝐵𝑘) are then packetized, thereby yielding a sequence of packets which

are then emitted into the network for transport.

▪ Independent Gaussian: This simple model uses independent samples from a Gaussian (or

Normal) distribution to generate the number of bits per pixel generated for each frame. In this

simplest model, the number of bits per pixel is not necessarily an integer (hence, the term

“continuous”), and the number of bits in successive frames are assumed to be statistically

independent. Hence, this model has just two parameters

o 𝜇 (bits): the mean number of bits per pixel. NetSim range [0.01, 1.00]

o 𝜎 (bits): the standard deviation of the number of bits per pixel. NetSim range [0.01, 1.00]

The data generation rate (in bits per second) for the video application can be calculated by

�̅� = 𝑓𝑝𝑠 × 𝑝𝑝𝑓 × 𝜇, and 𝑉𝑎𝑟(𝐵) = 𝑓𝑝𝑠2 × 𝑝𝑝𝑓2 × 𝜎2.

▪ First order dependent Gaussian: This model incorporates the autocorrelation between the

frames. The number of bits generated for each frame is not necessarily an integer, but the

number of bits per pixel in successive frames are modeled as a first-order autoregressive

process driven by an independent Gaussian sequence (which is itself independent from frame

to frame). Thus, starting with bits per pixel 𝑏0, the successive 𝑏𝑘 are generated as follows:

𝑏𝑘 = 𝑎 𝑏𝑘−1 + 𝑏 𝑤𝑘

 where

o 𝑎 and 𝑏 are parameters of the autoregressive process, and 𝑤𝑘, 𝑘 ≥ 1, is an independent

sequence of independent random variables. It is important to note that the 𝑏 is positive and

|𝑎| < 1

o 𝑤𝑘 is an independent Gaussian sequence with mean 𝜂 and variance 1.

With the above conditions on 𝑎 and 𝑏, the sequence 𝑏𝑘 (and, therefore, the sequence 𝐵𝑘)

has a steady state, with �̅� = (
𝑏

1−𝑎
) 𝜂 and 𝑉𝑎𝑟(𝑏) = (

𝑏2

1−𝑎2). The steady state variance and

standard deviation of the sequence 𝐵𝑘 can be obtained by recalling that 𝐵𝑘 =

𝑓𝑝𝑠 × 𝑝𝑝𝑓 × 𝑏𝑘; i.e., �̅� = 𝑓𝑝𝑠 × 𝑝𝑝𝑓 × (
𝑏

1−𝑎
) 𝜂, and 𝑉𝑎𝑟(𝐵) = (𝑓𝑝𝑠 × 𝑝𝑝𝑓)2 × (

𝑏2

1−𝑎2).

Video Codec Models

The list of video codec models and their parameters is provided in table below

Model Type
Packet Size (B)
(Exponentially
distributed)

Inter packet
arrival time
(ms)

Frames
Per
second

Average Bit
Rate (Mbps)

H.261 160 20 50 0.064

H.263 160 20 50 0.064

© TETCOS LLP. All rights reserved

Ver 13.2 Page 120 of 304

MPEG1_Low_Res 2500 20 50 1

MPEG1_High_Res 7500 20 50 3

MPEG2_Low_Res 7500 20 50 3

MPEG2_High_Res 37500 20 50 15

Table 6-3: The input parameters used in NetSim for the various Video codecs and the resultant average
bit rate

Buffered Video Streaming Models

The Buffered Video Streaming Models are based on IEEE 802.11-14/0571r12 standard. The

video traffic from Video Source to Video Receiver is generated as follows.

▪ The packet size (bytes) is generated per the Weibull distribution which has the following

formula.

𝑓(𝑥; 𝜆, 𝑘) = {
𝑘

𝜆
 (

𝑥

𝜆
)

𝑘−1

𝑒
−(

𝑥

𝜆
)

𝑘

 𝑥 ≥ 0

 0 𝑥 < 0

▪ The parameters to use are specified in Table 6-4.

Model_Type Avg bit rate 𝝀 𝒌
Frames per

second (𝒇𝒑𝒔)

Buffered_Video_Streaming_1 2 Mbps 6950 0.8099 31

Buffered_Video_Streaming_2 4 Mbps 13900 0.8099 31

Buffered_Video_Streaming_3 6 Mbps 20850 0.8099 31

Buffered_Video_Streaming_4 8 Mbps 27800 0.8099 31

Buffered_Video_Streaming_5 10 Mbps 34750 0.8099 31

Buffered_Video_Streaming_6 15.6 Mbps 54210 0.8099 31

Table 6-4: Parameters for the Buffered video streaming models BV1 through BV6. 𝝀 and k parameters
are the scale and shape parameters of the Weibull distribution for determining packet size. The average

bit rate is the generation rate for the given values of 𝝀, 𝒌 and 𝒇𝒑𝒔.

▪ The steps pertaining to adding TCP latency in the AP is not required since NetSim models

Wi-Fi and TCP protocol operation.

▪ The standard does not provide the frame per second values. This was derived from the

average bit rate, 𝜆 and 𝑘.

6.3 Network Traffic Generation Rate for Different

Applications

This section explains how the traffic generation rate can be calculated for different types of

applications:

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 121 of 304

CBR and Custom application

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝑀𝑏𝑝𝑠) =
𝑃𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒 (𝑏𝑦𝑡𝑒𝑠) ∗ 8

𝐼𝑛𝑡𝑒𝑟𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒(µ𝑠)

Example: Packet size = 1460 Bytes and Inter arrival time = 20000 µs.

Generation rate (Mbps) =
1460×8

20000
 = 0.584Mbps

Video

The Independent Gaussian model is the simplest of all video models in NetSim. It uses the normal

distribution for the generation of bits per pixel. In this model, consecutive packet sizes are

independent of each other. The generation rate for video application can be calculated by using

the formula shown below:

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑) = 𝑓𝑝𝑠 × 𝑝𝑝𝑓 × 𝑏𝑝𝑝

where, fps = frames per second

ppf = pixel per frame

bpp (µ) = bits per pixel (mean)

Users can set the above-mentioned parameters in the Application Properties.

Example: Frames per second = 20, pixels per frame = 10000, bits per pixel = 0.52 then the

generation rate would be

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝑀𝑝𝑠) = 20 × 10000 × 0.52 = 104000 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 = 0.1040 𝑀𝑏𝑝𝑠

Voice

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝑀𝑏𝑝𝑠) =
𝑃𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒 (𝑏𝑦𝑡𝑒𝑠) × 8

𝐼𝑛𝑡𝑒𝑟𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒(µ𝑠)

Note that the distribution type is constant (deterministic) for all codec types except custom.

Email

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝑀𝑏𝑝𝑠) =
𝐸𝑚𝑎𝑖𝑙 𝑠𝑖𝑧𝑒 (𝑏𝑦𝑡𝑒𝑠) × 8

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(μs)

Example: Email size = 20000bytes, Duration = 1s.

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (𝑀𝑏𝑝𝑠) =
20000 ∗ 8

1000000
 = 0.16 𝑀𝑏𝑝𝑠

HTTP

© TETCOS LLP. All rights reserved

Ver 13.2 Page 122 of 304

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝑀𝑏𝑝𝑠) =
𝑃𝑎𝑔𝑒 𝑠𝑖𝑧𝑒 (𝑏𝑦𝑡𝑒𝑠) × 8 × 𝑃𝑎𝑔𝑒 𝑐𝑜𝑢𝑛𝑡

𝐼𝑛𝑡𝑒𝑟𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒(μs)

Example: Page size = 20000 Bytes, Page Count = 2, Inter arrival time = 3s

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (𝑀𝑏𝑝𝑠) =
20000 × 8 × 2

3000000
 = 0.106 𝑀𝑏𝑝𝑠

FTP

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝑀𝑏𝑝𝑠) =
𝐹𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 (𝑏𝑦𝑡𝑒𝑠) × 8

𝐼𝑛𝑡𝑒𝑟𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒(𝑠)

Example: File size = 100000 Bytes, Inter arrival time = 5s

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (𝑀𝑏𝑝𝑠) =
100000 × 8

5
 = 0.16 𝑀𝑏𝑝𝑠

Database

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝑀𝑏𝑝𝑠) =
𝑃𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒 (𝑏𝑦𝑡𝑒𝑠) × 8

𝐼𝑛𝑡𝑒𝑟𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒(µ𝑠)

Example: Packet size = 10000 Bytes, Inter arrival time = 1000000µs

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (𝑀𝑏𝑝𝑠) =
(10000 × 8)

1000000
 = 0.08 𝑀𝑏𝑝𝑠

BSM

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝑀𝑏𝑝𝑠) =
𝑃𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒 (𝑏𝑦𝑡𝑒𝑠) × 8

𝐼𝑛𝑡𝑒𝑟𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒(µ𝑠)

Example: Packet size = 20Bytes and Inter arrival time = 1000000µs.

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (𝑀𝑏𝑝𝑠) =
20 × 8

1000000
 = 0.00016 𝑀𝑏𝑝𝑠

Sensor

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝑀𝑏𝑝𝑠) =
𝑃𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒 (𝑏𝑦𝑡𝑒𝑠) × 8

𝐼𝑛𝑡𝑒𝑟𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒(µ𝑠)

Example: Packet size = 50Bytes and Inter arrival time = 1000000µs.

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (𝑀𝑏𝑝𝑠) =
50 × 8

1000000
 = 0.0004 𝑀𝑏𝑝𝑠

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 123 of 304

6.4 Priority and QoS of Applications

The various application traffic generated in NetSim have the following priority and QoS values as

shown below.

Application Type Priority Value Priority QoS Class

Voice – One way
Voice – Two way

8
8

High
High

RTPS
UGS

Video 6 Medium nRTPS

FTP 2 Low BE

Database 2 Low BE

Custom 2 Low BE

Video 6 Medium nRTPS

FTP 2 Low BE

Database 2 Low BE

Table 6-5: Priority and QoS of Applications

Note: Priority of “Normal” has a Priority Value of 4 and “nRTPS” QoS Class. Ex: Video over TCP.

Priority will have an impact on network performance when multiple applications with different

priorities are configured in a network. These packets will be queued and dequeued from the router

buffer based on the priority.

6.5 Capture real applications and simulate in NetSim

Users can capture packets from a live network using Wireshark. This can then be used as an

input to NetSim as explained in Section 4 of the Emulator technology library user guide.

6.6 Modelling Poisson arrivals in NetSim

Any time you have events which occur individually at random moments, but which tend to occur

at an average rate when viewed as a group, you have a Poisson process.

For example, we can estimate that a certain node generates 1200 packets per minute. These

packets are randomly generated within a minute, but there are on average 1200 packets per

minute. If 1200 packets generated per minute that, on average, one packet is generated every

60

1200
= 0.05 𝑠. So, let’s define a variable 𝜆 =

1

0.05
= 20 and call it the rate parameter. The rate

parameter 𝜆 is a measure of frequency: the average rate of events (packets) per unit of time (in

this case, seconds).

Knowing this, we can ask questions like, what is the probability that a packet will be generated

within the next second? What’s the probability within the next 10 seconds? There’s a well-known

© TETCOS LLP. All rights reserved

Ver 13.2 Page 124 of 304

function to answer such questions. It’s called the cumulative distribution function for

the exponential distribution, and it looks like this:

 𝐹(𝑥) = 1 − 𝑒−𝜆𝑥

Figure 6-3: Plot for cumulative distribution function for the exponential distribution

Basically, the more time passes, the more likely it is that a packet is generated. The word

“exponential”, in this context, refers to exponential decay. As time passes, the probability of

having no packets generated decays towards zero – and correspondingly, the probability of

having at least one packet generated increases towards one.

Plugging in a few values, we find that:

▪ The probability of generating a packet within the next 0.05 seconds is F (0.05) ≈ 0.63

▪ The probability of generating a packet within 1 second is F (1) ≈ 0.999999998

In particular, note that after 0.05 seconds – the prescribed average time between packets – the

probability is F (0.05) ≈ 0.63.

Generating Poisson arrivals in NetSim

We simply write a function to determine the exact amount of time until the next packet. This

function should return random numbers, but not the uniform kind of random number produced by

most generators. We want to generate random numbers in a way that follows our exponential

distribution.

Given that the inverse of the exponential function is ln, it’s easy to write this analytically, where R

is the random value between 0 and 1:

𝑇 = − 𝑙𝑜𝑔𝑒

1 − 𝑅

𝜆

Where 𝑇 is the time at which the next packet is generated.

The simple way of selecting this via the UI is to select exponential distribution for inter-arrival time

inside application properties.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 125 of 304

6.7 Application Configuration – Special Conditions

1. In a wired network with routers and switches OSPF, spanning tree etc. takes times to converge

and hence it is a good practice to set the application start time greater than OSPF convergence

time. In general, the applications can start at 20s for smaller networks and should be increased

as the size of the network grows.

2. If applications are started before OSPF convergence, then.

▪ Packets generated before OSPF table convergence may be dropped at the gateway router.

▪ The application may also stop if ICMP is enabled in the router.’

▪ If TCP is enabled TCP may stop after the re-try limit is reached (since the SYN packets

would not reach the destination)

3. For MANET networks the application start time should be a min of 5s, since that amount of

time is required for convergence of OLSR/ZRP.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 126 of 304

7 Running Simulation via Command Line

Interface

7.1 Running NetSim via CLI

Advanced users can model their simulation via a configuration file (which can be created without

the NetSim GUI) and run the simulation from command line. This is typically done in cases where

very large networks are to be simulated (it takes too long to create it in the GUI), or to run a series

of simulations automatically. The configuration file contains all required information to run the

simulation including the network topology, devices, links, traffic, statistics, traces etc. To run

Simulation in NetSim through command line interface (CLI), the following steps have to be

followed.

Step 1: Note the Application Path

Application path is the current workspace location of the NetSim that you want to run. The default

application path will be something like

“C:\Users\PC\Documents\NetSim\Workspaces\<Your default workspace>\bin_x64” for 64-

bit for 64-bit. For more information on NetSim workspace, Refer Section 4 “Workspaces and

Experiments”.

Step 2: Note the IO Path

IO path (Input/output Path) is the directory where the NetSim input files are placed, and output

files are written by NetSim during (or after) simulation. In this directory, the input file i.e., the

NetSim configuration file (Configuration.netsim), of the simulation scenario should be present.

App path and IO path can also be same, i.e., Configuration.netsim can be placed inside the app

path (the app path should have write permission). Otherwise, users can create a folder for IO path

and Configuration.netsim can be placed inside that folder.

Note: Sample configuration.netsim files are available in the <NetSim installation Directory>/Docs/

Sample_Configurations folder of the NetSim install directory inside the respective protocol folder names.

Step 3: Running NetSim through command line for Simulation.

To run NetSim through command line, copy the app path where NetSimCore.exe is present and

paste it in the command prompt.

>cd <app path>

Note: File path should be always added in the command prompt within double quotes. For example,

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 127 of 304

>cd “C:\Users\PC\Documents\<Your default workspace>\bin_x64”

7.1.1 Running in CLI Mode when using floating licenses

For floating licenses, type the following in the command prompt.

>NetSimCore.exe<space>-apppath<space><app path><space>-iopath<space>

<io path><space>-license<space>5053@<Server IP Address>

Where,

▪ <app path> contains all files of NetSim including NetSimCore.exe. Specifying the app path

is optional. NetSim will take the current path as app path if not specified.

▪ <iopath> contains Configuration.netsim. (Configuration.xsd is available in the bin

folder of NetSim’s current workspace path

C:\Users\PC\Documents\NetSim\Workspaces\<Your default workspace>\bin_x64 for

64-bit

Refer section 7.2.4 to know about configuration.xsd file.

▪ 5053 is the port number through which the system communicates with the license server

i.e. the system in which the dongle is running (for floating license users)

▪ <Server IP Address> is the ip address of the system where NetSim license server is

running.

Note: Please contact your network administrator / lab in-charge to know the IP address of the PC where

the NetSim license server is running.

The following screenshot is the example of running NetSim through CLI where the ip address of

the NetSim license server is 192.168.0.9.

Figure 7-1: Running NetSim through CLI mode for floating license

7.1.2 Running in CLI Mode when using node-locked or cloud licenses

For cloud licenses and node-locked licenses, type the following in the command prompt

>NetSimCore.exe<space>-apppath<space><apppath><space>-iopath<space><io

path><space>-license<space><license file path>

Where,

© TETCOS LLP. All rights reserved

Ver 13.2 Page 128 of 304

▪ <app path> contains all files of NetSim including NetSimCore.exe

▪ <iopath> contains Configuration.netsim and Configuration.xsd

▪ <license file path> path where the license file is present. This is generally the

<NetSim_Installation_Directory>/bin folder.

For E.g. C:\Program Files\NetSim\Standard_v13_1\bin

The following screenshot is the example of running NetSim through CLI for the node locked or

cloud license.

Figure 7-2: Running NetSim through CLI mode for Cloud and Node lock licenses

Once simulation is complete the text files that are requested by the end user in

Configuration.netsim will be written in the <iopath>.

To know more about the options that are available to run NetSim via CLI, type the following in the

command prompt.

>cd <app path>

>NetSimCore.exe –h

Figure 7-3: More Options available to run NetSim via CLI

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 129 of 304

7.1.3 Quick edit for copy pastes in CLI mode

With Quick Edit mode, you can copy text between a command window and Windows-based

programs, and you can also paste text into a command window by using a right-click operation. To

use Quick edit mode in command prompt users can run the command prompt → Right Click the

icon in the upper-left corner of the Command Prompt window, and then Click Properties →In the

options, enable Quick Edit mode → and click on OK.

Figure 7-4: Quick edit mode via CLI Running

7.2 Understanding the Configuration.netsim file

When a scenario is created in the GUI, NetSim’s UI code write all the details about the devices

used and its properties, the links used and their properties, the properties of the environment

being used, etc. in the file Configuration.netsim

The simulation engine that contains DLLs and NetSimCore.exe reads this Configuration.netsim,

executes the simulation and writes output metrics files. The GUI then displays the metrics based

on the text files written by the backend.

In order to run NetSim through command line (CLI), the user must create the Configuration.netsim

file furnishing all the details about the devices, links and the environment of the desired scenario.

7.2.1 How to use Visual Studio to edit the Configuration file?

In Visual Studio, XML view provides an editor for editing raw XML and provides IntelliSense and

color coding. After you type the element name and press the CTRL+ SPACE, you will be

presented with a list of attributes that the element supports. This is known as “IntelliSense”. Using

this feature, you can select the options that are required to create the desired scenario.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 130 of 304

Color coding is followed to indicate the elements and the attributes in a unique fashion.

The following screenshot displays the Configuration.netsim which is opened through the Visual

Studio as shown below Figure 7-5.

Figure 7-5: Open Configuration.netsim file via Visual Studio

To reformat click on edit→Advanced→Format Document.

Figure 7-6: Reformat the Configuration.netsim file

7.2.2 Sections of Configuration file

These are the different sections in Configuration.netsim:

▪ EXPERIMENT_INFORMATION

▪ GUI_INFORMATION

▪ NETWORK_CONFIGURATION

▪ SIMULATION_PARAMETER

▪ PROTOCOL_CONFIGURATION

▪ STATISTICS_COLLECTION

EXPERIMENT_INFORMATION:

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 131 of 304

This section contains the details about the user credentials, such as the user mode (Admin or

Exam or Practice), experiment name, date on which the experiment is created and the comments

about the experiment. This section plays a significant role while running NetSim through GUI.

GUI_INFORMATION:

This section contains the GUI information like the environment length, view type etc. and the

network name which is desired to be run.

NETWORK_CONFIGURATION:

This section is used to configure the devices and the links of the desired network at each layer of

the TCP/IP stack. It consists of DEVICE_CONFIGURATION, CONNECTION and

APPLICATION_CONFIGURATION. DEVICE_CONFIGURATION configures the devices in the

desired network while the CONNECTION configures the links in the desired network and

APPLICATION configures the Applications.

SIMULATION_PARAMETER:

Simulation time and seed values are described in this section.

PROTOCOL_CONFIGURATION:

IPV4 and static ARP are enabled or disabled in this section. The text files illustrating the static

routing and static ARP can be obtained by enabling the corresponding tags in the

Configuration.netsim.

STATISTICS_COLLECTION:

The packet trace and the event trace can be observed in the text files which are created by

enabling the tags in this section. The required fields of the packet trace can be enabled in the

PACKET_TRACE while the event trace can be enabled in the EVENT_TRACE of this section.

7.2.3 Sample Configuration file

Sample “Configuration.netsim” file will be installed in user system along with the software at

<NetSim installed Path>\Docs\ Sample_Configuration\ <Network Technology>.User can open

and edit these files using Visual Studio 2015/2017/2019 or any XML editor. The purpose of

providing the sample “Configuration.netsim” file is to assist the user in writing a network scenario

manually by analyzing the format for that specific network technology.

7.2.4 Configuration.xsd file

Configuration.xsd is an XML schema Definition file which is present in the bin folder of NetSim’s

current workspace path

<C:\Users\PC\Documents\NetSim\Workspaces\<Your default workspace>\bin_x64> for 64-bit.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 132 of 304

Configuration.xsd file can be placed inside the <iopath> along with the configuration.netsim file

to verify the contents in the configuration.netsim file. This file checks and validates the structure

and vocabulary of a configuration.netsim document against the grammatical rules of the

appropriate XML language.

It is not mandatory to place the configuration.xsd file along with the Configuration.netsim file in

the iopath. But if it is done, then it will be easier to check & validate changes that are done to the

Configuration.netsim file.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 133 of 304

8 Outputs: Results, Plots and Data Files

8.1 Result Window and Plots Windows

The results of a simulation run are presented in a unified dashboard for convenient analysis.

Graphics plots comprises of application throughputs, link throughputs, buffer occupancy and TCP

congestion windows. The tabular presentation includes end-to-end delays, jitter, errors, packets

generated / received / collided, route tables, TCP Acks, retransmissions etc.

Results are organized per interface, per device, per application and per link. In addition, summary

metrics are aggregated and presented system-wide (network-level). Information in the trace files

contain individual packet flow and individual event execution. Protocol log files records a myriad

of information pertaining to protocol operation necessary for in-depth analysis and debugging.

The results can be exported as a .csv file and opened in a spread sheet software like Excel.

Results can also be exported in .html format and opened in a browser.

Figure 8-1: Result Window

8.1.1 Application and Link Throughput Plots

If plots are enabled, NetSim plots Instantaneous (50 ms averaging window) Throughput,

Cumulative moving average Throughput and Time Average throughput for each link and each

application.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 134 of 304

Figure 8-2: Link Throughput plot

Guidance on Zooming, Panning, and obtaining the XY co-ordinate values are provided on the

bottom left of the window. The ‘re-plot’ option can be used to change the X-value, Min and Max,

and to change the averaging window for plotting the instantaneous throughput.

Since NetSim is a packet level simulator, at an instant in time a destination (of a link or application)

can either be (i) receiving packets or (ii) not receiving packets. Therefore, the throughput at a

point in time is either 𝜃𝑚𝑎𝑥 (the link speed) or 0. It is thus not meaningful to define the

instantaneous throughput for a link or application at an instant in time. Hence, NetSim measures

instantaneous throughput over an averaging window as explained below.

Instantaneous Throughput is defined as the bits successfully received in the averaging window

divided by the averaging window size (in time units). It is measured every averaging window.

𝜃𝐼𝑛𝑠𝑡 (𝑏𝑖𝑡𝑠/𝑠) =
𝐵𝑊𝑖𝑛𝑑𝑜𝑤

𝑅𝑥𝑆𝑢𝑐𝑐𝑒𝑠𝑠 (𝑏𝑖𝑡𝑠)

𝑊𝑠𝑖𝑧𝑒 (𝑠)

Each value of the computed instantaneous throughput represents one point in the throughput

plot. The computation and plotting are done every 𝑊 seconds of virtual simulation time.

When source-data button is clicked, a plotdata.csv file is written by NetSim. This contains the X

(Time) and Y (Throughput) coordinates of the points in the plot. NetSim does not save this file.

Also, note that the file name does not change with each plot; it remains the same for all plots. It

is recommended that a user chooses the save-as option in the spread sheet software (for e.g.:

MS Excel) and suitably saves the plot data source file. This file is for users who require the X and

Y co-ordinates of the points in the plot for further analysis.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 135 of 304

Advanced users should look at the source file from which the plots were generated by NetSim.

The filename would be Plot_<APP_NAME>_Throughput.txt, where APP_NAME is user

configurable, and the file would be written in the %temp%/NetSim/<NetSim-ver> directory. In that

file the 1st column is the Timestamp, and the 2nd column is the Bytes received. NetSim computes

and plots the instantaneous throughput from this. For example, if the averaging window were

25ms, and if the source data entries were per the table below

Time (ms) Bytes

1 5

20 15

40 5

60 10

74 5

then the Instantaneous Throughputs, 𝜃 (in Kbps since we have milli seconds in the

denominator) would be

• First 25ms (1 to 25) 𝜃 =
(5 + 15)×8

25
 =

160

25
= 6.4 𝐾𝑏𝑝𝑠

• Next 25ms (26 to 50) 𝜃 =
5×8

25
 =

40

25
= 1.6 𝐾𝑏𝑝𝑠

• Next 25ms (51 to 75) 𝜃 =
(10 + 5)×8

25
=

120

25
= 4.8 𝐾𝑏𝑝𝑠

The link throughput statistic counts all traffic that was sent through a link. It includes data packets

and control packets and includes retransmissions, errors, or collisions. This would also include

packet flows from multiple applications that may flow through the same link. Timestamp for link

throughput is the PHY layer end time of each packet passing through that link.

The application throughput only considers those data packets (application layer packet size) that

were sent from the source and that were successfully received at the destination

8.1.2 Buffer Occupancy Plot

The buffer occupancy over time can be plotted by setting Buffer Occupancy Plot Enabled to True.

This parameter is available wherever there are buffers in NetSim such as in Router – WAN Port

– Network Layer as shown Figure 8-3.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 136 of 304

Figure 8-3: Buffer Occupancy Plot set to True in WAN Port – Network Layer

Upon simulation the buffer occupancy plot can be opened from the Results Window and would

look as shown below in Figure 8-4.

Figure 8-4: Buffer occupancy plot

8.1.3 TCP Congestion Window Plot

The TCP Congestion window over time can be plotted by setting Congestion Window Plot

Enabled to True. This parameter is available in the end nodes where TCP has been enabled, for

example Wired Node – Transport Layer.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 137 of 304

Figure 8-5: TCP Congestion Plot Enabled set to True in Transport Layer

Upon simulation the TCP congestion window plot can be opened from the Results Window and

would look like what is shown below in Figure 8-6.

Figure 8-6: TCP Congestion window plot

© TETCOS LLP. All rights reserved

Ver 13.2 Page 138 of 304

The down sampling algorithm in NetSim’s plot engine leads to approximations while plotting,

especially in TCP. To obtain a very precise TCP congestion plot window please enable Wireshark

interfacing and view the TCP congestion window in Wireshark.

8.1.4 Notes on plots

1. To accelerate plotting, NetSim uses down-sampling/decimation to choose n points from N for

plotting. NetSim generates n random numbers from a discrete uniform 𝑈 (0, 𝑁 − 1)

distribution and plots for these n points.

2. To get a more precise plot users can select the min and max values (time) and replot.

3. The link throughput is calculated as the sum of throughputs in both directions for a full duplex

link.

4. Application throughput is plotted till the last packet reaches or till end of simulation time,

whichever is earlier.

5. Cumulative Moving Average: This is the average of the metric up until the current time and is

defined as

�̅�(𝑡) =
1

𝑡
∫ 𝑟(𝑢)𝑑𝑢

𝑡

0

8.1.5 Link metrics

Here users can view the values of the metrics obtained based on the overall network and also

displays the values of the metrics pertaining to each link.

▪ Link ID: It is the unique Id for the link.

▪ Link Throughput Graph: Plots throughput vs. Simulation time

Formula:

𝐿𝑖𝑛𝑘 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝑀𝑏𝑝𝑠) =
𝑇𝑜𝑡𝑎𝑙 𝑏𝑦𝑡𝑒𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑙𝑖𝑛𝑘 (𝐵𝑦𝑡𝑒𝑠) × 8

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 (𝜇𝑠)

The link throughput considers the entire traffic that was sent through a link. It includes data

packets and control packets and includes retransmissions, errors, or collisions. This would also

include packet flows from multiple applications that may flow through the same link. The

calculation is based on the packet size (bytes) at the PHY layer, which would include app layer

payload plus the overheads of all layers.

▪ Packets Transmitted: It is the total number of packets transmitted in the link. Along with

data packets, it includes protocol control packets like ARP Request, ARP Reply, TCP_ACK,

TCP_SYN, RTS, CTS, WLAN_ACK, OSPF_ HELLO, RIP packets etc. Note that this is a

link (PHY layer) level measure, and it is not a MAC layer measure. Therefore, the packets

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 139 of 304

transmitted can be greater than the packets generated when running wireless protocols due

to re-tries.

▪ Packets Errored: Total number of packets error in the link inclusive of data and control

packets.

▪ Packets Collided: Total number of packets collided in the link including data and control

packets. Note: (i) If two packets collide then this counter is incremented by two (once for

each packet). (ii) If a single packet collides N times, then this counter is incremented N times

▪ Bytes Transmitted: It is the total number of bytes transmitted in the link. It is equal to the

sum of the ‘Payload Transmitted’ and ‘Overhead Transmitted’ transmitted in the link.

▪ Payload Transmitted: It is the total payload transmitted in the link.

▪ Overhead Transmitted: It is the total overhead transmitted in the link. It includes the layer

wise overheads and all control packets in the link.

8.1.6 Queue Metrics

Displays the values of the queue metrics for the devices containing buffer queue like routers,

access points etc.

▪ Device Id - Unique id number of the device.

▪ Port Id - Unique id number of the port of the device. This is also called as interface id.

▪ Queued Packet - Number of packets queued at a particular port of a device.

▪ Dequeued Packet - Number of packets removed from the queue at a particular port of

device.

▪ Dropped Packet - Number of packets dropped at a particular port of a device.

8.1.7 Protocol Metrics

The Performance metrics tables of protocols such as TCP, UDP, IP, IEEE802.11, LTE, AODV

and DSR are provided in the respective technology library documentation.

8.1.8 Device Metrics

Displays device related metrics like ARP table, IP forwarding tables. This is also dependent upon

the type of network/technology simulated.

IP_Forwarding Table

▪ Network Destination - It represents the Network address of the destination.

▪ Netmask/Prefix length - A 32-bit combination used to describe which portion of an address

refers to the subnet and which part refers to the host.

▪ Gateway - It is the IP address of the next-hop router.

▪ Interface - It represents a network connection.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 140 of 304

▪ Metrics - It is the value used to choose between two routes.

▪ Type - It represents the type of the network i.e. local/Multicast/Broadcast

Switch MAC Address Table: These metrics will be displayed when we run networks having

Switches.

▪ MAC Address - It represents the MAC address of the switch interfaces.

▪ Type - It is the type of the switch.

▪ Outport - It is the output port of the switch.

8.1.9 Cellular Metrics

Displayed if GSM or CDMA is running in the network.

GSM/CDMA Metrics. MS Metrics

▪ MS Id - It is the id of the Mobile station.

▪ Call Generated - It is the number of calls generated by a Mobile Station.

▪ Call Blocked - It is the number of calls blocked by a Base station when no channel

available.

▪ Call Blocking probability - It is the probability of calls blocked by a base station.

▪ Channel request sent - It is the number of channel requests sent by a mobile station.

▪ Call request sent - It is the number of call requests sent by a mobile station (at source)

▪ Call request received - It is the number of call requests received by a mobile station (at

destination)

▪ Call accepted - It represents the number of calls accepted by a mobile station.

▪ Call rejected - It represents the number of calls rejected by a mobile station.

▪ Handover request - It is the number of handover requests sent by a mobile station.

Handover refers to the process of transferring an ongoing call or data session from one

channel connected to the core network to another channel.

▪ Call dropped - It represents the number of calls dropped by a BS.

▪ Call dropping probability - It represents the probability of number of calls dropped by a

BS.

8.1.10 Channel metrics

▪ BS Id - It is the Id of a Base Station.

▪ Channel Id - It represents the channel number.

▪ Uplink frequency - It is the uplink frequency of the GSM network to send data from mobile

station to base station.

▪ Downlink frequency - It is the downlink frequency of the GSM network to send data from

base station to mobile station.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 141 of 304

▪ Time slot - It represents the time slot. In GSM network, Frequency band is divided into

200kHz carriers and then each carrier is divided into 8 time slots (0-7).

8.1.11 Sensor Metrics (IEEE802.15.4_Metrics)

Displayed if WSN/IOT is running in the network.

▪ Device Id - It represents the Id’s of the sensor and LoWPAN Gateway.

▪ Packet Transmitted - It is the number of packets (either data/routing/ZigBee) transmitted

by Sensor and LoWPAN gateway

▪ Packet Received - It is the number of packets (either data/routing/ZigBee) received by

Sensor and LoWPAN gateway

▪ Ack Transmitted - It is the number of acknowledgements transmitted by a particular device.

▪ Ack Received - It is the number of acknowledgements received by a particular device.

▪ CCA Attempt - It represents the number of Clear channel Assessment attempts at sensors

and LoWPAN Gateway used to determine whether the medium is idle or not.

▪ Successful CCA Attempt - It represents the number of successful CCA attempts at

sensors and LoWPAN Gateway.

▪ Failed CCA - It represents the number of failed CCA attempts at sensors.

▪ Total Backoff Time - It is the total backoff time obtained. It is the time that sensors have to

wait before attempting to access the channel.

▪ Average Backoff time - It is the average backoff time.

▪ Beacon Transmitted - It the total number of beacons transmitted by a LoWPAN Gateway.

It transmits network beacons in a beacon enabled mode. If beacon mode is enabled, it

follows slotted CSMA/CA algorithm

▪ Beacon Received - It is the total number of beacons received by the sensors.

▪ Beacon Forwarded - It is the total number of beacons forwarded by the sensors.

▪ Beacon Time - It is the total time calculated for beacon transmission at LoWPAN Gateway.

▪ CAP Time - It is the total Contention Access Period obtained during simulation. During this

time, sensors compete for channel.

▪ CFP Time - It is the total Contention free period obtained. In CFP, nodes request for

guaranteed time slots. If GTS is allocated, nodes can transmit without contention.

8.1.12 Battery Model

▪ Device Name - It represents the Name and Id of the Sensor

▪ Initial Energy - It represents the initial energy of the sensors.

▪ Consumed Energy - This is the total energy consumed by the respective sensor.

▪ Remaining Energy - This is the remaining energy of the sensor at the end of the simulation.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 142 of 304

▪ Transmission Energy - It is the energy consumed by the respective sensor for transmitting

data.

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐸𝑛𝑒𝑟𝑔𝑦 (𝑚𝐽) = 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (𝑚𝐴) × 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝑉) ×

𝐴𝑚𝑜𝑢𝑛𝑡𝑂𝑓𝑇𝑖𝑚𝑒𝑅𝑎𝑑𝑖𝑜𝐼𝑠𝐼𝑛𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑆𝑡𝑎𝑡𝑒(𝑠).

▪ Receiving Energy - It is the energy consumed by the respective sensor while receiving

data.

𝑅𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔𝐸𝑛𝑒𝑟𝑔𝑦 (𝑚𝐽) = 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (𝑚𝐴) × 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝑉) ×

𝐴𝑚𝑜𝑢𝑛𝑡𝑂𝑓𝑇𝑖𝑚𝑒𝑅𝑎𝑑𝑖𝑜𝐼𝑠𝐼𝑛𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑆𝑡𝑎𝑡𝑒(𝑠).

▪ Idle Energy - When the sensor is active and ready but not currently receiving or transmitting

data packets, it is said to be in an idle state. This metrics calculates the energy consumed

by the sensor in idle state.

𝐼𝑑𝑙𝑒𝐸𝑛𝑒𝑟𝑔𝑦 (𝑚𝐽) = 𝐼𝑑𝑙𝑒𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (𝑚𝐴) × 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝑉) ×

𝐴𝑚𝑜𝑢𝑛𝑡𝑂𝑓𝑇𝑖𝑚𝑒𝑅𝑎𝑑𝑖𝑜𝐼𝑠𝐼𝑛𝐼𝑑𝑙𝑒𝑆𝑡𝑎𝑡𝑒(𝑠).

▪ Sleep Energy - This is the energy consumed when the respective sensor is in an inactive

mode.

𝑆𝑙𝑒𝑒𝑝𝐸𝑛𝑒𝑟𝑔𝑦 (𝑚𝐽) = 𝑆𝑙𝑒𝑒𝑝𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (𝑚𝐴) × 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝑉) ×

𝐴𝑚𝑜𝑢𝑛𝑡𝑂𝑓𝑇𝑖𝑚𝑒𝑅𝑎𝑑𝑖𝑜𝐼𝑠𝐼𝑛𝑆𝑙𝑒𝑒𝑝𝑆𝑡𝑎𝑡𝑒(𝑠).

8.1.13 CR metrics

Displayed if 802.22 cognitive radio is running in the network.

8.1.13.1 Base station Metrics

▪ BS Id - It is the id of a Base Station.

▪ Interface Id - It is the Interface Id of a BS

▪ SCH sent - SCH. It is the number of Superframe Control Headers sent by a BS. SCH carries

Base Station’s MAC address along with the schedule of quiet periods for sensing, as well

as other information about the cell.

▪ FCH sent - It represents the number of Frame Control Headers sent by a BS. It is

transmitted as a part of Down Stream (DS) Protocol Data Unit in DS subframe specifies

length of either DS-Map if transmitted or US-Map. It is sent in the first two subchannels of

the symbol immediately following the preamble symbol.

▪ DSA req received - It is the number of Dynamic Service Addition requests received by a

BS used to create a new service flow.

▪ DSA rep sent - It is the number of DSA replies sent by a BS.

▪ DSC req received - It is the number of Dynamic Service Change requests received by a

BS to dynamically change the parameters of an existing service flow.

▪ DSC rep sent - It is the number of DSC replies sent by a BS.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 143 of 304

▪ DSD req received - It is the number of Dynamic Service Deletion requests received by a

BS to delete an existing service flow.

▪ DSD rep sent - It is the number of DSD replies sent by a BS.

▪ CHS req sent - It is the number of Channel Switch Requests sent by a BS.

8.1.13.2 CPE metrics

▪ CPE Id - It represents the Id of Customer Premise Equipment

▪ Interface Id - It represents the Interface Id of the CPE

▪ SCH received - It is the number of Superframe Control Headers received by a CPE.

▪ FCH received - It represents the number of Frame Control Headers received by a CPE.

▪ DSA req sent - It is the number of Dynamic Service Addition requests sent by a CPE.

▪ DSA rep received - It is the number of DSA replies received by a CPE.

▪ DSC req sent - It is the number of Dynamic Service Change requests sent by a CPE.

▪ DSC rep received - It is the number of DSC replies received by a CPE.

▪ DSD req sent - It is the number of Dynamic Service Deletion requests sent by a CPE.

▪ DSD rep received - It is the number of DSD replies received by a CPE.

▪ CHS req received - It is the number of Channel Switch Requests received by a CPE.

▪ UCS Sent - It is the number of Urgent Coexistence Situations sent by a CPE.

8.1.13.3 Incumbent Metrics

▪ BS Id - It represents the Id of the Base Station

▪ Incumbent Id - It represents the Id of the Incumbent.

▪ Frequency - It is the frequency at which the incumbent operates.

▪ Operational Time - It is the active period of the incumbent.

▪ Idle Time - It is the inactive period of the incumbent.

▪ Interference Time - It is the time when interference occurs due to CPE.

8.1.13.4 Channel Metrics

▪ BS Id - It is the Id of the BS

▪ Channel Number - It represents the channel number at which the BS is operating.

▪ Frequency - It is the frequency of the channel at which the BS is operating.

▪ Spectral efficiency - It refers to the information rate that can be transmitted over a given

bandwidth in a specific communication system. It is a measure of how efficiently a limited

frequency spectrum is utilized by the physical layer protocol, and sometimes by the media

access control protocol.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 144 of 304

8.1.14 Application Metrics

Displays Application performance metrics.

▪ Application Id - It is the unique Id of the application running at the source.

▪ Application Name - It is unique name of the application running.

▪ Source Id - It is the unique Id of the device running that particular application.

▪ Destination Id - It is the unique Id of the destination device.

▪ Packet generated - It is the total number of packets generated from the source.

▪ Packets Transmitted - It is the total number of packets generated and transmitted from the

source.

▪ Packet received - It is the total number of packets received at the destination.

▪ Payload Transmitted - It is the total payload transmitted in bytes. It is equal to the product

of ‘Packets Transmitted’ and ‘Packet Size’. This calculation will apply only in case of a

constant packet size (CBR, CUSTOM (constant) etc. In other cases, this should be

considered as the sum of the payload of the packets transmitted.

▪ Payload Received - It is the total payload received at the destination in bytes.

▪ Throughput - Total user data (or) payload delivered to their respective destination every

second.

If Simulation Time > Application End Time, then

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑀𝑏𝑝𝑠) =
𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑡𝑜 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (𝑏𝑦𝑡𝑒𝑠) ∗ 8

𝑇𝑖𝑚𝑒 𝑙𝑎𝑠𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡 𝑎𝑡 𝐴𝑝𝑝 𝑙𝑎𝑦𝑒𝑟(𝜇𝑠) − 𝐴𝑝𝑝 𝑆𝑡𝑎𝑟𝑡 𝑇𝑖𝑚𝑒 (𝜇𝑠)

If Simulation Time < Application End Time, then

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑖𝑛 𝑀𝑏𝑝𝑠) =
𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑡𝑜 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (𝑏𝑦𝑡𝑒𝑠) ∗ 8

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒(𝜇𝑠) − 𝐴𝑝𝑝 𝑆𝑡𝑎𝑟𝑡 𝑇𝑖𝑚𝑒(𝜇𝑠)

▪ Jitter

𝐽𝑖𝑡𝑡𝑒𝑟(𝜇𝑠) =
𝑇𝑜𝑡𝑎𝑙𝑃𝑎𝑐𝑘𝑒𝑡 𝐽𝑖𝑡𝑡𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 − 1

𝑃𝑎𝑐𝑘𝑒𝑡 𝐽𝑖𝑡𝑡𝑒𝑟 (𝜇𝑠) = |𝐸𝑛𝑑𝑡𝑜𝐸𝑛𝑑 𝐷𝑒𝑙𝑎𝑦 𝑜𝑓 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑎𝑐𝑘𝑒𝑡 − 𝐸𝑛𝑑𝑡𝑜𝐸𝑛𝑑 𝐷𝑒𝑙𝑎𝑦 𝑜𝑓 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑎𝑐𝑘𝑒𝑡|

▪ Delay - It is the average amount of time taken (calculated for all successful packets) to

reach the destination application layer from when the packet is sent from source’s

application later. It would APP_IN time at destination – APP_OUT time at source.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 145 of 304

8.1.15 LTENR Cell Metrics

Displays LTE/LTENR Metrics associated with each cell. Since NetSim currently uses Omni

directional antennas a cell is all carriers in a gNB; it is not a "sector carrier".

▪ gNB/eNB Name - It is the device name of gNB/eNB

▪ gNB/eNB Interface ID - It is unique LTE/LTENR RAN interface ID of the gNB/eNB.

▪ PDSCH Bytes Transmitted (bytes) - It is the total number of bytes of data traffic

transmitted in the downlink (gNB/eNB to UEs) in the LTE/LTENR RAN interface of the

gNB/eNB.

▪ PUSCH Bytes Transmitted (bytes) - It is the total number of bytes of data traffic

transmitted in the uplink (UEs to gNB/eNB) in the LTE/LTENR RAN interface of the

gNB/eNB.

▪ PDSCH Throughput (Mbps) - Downlink data delivered to its (respective) destination every

second.

𝑃𝐷𝑆𝐶𝐻 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑀𝑏𝑝𝑠) =
𝑃𝐷𝑆𝐶𝐻 𝐵𝑦𝑡𝑒𝑠 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 (𝑏𝑦𝑡𝑒𝑠) ∗ 8

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 (𝜇𝑠)

▪ PUSCH Throughput (Mbps) - Uplink data delivered to its (respective) destination every

second.

𝑃𝑈𝑆𝐶𝐻 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑀𝑏𝑝𝑠) =
𝑃𝑈𝑆𝐶𝐻 𝐵𝑦𝑡𝑒𝑠 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 (𝑏𝑦𝑡𝑒𝑠) ∗ 8

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 (𝜇𝑠)

The Bytes transmitted and Throughput calculations take into account all UEs associated with

the Base station (BS or gNB/eNB). During simulations there could be handovers. When this

occurs, calculations are carried out considering the BS to which the UE is associated. Recall

that in the application throughput expression the denominator is (𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐸𝑛𝑑𝑇𝑖𝑚𝑒 −

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒). Whereas in the above throughput expressions the denominator is

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒. Hence even under cases with no handovers, the Cell throughputs will not

reconcile with Application Throughputs.

8.1.16 IP Metrics

IP layer metrics calculated for the overall network and displayed for each device.

▪ Device Id - It is the unique ID of the Device.

▪ Packet sent - Specifies the number of packets (L3 and above) sent by the node.

▪ Packet forwarded - Specifies the number of packets (L3 and above) forwarding by an

intermediate node(s) to next hop/target node.

▪ Packets Received - Specifies the number of packets (L3 and above) successfully received

at the destination, from intermediate node(s) and source node(s).

© TETCOS LLP. All rights reserved

Ver 13.2 Page 146 of 304

▪ Packets discarded - Specifies the number of packets (L3 and above) discarded when there

is no route available.

▪ TTL Expired - Specifies the number of Data and Control packets (L3 and above) dropped

when TTL expires.

▪ Firewall block - Specifies the number of packets (L3 and above) blocked by Firewall for

example TCP, UDP and ICMP Packets etc.

8.1.17 Advanced Metrics

In the Application metrics table, in addition to packets generated and packets received, additional

information on duplicate packets that were received can be obtained. This is achieved by adding

the following environment variable:

PC Settings → Properties → Advance system settings → Environment Variables → User

Variables → New

Figure 8-7: Environment Variables window

Note: To effect changes, User must restart NetSim. In the event it doesn’t work restart you system.

The Application metrics table in the results dashboard will display an additional column –
Duplicate packet received as shown below Figure 8-8.

Figure 8-8: Application metrics table in results window

8.1.18 Notes on metrics

1. The metrics are calculated at each layer and might not be equivalent to the same metric

calculated at a different layer. For exactness and precision, we recommend users also verify

the results with the event trace & packet trace generated by NetSim.

2. Broadcast / Multicast application will have no entries under Application Metrics in Results

window if there are zero packets received. In other words, it will not show ‘0’ throughput. Users

may notice that ‘0’ throughput is shown for unicast applications, and this is because of the way

Broadcast/Multicast application metrics is architected in NetSim.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 147 of 304

8.1.19 The different results files written at the end of simulation

The following table lists the various files that will be written in the NetSim install directory/ IO path

on completion of simulation.

S. No File Contents

1 Metrics.xml
Contains the metrics of the network that is simulated
recently.

2 Node.pcap
Contains the information of captured packets that is
recently simulated.

3 LicenseErrorLog.txt
Contains the status of the communication between the
NetSim dongle and the client

4 ConfigLog.txt

This file will be written while reading the Configuration
file.
Provides errors if there are errors in the configuration
file.

5 LogFile.txt
Contains the logs as the control flows across various
layers in the Network Stack

6 PacketTrace.csv
Contains the detailed packet information. This file will be
written only when Packet Trace is enabled.

7 EventTrace.csv
Contains the information about each event. This file will
be written only when Event Trace is enabled.

8 Animation.txt Contains the information about the flow of the packet.

9 Static ARP.txt
Contains the information about the dropped devices like
Ip address and mac address.

Table 8-1: Different results files written at the end of simulation in I/O Path

If NetSim runs via the UI, then the metrics will be displayed automatically at the end of simulation

with illustrative tables.

If NetSim runs via CLI, then the metrics will be written into Metrics.txt and MetricsGraph.txt.

8.2 Export to .csv

In NetSim Result Dashboard, users can use the option Export Results (.xls/.csv) to export all

the metrics file to XL/CSV file for the further computation or analysis using it.

Figure 8-9: Select Option Export Results (.xls/.csv) in Result window

© TETCOS LLP. All rights reserved

Ver 13.2 Page 148 of 304

XL/CSV file:

Figure 8-10: Option Export Results (.xls/.csv) to export all the metrics

A web formatted (html file) report can be generated for simulations performed in NetSim, using

the Print button present in the results window as shown below Figure 8-11.

Figure 8-11: Print Results(.html) in Results window

The report that is generated contains:

▪ A screenshot of the network scenario created in NetSim GUI.

▪ All the metrics tables that were part of the Simulation Results Window

▪ Dynamic Metrics Plots (if Dynamic Metrics is enabled prior to Simulation).

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 149 of 304

Figure 8-12: html report generated in PDF format

▪ The report that is generated makes it convenient for documentation, reference, study and

further analysis.

▪ This html report can be printed as PDF or printed out by selecting printer options.

8.3 Packet Animation

NetSim provides the feature to play and record animations to the user. Packet animation enables

users to watch traffic flow through the network for in-depth visualization and analysis. Users have

the following options before running simulation:

▪ Record the animation.

▪ Don’t play/ record animation and

▪ Play and record animation while running simulation.

Figure 8-13: Run Simulation window

© TETCOS LLP. All rights reserved

Ver 13.2 Page 150 of 304

The packet animation would then be recorded, and the user can view the animation from the

NetSim Packet Animation window as shown below Figure 8-14.

Figure 8-14: Packet Animation window

While viewing packet animation, user can see the flow of packets as well as the type of packet.

Blue color packet denotes control packet, green color is used for data packet and red color is

error/collided packet.

8.3.1 Packet animation Table

Packet Animation table is also provided for users to see the flow of packets along with packet

animation.

Figure 8-15: Packet Animation table in animation window

The “Table Filters” option available in the Packet Animator Window allows users to filter the

parameters that will be displayed in the Packet Trace Window displayed alongside animation.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 151 of 304

Figure 8-16: Table Filters option available in the Packet Animator Window

Note: Packet Animation table would be displayed only if Packet Trace is enabled in the network

before running the simulation.

8.3.2 Packet animation – Display Settings

NetSim Packet Animation can be customized using the View More drop-down list provided with

the display settings as shown below Figure 8-17.

Figure 8-17: Display Settings in Packet animation window

The View More Animation options can be used to view (enable/disable)

▪ Device Name

▪ IP address of devices

▪ VLAN ID

▪ Application Flow

▪ Node Movement

▪ Packet Flow

▪ Battery Level

▪ Route tables etc alongside animation

Note: The options displayed under View more drop down are dependent on the network that is simulated

and features that are enabled.

8.3.3 Example on how to use NetSim packet animation feature:

Case 1: ARP PROTOCOL - WORKING

Figure 8-18: Intra LAN IP Forwarding

▪ Create a scenario with 3 wired nodes, 2 switches and 1 router and connect it based on the

following scenario.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 152 of 304

Figure 8-19: Application flow within a LAN

▪ Transport Protocol is set to UDP instead of TCP for all the wired nodes.

▪ Click on application and set Source_Id and Destination_Id as 1 and 2 respectively.

▪ Set Simulation time = 100s. After clicking on Run Simulation, edit Static ARP

Configuration tab by setting Static ARP as Disable. Click on OK button to simulate.

Now click on packet animation and analyze the following:

Figure 8-20: Packet animation window

▪ NODE-1 sends ARP_Request which is then broadcasted by SWITCH-4.

▪ During the process the devices that receive the ARP_Request packet (Switch, Router, and

Node-2) will update their ARP table or the switch table.

▪ NODE -2 sends the ARP_Reply to NODE-1 via SWITCH-4.

▪ Now NODE-1 updates its ARP table with the MAC address of NODE-2 on receiving the

ARP_Reply.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 153 of 304

▪ After this step, NODE-1 starts sending data packets to NODE-2 since the source now has

both IP and MAC addresses of destination.

Case 2: Across-Router-IP-forwarding

Figure 8-21: Across Router IP Forwarding

▪ Follow all the steps till Step 2 and perform the following sample.

▪ To run the simulation, click on the Application icon and set the Source_Id and Destination_Id

as 1 and 3 respectively.

▪ Click on Run Simulation and set Simulation time as 100 sec.

▪ Then go to Static ARP Configuration tab and set Static ARP as Disable. Click on OK

button to simulate.

Click on packet animation to analyse the following:

Figure 8-22: Packet animation window

© TETCOS LLP. All rights reserved

Ver 13.2 Page 154 of 304

▪ NODE-1 transmits ARP_Request which is further broadcasted by SWITCH-4. ROUTER-6

sends ARP_Reply to NODE-1 which goes through SWITCH-4. Then NODE-1 starts to send

data to NODE-3.

▪ If the router has the address of NODE-3 in its routing table, ARP protocol ends here, and

data transfer starts that is PACKET_ID 1 is being sent from NODE-1 to NODE-3.

▪ In other case, Router sends ARP_Request to appropriate subnet and after getting the MAC

ADDRESS of the NODE-3, it forwards the packet which it has received from NODE-1.

▪ When a node has to send data to a node with known IP address but unknown MAC address,

it sends an ARP request. If destination is in same subnet as the source (found through

subnet mask) then it sends the ARP (broadcast ARP message) request, otherwise it

forwards it to the default gateway.

▪ Former case happens in case of intra-LAN communication. The destination node sends an

ARP response which is then forwarded by the switch to the initial node. Then data

transmission starts.

▪ In latter case, a totally different approach is followed. Source sends the ARP request to the

default gateway and gets back the MAC address of default gateway. (If it knows which

router to send then it sends ARP request to the corresponding router and not to Default

gateway).

▪ When source sends data to default gateway (a router in this case), the router broadcasts

ARP request for the destined IP address in the appropriate subnet. On getting the ARP

response from destination, router then sends the data packet to destination node.

8.3.4 How to record and save Packet animation as a Video file

Note: The following procedure applies to Windows 10 Operating system only. Users with other versions of

Windows can use third-party video capture tools (Link to a list of common tools) to save NetSim packet

animation as a video.

To quickly capture NetSim packet animation, launch the packet animation window. Before playing

the animation, press Windows key + G on the keyboard to open Game bar. (or Select windows

settings and then select Gaming option for Game bar related settings). Now start recording by

pressing record option as shown below. (Shortcut to start recording Windows key + Alt + R)

https://en.wikipedia.org/wiki/Comparison_of_screencasting_software

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 155 of 304

Figure 8-23: In packet animation window press Windows key + G on the keyboard and Select Start

recording

Then select the checkbox “Enable gaming features for this app to record gameplay” option.

Figure 8-24: Select the checkbox “Enable gaming features for this app to record gameplay” option

Once you select the checkbox, recording window will open as shown below.

Figure 8-25: Recording window

Now start playing the animation in NetSim using play button in packet animation window.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 156 of 304

Figure 8-26: Start playing the animation in animation window

Once the animation has been recorded stop recording (Shortcut to stop recording Windows logo

key + Alt + R). Recorded clips will be saved in windows default videos folder (E.g.:

C:\Users\PC\Videos\Captures).

8.4 Packet Trace

NetSim allows users to generate trace files which provide detailed packet information useful for

performance validation, statistical analysis and custom code de-bugging. Packet Trace logs a set

of chosen parameters for every packet as it flows through the network such as arrival times,

queuing times, departure times, payload, overhead, errors, collisions etc.

The packet trace is written whenever a packet is received at a device. For example, if we have

transmission N1 -> N2 -> N3, then the packet trace is written for every packet being received at

N2 and at N3. Note that it not written for every packet being transmitted by N1 and the

subsequently by N2. This means that packet which are transmitted from N1 but which may have

been errored or collided before being received by N2 are not written in the packet trace.

By providing a host of information and parameters of every packet that flows through the network,

packet trace provides necessary forensics for users to catch logical errors without setting a lot of

breakpoints or restarting the program often. Window size variation in TCP, Route Table

Formation in OSPF, Medium Access in Wi-fi, etc., are examples of protocol functionalities that

can be easily understood from the trace.

Note: By default, packet tracing option is turned off. Turning on Packet Trace will slow down the simulation

significantly. After simulation, users would get the “open packet trace” link in the metrics window (will also

get Packet_Trace.csv file in the saved folder).

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 157 of 304

8.4.1 How to Enable Packet trace

Step 1: Create network scenario comprising of two Wired nodes and Router, create a traffic flow

between the two wired nodes.

Figure 8-27: Network Scenario

Step 2: By default, Packet trace is disabled, to enable packet trace click on icon in the tool bar as

shown in the below figure.

Figure 8-28: Packet trace option in ribbon

Step 3: After Clicking on the packet trace option, users will be allowed select the required

properties to log to the packet trace. After selecting the required properties click on the “OK”

button.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 158 of 304

Figure 8-29: Attributes in packet trace

Step 4: Click on the Run button and simulate the scenario. After completion of simulation NetSim

Results dashboard window appears.

Click on the Open packet trace option from result dashboard Window as shown below:

Figure 8-30: Result Dashboard Window

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 159 of 304

8.4.2 How to set filters to NetSim trace file

Step 1: Open the trace file. (In this example packet trace is opened)

Figure 8-31: Packet Trace

Step 2: Click the arrow in the header of the column you want to filter. In the list of text or

numbers, uncheck the (Select All) box at the top of the list, and then check the boxes of the items

you want to show.

For example, click on arrow of SOURCE_ID and uncheck the “Select all” check box and select

NODE 2 then click on OK.

All the rows which are having NODE 2 as source id will be shown below Figure 8-32.

Figure 8-32: Select Transmitter ID arrow mark in the header in packet trace

© TETCOS LLP. All rights reserved

Ver 13.2 Page 160 of 304

Figure 8-33: Filter Transmitter ID to NODE 2 in packet trace

Typically, filters can be set to observe “Errored/Collided/Successful“packets, packets of

destination and packets of source.

8.4.3 Observing packet flow in the Network through packet trace file

Open the packet trace file, Click the arrow in the header of the column PACKET_ID and

uncheck the “Select all” check box and select the packet id which you want to observe, for

example 1, and then click on OK.

Figure 8-34: Select Packet ID arrow mark in the header in packet trace

Scenario is as shown below Figure 8-35 and traffic flow is from Wired Node 2 to Wired Node 3.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 161 of 304

Figure 8-35: Traffic flow is from Wired Node 2 to Wired Node 3

Flow of packet 1 can be observed from the packet trace as shown below Figure 8-36.

Figure 8-36: Flow of packet observed in the packet trace

Note: In the trace file device IDs are shown not device names. Wired Node 1’s ID is 2 so it is Shown as

NODE-2, Wired Node 2’s ID is 3 so it is shown as NODE -3, Router-1’ ID is 1 so it is shown as ROUTER-

1. Device IDs are shown on the top of the device icon in the above scenario.

In a scenario source and destinations are fixed but transmitter and receiver are changed. For

example, in the above scenario NODE-2 is the source and NODE-3 is the destination, but when

NODE- 2 sending the packet to the ROUTER-1 then NODE-2 is the transmitter and ROUTER-1

is the receiver. When ROUTER-1 sending the packet to the NODE-3, ROUTER-1 is the

transmitter and NODE-3 is the receiver.

8.4.4 Analysing Packet Trace using Pivot Tables

NetSim Packet trace is saved as a spread sheet. Packet Trace can be converted to an Excel table

to make the management and analysis of data easier. A table typically contains related data in a

series of worksheet rows and columns that have been formatted as a table. By using the table

features, you can then manage the data in the table rows and columns independently from the

data in other rows and columns on the worksheet.

PivotTables are a great way to summarize, analyze, explore, and present your data, and you can

create them with just a few clicks. PivotTables are highly flexible and can be quickly adjusted

© TETCOS LLP. All rights reserved

Ver 13.2 Page 162 of 304

depending on how you need to display your results. You can also create Pivot Charts based on

PivotTables that will automatically update when your PivotTables do.

If you enable packet trace, Open Packet Trace link present in the Simulation Results Window can

be used to load the packet Trace file in MS-Excel. Formats the spread sheet as a table for

convenient analysis.

Figure 8-37: Sheet 1 is the packet trace

Sheet 2 of the packet trace file has a pivot table – Pivot Table (TX-RX) automatically populated

to analyze the packets that were transmitted and received in the network that was simulated.

Further users can modify the table by adding or deleting the column headers.

Figure 8-38: Sheet 2 of the packet trace file has a pivot table

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 163 of 304

Sheet 3 of the packet trace has a blank pivot table – Pivot Table (Custom) which can be used

to create additional pivot tables from scratch.

Figure 8-39: Sheet 3 of the packet trace file has a blank pivot table

Steps to analyse the packet trace using pivot tables

Step 1: Click on Packet Trace in the result dashboard, you can find 3 sheets will be created i.e.

Packet Trace, Pivot Table (TX-RX), Pivot Table (Custom)

Figure 8-40: Packet Trace, Pivot Table (TX-RX), Pivot Table (Custom) in packet trace

Step 2: Click on Pivot Table (Custom) to create your own pivot table.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 164 of 304

Figure 8-41: Select Blank Pivot Table (Custom) to create your own pivot table

Once you open the sheet PivotTable (Custom), you will need to decide which fields to add. Each

field is simply a column header from the source data. In the PivotTable Field List, check

the box for each field you want to add.

8.4.5 Packet Transmitted / Received Analysis

▪ If you want to analyze packets sent from all sources to all destinations, then check

SOURCE_ID, DESTINATION_ID and CONTROL_PACKET_TYPE/APP_NAME as shown

below Figure 8-42.

Figure 8-42: Select the check box of SOURCE_ID, DESTINATION_ID and

CONTROL_PACKET_TYPE/APP_NAME in PivotTable Fields

▪ The selected fields will be added to one of the four areas below the Field List. Click

SOURCE_ID, hold it and drag to the ROW field. Similarly, DESTINATION_ID to COLUMNS

and CONTROL_PACKET_TYPE/APP_NAME to VALUES.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 165 of 304

Figure 8-43: Selected fields add to one of the four areas below the Field List

▪ The PivotTable will calculate and summarize the selected fields. In this example, the

PivotTable shows the packets sent from all sources to all destinations.

Figure 8-44: PivotTable Created with selected fields

▪ The above example shows all the packets which including data packets and control packets.

▪ If you wish to know how many Data and how many were control packets then, check the

PACKET_TYPE and drag it to the ROWS field as shown below Figure 8-45.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 166 of 304

Figure 8-45: Select the PACKET_TYPE Check Box and drag it to the ROWS fields

▪ This will look like

Figure 8-46: PivotTable Created with Packet Type

▪ Further, if you wish to know how many packets got errored and how many were successful,

check the PACKET_STATUS field and drag it to the ROWS field.

Figure 8-47: PivotTable Created with Packet Status

8.4.6 Delay analysis

We explain this using a packet trace generated per the following network scenario.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 167 of 304

Figure 8-48: Network Topology with different application

Create a network scenario with 1 router and 6 wired nodes. Create 3 applications as per the

following Table 8-2.

Application
Type

Source
Id

Destination
Id

Transport
Protocol

Packet
Size
(Bytes)

Inter arrival time
(μs)

CBR 2 3 TCP 1460 20000

VOICE 4 5 UDP 1500 20000

CUSTOM 6 7 TCP 1200 20000

Table 8-2: Application Properties

Note: Users need to select Codec as CUSTOM for voice application as shown in the below

screenshot Figure 8-49.

Figure 8-49: Application properties Window

© TETCOS LLP. All rights reserved

Ver 13.2 Page 168 of 304

Enable Packet Trace and simulate the scenario for 10 seconds. Open packet trace and perform

the following steps:

▪ Insert a column after PHY_LAYER_END_TIME, then select the whole column and calculate

delay for each and every packet by using the formula.

=PHY_LAYER_END_TIME – APPLICATION_LAYER_ARRIVAL_TIME

Figure 8-50: Calculate delay in packet trace using PHY_LAYER_END_TIME –

APPLICATION_LAYER_ARRIVAL_TIME then Press CTRL + ENTER

▪ Then Press CTRL + ENTER. This will calculate delay for the whole column shown below.

Figure 8-51: Calculate delay for the whole column

▪ Name the column as DELAY.

▪ Go to Insert->PivotTable and click on OK to create a blank Pivot Table with the newly added

column listed under the PivotTable Fields.

▪ Drag and drop DESTINATION_ID, RECEIVER_ID, PACKET_STATUS and

CONTROL_PACKET_TYPE/APP_NAME to FILTERS field shown below Figure 8-52.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 169 of 304

Figure 8-52: Added Selected fields to Filter

▪ Filter RECEIVER_ID to Node-3 by clicking on the drop down and select OK.

Figure 8-53: Filter RECEIVER_ID to Node-3 by clicking on the drop down

▪ Similarly filter CONTROL_PACKET_TYPE/APP_NAME to APP1_CBR, DESTINATION_ID

to NODE-3 and PACKET_STATUS to Successful

Figure 8-54: Similarly filter other fields as per screenshot

▪ Drag and drop PACKET_ID to ROWS and the Delay value that we calculated earlier to

VALUES area.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 170 of 304

Figure 8-55: Drag and drop DELAY value that we have calculated earlier to

ROWS and VALUES field

▪ Click on Count of DELAY drop down and select Value Field settings, then Select SUM and

click on OK.

Figure 8-56: Select Count of DELAY drop down and select Value Field settings as SUM

▪ Again, Drag and drop DELAY to VALUES field.

Figure 8-57: Drag and drop DELAY to VALUES field

▪ Select one cell and calculate the Application Delay, which is the average delay faced by a

packet by using the formula.

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐷𝐸𝐿𝐴𝑌 =
𝑆𝑢𝑚 𝑜𝑓 𝐷𝐸𝐿𝐴𝑌 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑃𝑎𝑐𝑘𝑒𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 171 of 304

 Figure 8-58: Calculated the Application Delay in Pivot table

▪ Compare the obtained value with the DELAY in Application Metrics

Figure 8-59: Compare the obtained DELAY with Application Metrics DELAY

▪ To calculate DELAY for VOICE application, filter DESTINATION_ID to Node-5,

RECEIVER_ID to Node-5, CONTROL_PACKET_TYPE/APP_NAME to APP2_VOICE and

PACKET_STATUS to Successful

▪ Similarly calculate and compare DELAY for other applications by following the above

procedure.

8.4.7 Throughput analysis

To explain how users can perform Throughput Analysis, we have used same network design

example as was used for Delay analysis above.

After loading the packet trace switch to sheet Pivot Table (Custom), drag and drop

SOURCE_ID, RECEIVER_ID, CONTROL_PACKET_TYPE / APP_NAME and

PACKET_STATUS to FILTERS field.

▪ Similarly drag and drop APP_LAYER_PAYLOAD to ROWS field and VALUES field.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 172 of 304

▪ Filter SOURCE_ID to NODE-2, CONTROL_PACKET_TYPE APP_NAME to APP1_CBR,

PACKET_STATUS to Successful and RECEIVER_ID to NODE-3

▪ Click on Count of APP_LAYER_PAYLOAD drop down and select Value Field settings, then

Select Sum and click on OK.

▪ The pivot table would look like.

Figure 8-60: Pivot Table

▪ Select 1 cell and calculate the throughput by using the formula.

 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝑀𝑏𝑝𝑠) =
𝑆𝑢𝑚 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝐴𝑝𝑝 𝐿𝑎𝑦𝑒𝑟 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 (𝐵𝑦𝑡𝑒𝑠) ∗ 8

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 (𝜇𝑠)

Figure 8-61: Calculate the throughput by using the formula in Pivot Table

EmptyCell=GETPIVOTDATA("APP_LAYER_PAYLOAD(Bytes)",A6,"APP_LAYER_PAYLOA

D(Bytes)",1460)*8/10000000

▪ Now compare the throughput calculated using pivot table with the Application Metrics

throughput.

Figure 8-62: Compared the calculated throughput using pivot table with the Application
Metrics throughput

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 173 of 304

▪ To calculate THROUGHPUT for VOICE application, filter SOURCE_ID to Node-4,

RECEIVER_ID to Node-5, CONTROL_PACKET_TYPE/APP_NAME to APP2_VOICE and

PACKET_STATUS to Successful

▪ Similarly calculate and compare THROUGHPUT for other applications by following the

above procedure.

8.4.8 Plotting with Pivot Charts

In a pivot table, you can create a new field that performs a calculation on the sum of other pivot

fields.

▪ Open Packet Trace, switch to sheet Pivot Table (Custom)

▪ Drag and drop SOURCE_ID, RECEIVER_ID and PACKET_STATUS to FILTERS field,

then CONTROL_PACKET_TYPE/APP_NAME, APP_LAYER_PAYLOAD to ROWS field

Figure 8-63.

Figure 8-63: Drag and drop Sleeted Fields to one of the four areas

below the Field List

▪ Filter SOURCE_ID to Node 2, Node 4 and Node 6, then RECEIVER_ID to Node 3, Node

5 and Node 7 and PACKET_STATUS to successful

Figure 8-64: Filter Source ID and Destination ID

▪ Filter CONTROL_PACKET_TYPE/APP_NAME to APP1_CBR, APP2_VOICE and

APP3_CUSTOM

▪ Select a cell in the pivot table, and on the Excel Ribbon, under the PivotTable Tools tab,

click the Options tab (PivotTable Analyze tab in Excel 2013).

© TETCOS LLP. All rights reserved

Ver 13.2 Page 174 of 304

▪ In the Calculations group, click Fields, Items, & Sets, and then click Calculated Field.

Figure 8-65: In Calculations group Select Calculated Field

▪ Type a name for the calculated field, Application Throughput.

▪ Then click on ADD to save the calculated field.

Figure 8-66: Insert calculated field name and select Add

▪ Click on Formula text box and then select APP_LAYER_PAYLOAD in the Fields list and

click on Insert Field.

▪ Calculate the throughput by using the following formula shown below and click on OK.

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝑀𝑏𝑝𝑠) =
𝑆𝑢𝑚 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝐴𝑝𝑝 𝐿𝑎𝑦𝑒𝑟 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 (𝐵𝑦𝑡𝑒𝑠) ∗ 8

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 (𝜇𝑠)

Formula='APP_LAYER_PAYLOAD(Bytes)'*8/10000000

Figure 8-67: Calculate the throughput by using the following formula

▪ Then Drag and drop the newly added Application throughput to values field

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 175 of 304

Figure 8-68: Add Application throughput to values field

▪ Select a cell in the pivot table, and on the Excel Ribbon, under the PivotTable Tools tab,

click the Options tab (PivotTable Analyze tab in Excel 2013).

▪ In the Tools group, click Pivot chart and select OK.

Figure 8-69: In the Tools group Select Pivot chart

▪ This will display a pivot chart shown below.

Figure 8-70: Pivot Chart

(Note: The procedure may vary with different versions of excel, the given procedure is according to the

Excel 2017.)

8.4.9 Packet Trace Fields

GENERAL FIELDS DESCRIPTION

PACKET_ID

Specifies the ID of the Data Packets.
For control packets this value is set to 0
For every application packet IDs are assigned in serial order. The
Packet ID is not a unique number. It is the tuple {Application ID,
Packet_ID} that is unique.

SEGMENT_ID

Specifies the ID of the segment of the Data Packet. Segmentation is
done in transport layer. If the packet size (generated in the APP layer)
is greater than the maximum segment size in TRANSPORT layer,
packet will get segmented.
For control packets it is N/A

© TETCOS LLP. All rights reserved

Ver 13.2 Page 176 of 304

PACKET_TYPE
Specifies the type of application that generates the packet.
It can be Control Packet, Custom, CBR, Peer_to_peer, E-Mail,
DataBase, FTP, Video, Voice, HTTP.

CONTROL_PACKET_TYPE

Specifies the type of Control Packet transmitted.
Following are the Protocol specific control packets
WLAN: WLAN_ACK, WLAN_BlockACK
OSPF: OSPF_HELLO, OSPF_D-D, OSPF_LSR, OSPF_LSU,
OSPF_LSA
RIP: RIP_Message
GSM: GSM_Channel_Request, GSM_Channel_Granted,
GSM_Call_Request, GSM_Channel_Request_For_Incoming,
GSM_Call_Accepted
CDMA: CDMA_Channel_Request, CDMA_Channel_Granted,
CDMA_Call_Request, CDMA_Channel_Request_For_Incoming,
CDMA_Call_Accepted
DSR, AODV, ZRP, OLSR: RREQ, RREP, NDP_HELLO_MESSAGE,
OLSR_TC_MESSAGE
Zigbee: Zigbee_BEACON_FRAME, Zigbee_ACK
Cognitive Radio: SCH, FCH, DS-MAP, US-MAP, UCD, DCD,
BW_REQUEST, UCS_NOTIFICATION
LTE: LTE_Measurement_Report, LTE_RRC_CONNECTION_SETUP,
LTE_RLC_SDU, LTE_RRC_CONNECTION_REQUEST,
LTE_RRC_CONNECTION_SETUP_COMPLETE, LTE page, LTE Ack
etc.

SOURCE_ID
Specifies the <Device-type>-<ID> of the source set in the application.
Note that if the device name is changed the new name will not reflect in
the trace.

DESTINATION_ID

Specifies the <Device-type>-<ID> of the destination set in the
application. Note that if the device name is changed the new name will
not reflect in the trace. If the application is a broadcast application the
destination field will show 0

TRANSMITTER_ID

Specifies the <Device-type>-<ID> of the current node which is
transmitting the packet. Note that if the device name is changed the
new name will not reflect in the trace. The difference between a Source
node and a Transmitter, is that when the Source remains constant
across the entire packet transmission whereas the transmitter ID
changes with each hop of the packet.

RECEIVER_ID

Specifies the <Device-type>-<ID> of the current node which is
receiving the packet. Note that if the device name is changed the new
name will not reflect in the trace. The difference between a Destination
node and a Receiver, is that when the Destination remains constant
across the entire packet transmission whereas the receiver ID changes
with each hop of the packet.

APP_LAYER_ARRIVAL_TIM
E (μs)

Specifies the time at which packet is at the Application_Layer of
Source_ID (or Transmitter_ID). This is usually the time at which the
packet is generated at Source_ID

TRX_LAYER_ARRIVAL_TIM
E (μs)

Specifies the time at which packet reaches the Transport_layer from
the application layer. This will usually be the same as
Application_layer_Arrival_Time unless there are TCP re-transmissions

NW_LAYER_ARRIVAL_TIM
E (μs)

Specifies the time at which packet reaches the Network_Layer of
Transmitter_ID if this is a Router (or) Time at which packet reaches the
Network_layer of previous Router / Source_ID (immediate previous
Layer 3 or higher device) if current device is Switch / Access Point.

MAC_LAYER_ARRIVAL_TI
ME (μs)

Specifies the time at which packet reaches MAC_Layer of
Transmitter_ID

PHY_LAYER_ARRIVAL_TIM
E (μs)

Specifies the time at which packet reaches PHY_layer of
Transmitter_ID

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 177 of 304

PHY_LAYER_START_TIME
(μs)

Specifies the time at which packet starts betting transmitted in the link
between Transmitter_ID and Receiver_ID

PHY_LAYER_END_TIME
(μs)

Specifies the time at which packet reaches Phy_Layer of Receiver_ID

APP_LAYER_PAYLOAD
(Bytes)

Specifies the size of the Payload at Application Layer

TRX_LAYER_PAYLOAD
(Bytes)

Specifies the size of the Payload at Transport Layer

NW_LAYER_PAYLOAD
(Bytes)

Specifies the size of the Payload at Network Layer

MAC_LAYER_PAYLOAD
(Bytes)

Specifies the size of the Payload at Data Link Layer

PHY_LAYER_PAYLOAD
(Bytes)

Specifies the size of the Payload at Physical Layer

PHY_LAYER_OVERHEAD
(Bytes)

Specifies the size of the overhead in Physical layer

PACKET_STATUS Specifies whether the Packet is Successful, Collided or Errored

LOCAL_ADDRESS
Specifies the Port Number at Source Node. Port Numbers are chosen
randomly by NetSim.

FOREIGN_ADDRESS
Specifies the Port Number at Destination Node. Port Numbers are
chosen randomly by NetSim.

CWND (bytes) Specifies the current size of the TCP congestion window

SEQ_NO If TCP is enabled, it specifies the TCP Sequence number of the packet

ACK_NO
If TCP is enabled, it specifies the TCP Acknowledgement number of
the packet

RTT (seconds) Specifies the Round-Trip Time for the packet

RTO (seconds) Specifies the Retransmission Timeouts

CONNECTION_STATE Specifies the state of TCP connection

isSyn If TCP is enabled, it specifies whether the packet is TCP_SYN or not

isAck
If TCP is enabled, it specifies whether the packet is
TCP_ACK/TCP_SYN_ACK or not

isFin If TCP is enabled, it specifies whether the packet is TCP_FIN or not

SEGMENT_LENGTH Specifies the segment length of the packet

SOURCE_IP Specifies the IP address of the source

DESTINATION_IP Specifies the IP address of the destination

GATEWAY_IP Specifies the IP address of the device which is transmitting a packet

NEXT_HOP_IP Specifies the IP address of the next hop

Table 8-3: Packet Trace Fields and Description

NOTE:

▪ Each line in the packet trace represents one hop of one packet.

▪ The packet trace is logged in ascending order of time as measured in Phy_Layer_End_Time.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 178 of 304

8.5 Event Trace (only in Standard/Pro Version)

8.5.1 NetSim Network Stack and Discrete Event Simulation working

NetSim’s Network Stack forms the core of NetSim and its architectural aspects are

diagrammatically explained below. It exactly mirrors the TCP/IP stack and has the following five

layers.

▪ Application Layer – CBR, Voice, Video, HTTP, COAP etc.

▪ Transport Layer – TCP, UDP

▪ Network Layer – IP, OSPF, AODV, OLSR etc.

▪ MAC Layer – 802.11, 802.15.4, LTE etc.

▪ Physical Layer – Wired (P2P, P2MP, MP2MP), Wireless (RF Propagation)

Network Stack accepts inputs from the end-user in the form of Configuration file and the data

flows as packets from one layer to another layer in the Network Stack.

All packets, when transferred between devices move up and down the stack, and all events in

NetSim fall under one of these ten categories of events, namely, Physical IN, Data Link IN,

Network IN, Transport IN, Application IN, Application Out, Transport OUT, Network OUT,

Data Link OUT and Physical OUT. The IN events occur when the packets are entering a device

while the OUT events occur while the packet is leaving a device. In addition to these events there

can be TIMER events associated with each protocol.

Figure 8-71: Flow of one packet from a Wired node to a Wireless node

Every device in NetSim has an instance of the Network Stack shown above. Switches & Access

points have a 2-layer stack, while routers have a 3-layer stack. End-nodes have a 5-layer stack.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 179 of 304

The protocol engines are called based on the layer at which the protocols operate. For example,

TCP is called during execution of Transport IN or Transport OUT events, while 802.11b WLAN is

called during execution of MAC IN, MAC OUT, PHY IN and PHY OUT events.

When these protocols are in operation, they in turn generate events for NetSim's discrete event

engine to process. These are known as SUB EVENTS. All SUB EVENTS, fall into one of the

above 10 types of EVENTS and TIMER events if applicable.

Each event gets added in the Simulation kernel by the protocol operating at the particular layer

of the Network Stack. The required sub events are passed into the Simulation kernel. These sub

events are then fetched by the Network Stack in order to execute the functionality of each

protocol. At the end of Simulation, Network Stack writes trace files and the Metrics files that assist

the user in analyzing the performance metrics and statistical analysis.

8.5.2 Event Trace

The event trace records every single event along with associated information such as time stamp,

event ID, event type etc. in a text file or .csv file which can be stored at a user defined location.

Apart from a host of information, the event trace has two special information fields for diagnostics.

▪ A log of the file name and line number from where the event was generated (Please refer

“Writing Custom Code in NetSim → Debugging your code → Via CLI”) and

▪ Previous event which triggered the current event.

Note: Turning on Event Trace will slow down the simulation significantly

NetSim provides users with the option of turning on "Event Traces".

How to enable Event Trace via GUI?

If NetSim runs via GUI, event trace can be turned on by clicking the Event Trace icon in the tool

bar and selecting the required fields in the event trace.

How to enable Event Trace via CLI?

If NetSim runs via CLI, then the event trace can be turned on by enabling the event trace in the

STATISTICS_COLLECTION tag of the configuration file. Following is a screenshot of a

Configuration.netsim file with Event Trace disabled:

© TETCOS LLP. All rights reserved

Ver 13.2 Page 180 of 304

Figure 8-72: Open Configuration.netsim in Visual Studio and Event Trace disabled

You can see that the STATUS is set to DISABLE, file name and file path are not set. To enable

Event trace these parameters can be modified by editing the Configuration file. Open

Configuration.netsim file and provide the file name, path and set status as Enable. Following is a

screenshot of a Configuration.netsim file with Event Trace enabled:

Figure 8-73: Event Trace enabled in Configuration.netsim file

Event Trace Metrics:

Event_Id Specifies the ID of the Event

Event_Type
Specifies the type of event being performed, for e.g. - APPLICATION_IN,
APPLICATION_OUT, MAC_OUT, MAC_IN, PHYSICAL_OUT, PHYSICAL_IN,
etc.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 181 of 304

Event_Time Specifies the time (in microseconds) at which the event is being executed

Device_Type Specifies the type of device in which the current event is being executed

Device_Id Specifies the ID of device in which the current event is being executed

Interface_Id Specifies the Interface_Id of device in which the present event is being executed.

Application_Id Specifies the ID of the Application on which the specific event is executed

Packet_Id Specifies the ID of the packet on which the current event is being executed

Segment_Id
Specifies the ID of the segment of packet on which the current event is being
executed

Protocol_Name Specifies the Protocol which is presently executed

Subevent_Type
Specifies the protocol sub event which is being executed. If the sub event value
is 0, it indicates interlayer communication (Ex: MAC_OUT called by
NETWORK_OUT) or a TIMER_EVENT which has no sub event.

Packet_Size Specifies the size of packet during the current event

Prev_Event_Id Specifies the ID of the event which generated the current event.

Table 8-4: Event Trace fields and Descriptions

8.5.3 Calculation of Delay and Application throughput from event trace

1. Consider the scenario as explained in the section 8.4.5 Delay analysis.

Figure 8-74: Network Scenario to calculate delay and throughput

2. Enable Event trace and simulate the scenario for 10 seconds,

3. Open event trace from the simulation results windows as shown in the below Figure 8-75.

 Note: Event tracing is available only in NetSim standard and pro versions.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 182 of 304

Figure 8-75: Select Event Trace option in results window

4. Click on Pivot Table (Custom) in excel sheet as shown below.

Figure 8-76: Select Pivot Table (Custom) in excel sheet

5. A blank PivotTable and Field List will appear on a new worksheet.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 183 of 304

Figure 8-77: A blank PivotTable

6. Once PivotTable worksheet open, you will need to decide which fields to add. Each field is

simply a column header from the source data. In the PivotTable Field List, check the box

for each field you want to add.

8.5.3.1 Application Delay Analysis:

1. Drag and drop the Event_Type, Protocol_Name Fields into FILTERS, Packet_Id into ROWS

and Device_Id into COLUMNS.

2. Drag and Drop Event_Time Field into VALUES twice, then both will show Sum of Event_Time.

Recheck that you have dropped the Event_Time field twice.

3. Click on the second Event_Time field in the VALUES and select the Value Field Settings.

Figure 8-78: Select Second Event_Time field in the VALUES and select the Value Field Settings

4. A window named Value Field Settings opens then select Count option and click OK button.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 184 of 304

Figure 8-79: Select Summarize value field by Count

5. Then finally the Pivot Table Fields will be as shown below Figure 8-80.

Figure 8-80: Selected Fields to one of the four areas Field list

6. In the Event_Type select APPLICATION_IN and APPLICATION_OUT, Protocol_Name select

APPLICATION and in Column Labels select the Source_Id and Destination_Id. In our

example source node ID is 2 and destination node ID is 3.

Note: After selecting the dropdown, to check and uncheck the check box proceed by selecting the

selecting the multiple items check box

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 185 of 304

Figure 8-81: Select the Event type, Protocol Name, Source and Destination ID etc

7. The Pivot Table created will be as shown below.

Figure 8-82: Created Pivot Table

8. Select the entire empty column H then and enter the formula =IF(AND(LEN(A1),

INT(A1)=A1),F1-G1*B1) in function and press CTRL+ENTER

F column is Total Sum of Event_Time, G Column is Total Count of Event_Time, B Column is

Sum of Event_time(µs) of the Source.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 186 of 304

Figure 8-83: Select Entire empty column H then and enter the formula =IF(AND(LEN(A1),

INT(A1)=A1),F1-G1*B1) in function and press CTRL+ENTER

App Delay =
𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝐷𝑒𝑙𝑎𝑦𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑏𝑦 𝑡ℎ𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑎𝑝𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

Note: If the packet size is > 1500 then fragmentation occurs and the packet is received as multiple

segments. In NetSim the destination counts each segment as different packet.

Then in an empty cell enter

 =SUMIF(H:H,">0")/GETPIVOTDATA("Count of Event_Time(US)2",A4,"Device_Id",3) where

GETPIVOTDATA ("Count of Event_Time(US)2",A4,"Device_Id",3) gives the total number

of packets received by the destination (in this case 3). This will give the exact Application Delay.

Figure 8-84: Calculated Application Delay using Formula in Pivot table

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 187 of 304

Compare with the Delay in Application_Metrics_Tables and it would exactly match. There might

be slight difference in the decimals due to Excel’s round offs.

Figure 8-85: Compare the Application_Metrics_Tables Delay and Pivot table Delay

8.5.3.2 Application Throughput Analysis

1. For Application Throughput drag and drop Event_type, Protocol_Name Fields in FILTERS,

Device_Id in ROWS, Packet_Size(Bytes) into VALUES. Change the Value Field Settings

of Packets_Size(Bytes) to SUM as mentioned in Delay Analysis.

Figure 8-86: Selected Fields to one of the four areas Field list

Then Select the Event_Type as APPLICATION_IN, Protocol_Name as APPLICATION and

Device_Id as the Destination (in this case destination id will be 3 since we are calculating for

APP1 CBR)

© TETCOS LLP. All rights reserved

Ver 13.2 Page 188 of 304

Figure 8-87: Select the Event type, Protocol Name, Source and Destination ID etc

2. App Throughput =
𝑇𝑜𝑡𝑎𝑙𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑓𝑢𝑙𝑙𝑦𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑏𝑦𝑡ℎ𝑒𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒

Then in an empty cell type =GETPIVOTDATA ("Packet_Size(Bytes)",A4)*8/10000000

This gives the Application Throughput in Mbps (Multiplied by 8 to convert Bytes to bits, and divided

by 100000 to convert into Mega)

Figure 8-88: Calculate Application Throughput using formula

Compare with the Application throughput in the Application_Metrics_Table

Figure 8-89: Compare the Application_Metrics_Tables throughput and Pivot table throughput

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 189 of 304

8.6 Packet Capture & analysis using Wireshark

8.6.1 Enabling Wireshark Capture in a node for packet capture

NetSim provides functionality to capture packets in the virtual nodes. The pcap file written by

NetSim contains fields of packet layer 3 and above. This pcap file can be opened using the

popular software, Wireshark (formerly Ethereal).

To enable packet capture in Wireshark, Right Click on the device where wireshark should be run.

In the properties, go to General Properties and set the Wireshark Capture parameter as Online.

Figure 8-90: Enable Wireshark in General Properties for wired node

Wireshark Capture Options

Online
Online option will initiate a live interactive packet capture, displaying packets
while running simulation

Offline
Offline option will initiate silent packet capture and generate a pcap file which
can be opened using Wireshark post-simulation

Disable Packets are not captured by Wireshark during simulation.

Table 8-5: Wireshark Capture Options and Description

8.6.2 Viewing captured packets

If enabled, Wireshark Capture automatically starts during simulation and displays all the captured

packets. To view the details of the packet displayed, click-on the packet as shown below Figure

8-91.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 190 of 304

Figure 8-91: Packets Captured in Wireshark

The detail of the contents of the selected packet can be seen in the below panes as shown below

Figure 8-92.

Figure 8-92: Packet Information panes

In the above figure, the details of the packet are displayed in both tree form and bytes form. In

the tree form, user can expand the data by clicking on the part of the tree and view detailed

information about each protocol in each packet.

8.6.3 Filtering captured packets

 Display filters allow you to concentrate on the packets you are interested in while hiding the

currently uninteresting ones. Packets can be filtered by protocol, presence of a field, values of

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 191 of 304

field’s etc. To select packets based on protocol, type the protocol in which you are interested in

the Filter: field of the Wireshark window and presenter to initiate the filter. In the figure below

Figure 8-93, tcp protocol is filtered.

Figure 8-93: TCP Protocol is filtered in Wireshark

You can also build display filters that compare values using a number of different comparison

operators like ==, != , >, <, <=, etc. Following is an example displaying filtered packets whose

SYN Flag and ACK Flag are set to 1 in a TCP Stream.

Figure 8-94: Filtered SYN Flag and ACK Flag are set to 1 in a TCP Stream

8.6.4 Analyzing packets in Wireshark

8.6.4.1 Analyzing Conversation using graphs

A network conversation is the traffic between two specific end points. For example, an IP

conversation is all the traffic between two IP addresses. In Wireshark, Go to Statistics Menu→

Conversations as shown below Figure 8-95.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 192 of 304

Figure 8-95: In Wireshark, Go to Statistics Menu >Conversations

Different types of protocols will be available. User can select the specific conversation by going

to the desired protocol. For example, in the following diagram, we have selected TCP.

Figure 8-96: TCP Wireshark Conversion for Wired Nodes

User can also analyze each of the conversation and can create graphs by selecting them and

clicking on “Graph”.

Figure 8-97: Select Graph in Wireshark Conversion

Different types of graphs are possible for Round Trip time, Throughput, Time/Sequence

(Stevens), Time/Sequence (tcptrace) and Window Scaling

8.6.5 Window Scaling

 Click on data packet i.e. <None>.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 193 of 304

Figure 8-98: Select one data Packet <None>in Wireshark

 Choose statistics→TCP Stream Graph→Window Scaling.

Figure 8-99: Statistics>TCP Stream Graph>Window Scaling

Click on Switch Direction in the window scaling graph window.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 194 of 304

Figure 8-100: TCP Window Scaling Plot

8.6.5.1 Comparing the packet lengths

To analyze the packet sizes of all packets transmitted, go to Statistics Menu→Packet lengths.

Users can also set filter to analyze a collection of specific packets only. For example, tcp filter is

set to obtain the packet length below Figure 8-101.

Figure 8-101: Comparing the packet lengths in Wireshark

8.6.5.2 Creating IO graphs

To get the graph, go to Statistics Menu → IO Graph.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 195 of 304

Figure 8-102: Statistics Menu > IO Graph in Wireshark

8.6.5.3 Creating Flow graphs

The flow graph feature provides a quick and easy to use way of checking connections between a

client and a server. It can show where there might be issues with a TCP connection, such as

timeouts, re-transmitted frames, or dropped connections. To access flow graph, go to Statistics

Menu → Flow Graph and select the flow type. By default, you can see the flow graph of all the

packets. To get the TCP flow, select TCP flow in “Flow Type” dropdown box and you will obtain

the flow as shown Figure 8-103.

Figure 8-103: Statistics Menu > Flow Graph in Wireshark

© TETCOS LLP. All rights reserved

Ver 13.2 Page 196 of 304

9 Writing Custom Code in NetSim

9.1 Writing your own code

NetSim allows the user to write the custom code for all the protocols by creating a DLL (Dynamic

Link Library) for their custom code.

There are various important steps in this process, and each of these steps has various options

as explained in the subsequent pages.

9.1.1 Microsoft Visual Studio 2019 Installation Settings

NetSim requires only a few components of Visual Studio Community 2019 edition to be installed.

Upon starting the installer:

1. Under the Workloads tab users can select Desktop Development with C++ as shown below

Figure 9-1.

Figure 9-1: In Workloads tab select Desktop Development with C++

2. Under the Individual components tab select VC++2015.3 V140 toolset for desktop (x86,

x64).

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 197 of 304

Figure 9-2: In Individual components tab select VC++2015.3 V140 toolset for desktop (x86, x64).

9.1.2 Modifying code

DLL is the shared library concept, implemented by Microsoft. All DLL files have a .dll file extension.

DLLs provide a mechanism for sharing code and data to upgrade functionality without requiring

applications to be re-linked or re-compiled. It is not possible to directly execute a DLL, since it

requires an EXE for the operating system to load it through an entry point. NetSim requires Visual

Studio Compiler for building DLL’s.

Note: Make sure that Visual Studio 2015 or above is installed in your system.

Refer section 4.13 section “How does a user open and modify source codes” to open NetSim

Source Codes

1. After this you may modify the source codes of any project. You can also add new files to the

project if required. As an example, let us make a simple source code modification to TCP.

Inside Solution Explorer pane in Visual Studio, double click on TCP project. Then open TCP.c

file by double clicking on it. Using the drop down list of functions that are part of the current

file, choose fn_Netsim_TCP_Init().

© TETCOS LLP. All rights reserved

Ver 13.2 Page 198 of 304

Figure 9-3: Select fn_Netsim_TCP_Init() in TCP.C in Visual Studio

2. Add the line fprintf(stderr, "\nSource is Modified\n"); statement inside the

fn_Netsim_TCP_Init() function as shown below to print “Source is modified”. _getch(); is

added in the next line for the simulation to wait until it gets a user input.

Figure 9-4: Source Code modified in fn_Netsim_TCP_Init() function in TCP project

9.1.3 Building DLLs

1. Identify the build of NetSim that is installed in your system from NetSim Home Screen as shown

below.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 199 of 304

Figure 9-5: In NetSim Home Screen Identify the build of NetSim

2. By default, x64 is choose for 64-bit version of NetSim. These changes will be automatically

applied to all projects that are displayed in the Solution Figure 9-6.

Figure 9-6: Based on the build of NetSim select x64 in Visual studio

3. Now rebuild the network by right clicking on the project header and selecting Rebuild creates

a DLL file in the bin folder of NetSim’s current workspace path.

< C:\Users\PC\Documents\NetSim\Workspaces\<Your default workspace>\bin_x64> for 64-bit

which contains your modifications. If build is successful a message similar to the following will

be displayed in the output window as shown below.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 200 of 304

Figure 9-7: Build is successful a message like the following will be displayed in the output window

9.1.3.1 Error:

The solution file settings in Visual Studio (for all protocol source codes) is of latest version, i.e.,

Visual Studio 2022. Build will be successful when users run this version of Visual Studio. Users

running older version of Visual studio will face errors related to Platform Set during the compilation

of code. The Platform Toolset properties for different versions of VS are given below.

Version Platform Set

Visual Studio 2015 v140

Visual Studio 2017 v141

Visual Studio 2019 v142

Visual Studio 2022 v143

If a user has an older version of VS installed in their system they can migrate to the latest version

of VS (and uninstall the older version of VS), or perform the following changes

• Go to Project 'Properties' > Under 'General' > Select Platform toolset as it is mentioned in

the table above. (i.e.) for VS2019 - select v142, then save (Click OK). The rebuild the

code.

9.1.4 Running Simulation

1. After rebuilding the code, user can run the simulation via GUI (Please refer section 3). In this

case, user can create a scenario in any network which involves TCP protocol. Running the

simulation with the custom DLL will initially display a warning message as shown below.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 201 of 304

Figure 9-8: Modified Project display a DLL warning message to NetSim Console

2. The warning message lists the DLL files which have been modified in the bin folder

(bin\bin_x64 for 64-bit) of NetSim’s current workspace path. After pressing any key, the

statement “Source is modified” will be printed to console as shown below.

Figure 9-9: Printf Statement written to console

3. Press any key to proceed with the simulation.

4. The warning message will not be displayed if no Dll’s are modified in the bin folder of current

workspace path (bin\bin_x64 for 64-bit).

9.1.5 Source Code Dependencies

The following are the list of projects that are part of NetSim source codes present in <NetSim

Install Directory>/src/Simulation directory and their dependencies:

© TETCOS LLP. All rights reserved

Ver 13.2 Page 202 of 304

PROJECT DEPENDENCY

Application IP

Cellular Application

CLIInterpertor Firewall, IP

Cognitive Radio Application

Ethernet Firewall

IEEE802_11 Battery Model

OSPF IP

Routing IP

RPL IP

ZigBee Battery Model

ZRP IP

Aloha -

AODV -

ARP` -

Battery Model -

CSMACD -

DSR -

Firewall -

IEEE1609 -

IP -

LTE NR

Mobility -

P2P -

SDN -

Support Function -

TCP -

Token BR -

UDP -

UWAN

DTDMA -

TDMA -

Satellite Comm. Networks -

Table 9-1: Source Code Dependencies

For example, to perform modifications to Application Project, IP folder will also be required in

addition to lib folder, Include folder and NetSim.sln file.

9.1.6 Enabling Additional Security Checks

SDL – Security Development Lifecycle checks adds recommended Security Development

Lifecycle. These checks include extra security-relevant warnings as errors, and additional secure

code-generation features.

/sdl enables a superset of the baseline security checks provided by /GS and overrides /GS-. By

default, /sdl is off. /sdl- disables the additional security checks.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 203 of 304

Figure 9-10: Enabling Additional Security Checks application properties window

If SDL checks is enabled (/sdl), following warnings will be treated as errors:

Warning
enabled by /sdl

Equivalent
command-line
switch

Description

C4146 /we4146
A unary minus operator was applied to an unsigned type, resulting
in an unsigned result.

C4308 /we4308
A negative integral constant converted to unsigned type, resulting
in a possibly meaningless result.

C4532 /we4532
Use of continue, break or go to keywords in a __finally/finally
block has undefined behavior during abnormal termination.

C4533 /we4533 Code initializing a variable will not be executed.

C4700 /we4700 Use of an uninitialized local variable.

C4703 /we4703 Use of a potentially uninitialized local pointer variable.

C4789 /we4789 Buffer overrun when specific C run-time (CRT) functions are used.

C4995 /we4995 Use of a function marked with pragma deprecated.

C4996 /we4996 Use of a function marked as deprecated.

Table 9-2: SDL Warnings Messages

Reference: https://docs.microsoft.com/en-us/cpp/build/reference/sdl-enable-additional-security-

checks?view=vs-2019

9.2 Implementing your code - Examples

9.2.1 Hello World Program

Objective: Print Hello World from TCP protocol.

Implementation: Add fprintf (stderr, “<MESSAGE>”) statement inside the source code of TCP

as shown below to print “Hello World” when custom built dll is executing.

fprintf(stderr, "\n Hello World\n");

_getch();

https://docs.microsoft.com/en-us/cpp/build/reference/sdl-enable-additional-security-checks?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/sdl-enable-additional-security-checks?view=vs-2019

© TETCOS LLP. All rights reserved

Ver 13.2 Page 204 of 304

Figure 9-11: Hello World Printf Statement added in TCP Project

Build DLL as explained in Section 9.1.3 and run the simulation, you can see the following output

on the console.

Figure 9-12: Hello World Statement written to console

Press enter then simulation will continue.

9.2.2 Introducing Node Failure in MANET

Objective: Node failure using MANET-DSR using Device Id.

Implementation: Identify the Device ID of the particular node to be failed.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 205 of 304

Step 1: Create a file with the name NodeFailure.txt inside the bin folder of NetSim’s current

workspace path

<C:\Users\PC\Documents\NetSim\Workspaces\<Your default workspace>\bin_x64> for 64-bit.

The file will contain two columns: one being the Node ID of the device to be failed and other being

the failure time (in microseconds).

For example, to fail Node Id 2 from10th sec onwards and fail Node Id 1 from 90th sec onwards, the

NodeFailure.txt file will be as follows Figure 9-14.

Figure 9-13: NodeFailure.txt file

Step 2: Go to DSR.c in DSR protocol.

Step 3: The function fn_NetSim_DSR_Init() will execute before the protocol execution starts. So,

in this function, we will read the NodeFailure.txt and save information regarding which nodes will

fail at which time. Add the following code inside the specified function.

int i;

FILE* fp1;

char* pszFilepath;

char pszConfigInput[1000];

pszFilepath = fnpAllocateMemory(36, sizeof(char) * 50);

strcpy(pszFilepath, pszAppPath);

strcat(pszFilepath, "/NodeFailure.txt");

fp1 = fopen(pszFilepath, "r");

i = 0;

if (fp1)

{

 while (fgets(pszConfigInput, 500, fp1) != NULL)

 {

 sscanf(pszConfigInput, "%d %d", &NodeArray[i], &TimeArray[i]);

 i += 1;

 }

 fclose(fp1);

}

© TETCOS LLP. All rights reserved

Ver 13.2 Page 206 of 304

Step 4: The fn_NetSim_DSR_Run() is the main function to handle all the protocol functionalities.

So, add the following code to the function at the start.

int i, nFlag = 1;

if (nFlag)

{

 for (i = 0; i < 100; i++)

 if ((pstruEventDetails->nDeviceId == NodeArray[i]) &&

 (pstruEventDetails->dEventTime >= TimeArray[i]))

 {

 pstruEventDetails->nInterfaceId = 0;

 pstruEventDetails->pPacket = NULL;

 return 0;

 }

}

Step 5: Add the following code inside DSR.h header file.

//Node failure model

int NodeArray[200];

int TimeArray[200];

Step 6: Build DLL as explained in Section 9.1.3.

Step 7: Create a scenario in MANET with DSR Protocol. where data packets should be travelling

from source to destination through the mentioned node in NodeFailure.txt file. For that user can

increase the pathloss exponent value and the distance among the nodes. User can utilize Packet

Animation to check the node failure (i.e. no packets are forwarded by failed nodes) after the

mentioned time.

9.3 Debugging your code

This section is helpful to debug the code which user has written. To write your own code please

refer Section 9.1.2.

9.3.1 Via GUI

Debugging your code via GUI there are two methods available.

▪ Using _getch()

▪ Using Environment Variables (NETSIM_BREAK)

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 207 of 304

9.3.1.1 Using _getch()

Step 1: Perform the required modification of the protocol source code and add _getch() (used to

hold the program execution until the user enters a character) statement inside init function of the

modified protocol. For example, take TCP protocol and add the following lines of code in the init

function as shown in the below screenshot Figure 9-14.

fprintf(stderr, "\nAttach to Process now\n");

_getch();

Figure 9-14: Added Two line of Code in TCP protocol

Step 2: Build the TCP protocol as explained in Section 9.1.3. Do not close Visual Studio.

Step 3: In NetSim, create a network scenario where the protocol is being used and start the

simulation. In the console window user would get a warning message shown in the below

screenshot Figure 9-16 and the simulation will pause for user input (because of _getch() added

in the init function)

© TETCOS LLP. All rights reserved

Ver 13.2 Page 208 of 304

Figure 9-15: Attach to Process Statement written to console

Step 4: In Visual Studio, put break point inside the source code where you want to debug.

Step 5: Go to “Debug→Attach to Process” in Visual studio as shown and attach to

NetSimCore.exe.

Figure 9-16: Debug > Attach to Process in Visual studio

Figure 9-17: Select NetSimCore.exe in Attach to Process Window

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 209 of 304

Click on Attach. Press enter in the command window. Then control goes to the project and stops

at the break point in the source code as shown below Figure 9-19. All debugging options like step

over (F10), step into (F11), step out (Shift + F11), continue (F5) are available.

Figure 9-18: Control goes to the project and stops at the break point in the source code

After execution of the function, the control goes back to NetSim and then comes back to the

custom code the next time the function is called in the simulation.

To stop debugging and continue execution, press Shift+F5 (key). This then gives the control back

to NetSim, for normal execution to continue.

9.3.1.2 Using Environment Variable

This section is helpful to Debug Using Environment Variable (NETSIM_BREAK). To set

Environment variable follow the steps as shown.

Note: Setting NETSIM_BREAK Environment Variable will cause the simulation to slow down and it is

recommended to remove this Environment Variables after debugging the simulation

Step 1: Right click on My Computer\ This PC and select Properties.

Step 2: Go to Advanced System setting → Advanced Tab → Environment Variables option

Step 3: Click New in System variables. Type “NETSIM_BREAK” as Variable name and any

positive integer as variable value (e.g., 2). Click OK. The value of the variable is the event ID at

which you want NetSim Simulation to break. In this example we have set the value to 2, which

means that the simulation will break at the previous event.

Note: After adding NETSIM_BREAK in environment variable, user should restart the computer

otherwise it won’t affect the simulation.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 210 of 304

Figure 9-19: Environment Variable Window

Figure 9-20: Add Variable name and Variable Value in New in System Variable

Step 4: Open NetSim and then open the source codes. Please refer Section 4.13 “How does a

user open and modify source codes” for more information.

Step 5: Create a network scenario in NetSim (Internetworks or any other networks)

Figure 9-21: Network Topology

Step 6: In this example we are placing a break point in TCP source code and thus TCP should

be select in Application properties window.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 211 of 304

Step 7: Enable Event trace option and run the simulation.

Simulation will break at event ID 1 as we have set the environment variable to 2 as shown below.

Figure 9-22: Simulation will break at event ID 1

Here NetSim breakpoint has been triggered.

Step 8: Inside Solution Explorer pane in Visual Studio, double click on TCP project. Then open

TCP.c file by double clicking on it. Using the drop down list of functions that are part of the current

file, choose fn_NetSim_TCP_Run().

Step 9: In Visual Studio, Set the breakpoint in the code by clicking on the grey area on the left of

the line or by right clicking on the line and selecting Breakpoint->Insert Breakpoint.

Figure 9-23: Added Break point in line number 50

© TETCOS LLP. All rights reserved

Ver 13.2 Page 212 of 304

Step 10: Go to “Debug→Attach to Process” in Visual studio as shown Figure 9-24 and select

NetSimCore.exe from the list of processes displayed.

Figure 9-24: Debug > Attach to Process in Visual studio

Figure 9-25: Select NetSimCore.exe in Attach to Process Window

Click on Attach. Press any key in the command window to continue the process.

Step 11: Now we need to enter next event ID to break.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 213 of 304

Figure 9-26: Enter next event ID to break

Then control goes to the project and stops at the break point in the source code (NetSim will break

wherever user has set the breakpoint) as shown below Figure 9-27. All debugging options like

step over (F10), step into (F11), step out (Shift + F11), continue (F5) are available.

Figure 9-27: Control goes to the project and stops at the break point in the source code.

After execution of the function, the control goes back to NetSim and then comes back to the

custom code the next time the function is called in the simulation. To stop debugging and continue

© TETCOS LLP. All rights reserved

Ver 13.2 Page 214 of 304

execution, press Shift+F5 (key). This then gives the control back to NetSim, for normal execution

to continue.

If NETSIM_BREAK environment variable is set, NetSim event trace file additionally logs the file

name and line number of the source code where the event was added as shown below:

Figure 9-28: NetSim event trace file additionally added two columns the file name and line number of the

source code.

9.3.2 Via CLI

Modify the TCP protocol and build the code. Create a scenario in Internetworks then follow the

below steps.

Step 1: Open the Command prompt. Press “windows+R” and type “cmd”.

Step 2: To run the NetSim via CLI copy the path where “NetSimCore.exe” is present.

>cd <apppath>

>NetSimCore.exe<space>-apppath<space><apppath><space>-

iopath<space><iopath><space>-license<space>5053@<ServerIP Address><space> -d

Step 3: Type the following command.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 215 of 304

Figure 9-29: Run the NetSim via CLI Mode use the following Command.

Press enter, now you can see the following screen.

Figure 9-30: Enter the Event ID

Step 4: Open the Project in Visual Studio and put break point inside the source code.

Step 5: Go to “Debug→Attach to Process”.

Figure 9-31: Debug > Attach to Process

Attach to NetSimCore.exe.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 216 of 304

Figure 9-32: Select NetSimCore.exe in Attach to Process Window

Click on Attach.

Step 6: Go to command prompt which is already opened in Step 3. Enter the Event Id.

Note: If you do not want to stop at any event you can specify 0 as event id.

Figure 9-33: Enter the Event Id

Execution will stop at the specified event.

Figure 9-34: Execution stops at the specified event

Press enter then control goes to the project and stops at the break point in the source code as

shown below.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 217 of 304

Figure 9-35: Control goes to the project and stops at the break point in the source code

All debugging options like step over (F10), step into (F11), step out (Shift + F11), continue (F5)

are available.

After execution of the function, the control goes back to NetSim and then comes back to the

custom code the next time the function is called in the simulation.

To stop debugging press Shift+F5. This then gives the control back to NetSim, for normal

execution to continue.

9.3.3 Co-relating with Event Trace

To debug your own (custom) code, it is often helpful to know which section of the code (file name

& line number) generated the event under study. There are 2 ways to enable this feature.

Procedure 1

Step 1: Open configuration.netsim file and provide the file name, path and set status as Enable.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 218 of 304

Figure 9-36: Enable Event Trace by editing Configuration.netsim and provide the file name, path and set

status as Enable

Step 2: Run the NetSim via CLI in debug mode (Refer NetSim Help in Section 7→Running

Simulation via CLI) with –d as the fourth parameters.

Press enter.

Figure 9-37: Run the NetSim via CLI

Step 3: Enter -1 as the event ID.

Figure 9-38: Enter -1 as the event ID

Upon running, NetSim will write the file name and line number of the source code that generated

each event.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 219 of 304

Figure 9-39: NetSim writes the file name and line number of the source code in Event Trace

In the above trace file Event Id 46 is triggered inside the IEEE802_11_Phy.c file which is present

in IEEE802_11 project. Since all the lib files are opaque to the end user, you cannot see the

source code of the lib file. However, Event Id 56 is triggered at line number 420 of

IEEE802_11_Phy.c file and you can find the location of the event by opening the

IEEE802_11_Phy.c file as shown below.

Figure 9-40: IEEE802_11_Phy.c file Code in Visual Studio

Procedure 2:

Step 1: Right click on my computer and select Properties.

Step 2: Go to Advanced System setting → Advanced Tab → Environment Variables.

Step 3: Click New. Type “NETSIM_BREAK” as Variable name and any negative integer as

Variable value. Click OK.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 220 of 304

Figure 9-41: Environment Variables Window

Figure 9-42: Enter Variable name and Value in New System Variable

Step 4: Restart the system.

Step 5: Now perform simulation in NetSim (Enable event trace in GUI). Upon running, NetSim

will write the file name and line number of the source code that generated each event.

Figure 9-43: NetSim writes the file name and line number of the source code in Event Trace

9.3.4 Viewing & Accessing variables

Viewing variables while debugging code

To see the value of a variable, when debugging the mouse over the variable name in the code. A

text box with variable contents appears. If the variable is a structure and contains other variables,

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 221 of 304

then click on the plus sign which is there to the left of the text box. Users can pin the variable to

watch by clicking on the pin icon to the right of that variable in the text box.

Figure 9-44: Viewing variables while debugging code

Adding the variable to watch

Figure 9-45: Adding the variable to watch

Watch the change in the variable as the code progress by right clicking on the variable & clicking

on "add watch" tab. This is useful if to continuously monitor the change in the variable as the

code progresses.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 222 of 304

Viewing external variables

During the process of debug users would come across variables that are defined outside the

source file being built as a .dll. Such variables cannot be viewed directly when added in the watch

tab, as this would throw the error.

Error: Identifier “pstruEventDetails” is undefined

Figure 9-46: Viewing external variables

In the watch window, the variable which the user has to watch should be edited by double clicking

on it and prefixing {,,NetworkStack.dll} to the variable name and pressing enter. (The name of

the respective file in which the variable is defined should be mentioned - in this case

NetworkStack.dll).

Figure 9-47: Variable In the watch window

Accessing External Variables

Each protocol in NetSim has a separate Dll file which contains the variables and functions which

can be shared. In case of cross layer protocol implementations variables of one protocol may

have to be accessed from another Dll.

 An example is given below showing how Physical layer parameters of devices running

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 223 of 304

IEEE802.11 can be accessed in the Network Layer with DSR protocol configured.

The variable battery is defined in a structure stru_802_11_Phy_Var which is part of

IEEE802_11_Phy.h file. So the user will have to access a pointer of type stru_802_11_Phy_Var.

In the header file where the structure definition is given, the following line of code must be written

–

#ifndef SHARE_VARIABLE

 _declspec(dllexport) IEEE802_PHY_VAR* var1;

#else

 _declspec(dllimport) IEEE802_PHY_VAR* var1;

#endif

In the example, the code line must be written in IEEE802_11_Phy.h file present inside

IEEE802_11 folder.

Figure 9-48: Code Modification done in IEEE802_11_Phy.h file present inside IEEE802_11 folder

In the main function where a user wishes to find the dReceivedPower_mw, the variable must be

assigned the respective value. In the above case, the following line of code must be written inside

fn_NetSim_IEEE802_11_PhyIn() function in IEEE802_11_Phy.c file present inside IEEE802_11

folder.

var1 = DEVICE_PHYVAR(pstruEventDetails->nDeviceId, pstruEventDetails->nInterfaceId);

Note that the parameters given in the macro or any function which assigns a value to the variable

must be defined beforehand in the code. Here nDeviceId and nInterfaceId are defined

beforehand.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 224 of 304

Figure 9-49: Code Modification done in IEEE802_11_Phy.c file present inside IEEE802_11 folder

The IEEE802_11 project must be built and the resulting libIEEE802.11.dll file which gets created

in the bin_x64 folder of NetSim’s current workspace.

C:\Users\PC\Documents\NetSim\Workspaces\<Your default workspace>\bin_x64 for 64-bit

The Object file IEEE802_11.lib which is also got created in the bin_x64 folder located in the

current workspace path

<C:\Users\PC\Documents\NetSim\Workspaces\<Your default workspace>\bin_x64 >

Place the created IEEE802_11.lib inside simulation lib x64 or lib folder as shown in below path.

<C:\Users\PC\Documents\NetSim\Workspaces\<Your default workspace\src\Simulation\

lib_x64>for 64-bit

Now expand the DSR project in solution explorer. For accessing the IEEE802_11 variable, the

following lines must be added in DSR.h file.

#define SHARE_VARIABLE

#pragma comment(lib,"IEEE802_11.lib")

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 225 of 304

Figure 9-50: Accessing the IEEE802_11 variable, Modification done in DSR.h file

Add the following lines of code to the DSR.c file as shown below.

#include "../IEEE802_11/IEEE802_11_Phy.h"

#include "../BatteryModel/BatteryModel.h"

Figure 9-51: Add the following lines of code to the DSR.c file in DSR Project

In the fn_NetSim_DSR_Run() function add the following lines of code to print the value of

dReceivedPower_mw variable from DSR project.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 226 of 304

if (var1)

fprintf(stderr, "\n Remaining Energy(mJ): %lf\n",

battery_get_remaining_energy((ptrBATTERY)var1->battery));

Figure 9-52: Code Related to Remaining Energy for nodes

The DSR project must be built and the resulting libDSR.dll file gets created in the bin_x64 folder

of NetSim’s current workspace path

< C:\Users\PC\Documents\NetSim\Workspaces\<Your default workspace>\bin_x64> for 64-bit.

When a scenario is run, the remaining energy of the node will be printed to the simulation

console as shown below.

Figure 9-53: Remaining energy of the node printed in NetSim console

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 227 of 304

9.3.5 Print to console window in NetSim

Users can try printing the Device ID, Application ID, Duplicate Ack Count etc.

To print to console: Print node positions in MANET

Open Mobility Project, and in Mobility.c file go to fn_NetSim_Mobility_Run() function. Inside the

default case add following codes

fprintf(stderr, "\n The position of %s at time %.2lfms is X=%.2lf and Y = %.2lf \n",

DEVICE_NAME(pstruEventDetails->nDeviceId),

 pstruEventDetails->dEventTime,

 DEVICE_POSITION(pstruEventDetails->nDeviceId)->X,

 DEVICE_POSITION(pstruEventDetails->nDeviceId)->Y);

_getch();

Figure 9-54: Code for Print node positions in MANET

Building Mobility project creates libMobility.dll inside the binary folder(bin_x64) of NetSim’s

current workspace path

<C:\Users\PC\Documents\NetSim\Workspaces\<Your default workspace>\bin_x64 > for 64-bit.

Create a scenario in MANET and configure the mobility model of the nodes. During simulation

users can notice that the positions of the nodes are displayed in the console w.r.t. the simulation

time.

9.4 Creating a new packet and adding a new event in NetSim

In this example we show how users can create their own packet & event in 802.15.4 Zigbee. The

same methodology can be applied to any network / protocol.

1. Open the Source codes in Visual studio using the NetSim.sln file.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 228 of 304

2. Go to ZigBee project and Open 802_15_4.h file and add a subevent called “MY_EVENT” inside

enum_IEEE802_15_4_Subevent_Type as shown below.

Figure 9-55: Add “MY_EVENT” inside enum_IEEE802_15_4_Subevent_Type

3. To add a new packet in NetSim first user has to initialize their new packet name inside

802_15_4.h file. Let us assume the new packet be “MY_PACKET” and it is a control packet.

So, user has to define it inside the following enum as shown below Figure 9-56

Figure 9-56: Add “MY PACKET” inside enum_IEEE802_15_4_ControlPacket_Type

4. We assume that MY_PACKET has the same fields as a Zigbee Ack and hence we are adding

the following ack frame to 802_15_4.h file (Add this code just above the enum

enum_IEEE_802_15_4_ControlPacket_Type {} defenition):

struct stru_My_Frame

{

 int nBeaconId;

 int nSuperFrameId;

 int nBeaconTime;

 double dPayload;

 double dOverhead;

 double dFrameSize;

};

typedef struct stru_My_Frame MY_FRAME;

enum enum_IEEE_802_15_4_ControlPacket_Type

{

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 229 of 304

5. Open 802_15_4.c file, go to the case TIMER_EVENT and add the following code to the

subevent type.

case SUBEVENT_GETLINKQUALITY:

{

}

break;

case MY_EVENT:

{

 //my event//

 fprintf(stderr, "My_event");

 pstruEventDetails->dEventTime = pstruEventDetails->dEventTime + 1 * SECOND;

 pstruEventDetails->nDeviceId = nGlobalPANCoordinatorId;

 pstruEventDetails->nInterfaceId = 1;

 pstruEventDetails->nEventType = TIMER_EVENT;

 pstruEventDetails->nSubEventType = MY_EVENT;

 pstruEventDetails->nProtocolId = MAC_PROTOCOL_IEEE802_15_4;

 fnpAddEvent(pstruEventDetails);

 fn_NetSim_WSN_MY_PACKET();

 //my event//

}

break;

Here we are adding a new event inside the timer event, and this event will occur every 1 second

in the GlobalPANCoordinator. i.e., sink node. In this event, fn_NetSim_WSN_MY_PACKET() is

called as explained in step 5.

6. Inside 802_15_4.c file, add the following code at the end of the file for sending ack (broadcast):

int fn_NetSim_WSN_MY_PACKET()

{

 double dTime;

 NETSIM_ID nDeviceId = pstruEventDetails->nDeviceId;

 NETSIM_ID nInterfaceId = pstruEventDetails->nInterfaceId;

 IEEE802_15_4_MAC_VAR* pstruMacVar = DEVICE_MACVAR(nDeviceId,

nInterfaceId);

 IEEE802_15_4_PHY_VAR* pstruPhyVar = DEVICE_PHYVAR(nDeviceId, nInterfaceId);

 NetSim_PACKET* pstruPacket = pstruEventDetails->pPacket;

© TETCOS LLP. All rights reserved

Ver 13.2 Page 230 of 304

 NetSim_PACKET* pstruAckPkt;

 MY_FRAME* pstruAck;

 dTime = pstruEventDetails->dEventTime;

 // Create MY_Frame

 pstruAckPkt = fn_NetSim_Packet_CreatePacket(MAC_LAYER);

 pstruAckPkt->nPacketType = PacketType_Control;

 pstruAckPkt->nPacketPriority = Priority_High;

 pstruAckPkt->nControlDataType = MY_PACKET;

 pstruAck = fnpAllocateMemory(1, sizeof(MY_FRAME));

 // Update packet fields

 pstruAckPkt->nSourceId = nDeviceId;

 pstruAckPkt->nTransmitterId = nDeviceId;

 pstruAckPkt->nReceiverId = 0;

 add_dest_to_packet(pstruAckPkt, pstruAckPkt->nReceiverId);

 pstruAckPkt->pstruMacData->Packet_MACProtocol = pstruAck;

 pstruAckPkt->pstruMacData->dArrivalTime = dTime;

 pstruAckPkt->pstruMacData->dStartTime = dTime;

 pstruAckPkt->pstruMacData->dEndTime = dTime;

 pstruAckPkt->pstruMacData->dPacketSize =

 pstruAckPkt->pstruMacData->dOverhead;

 pstruAckPkt->pstruMacData->nMACProtocol = MAC_PROTOCOL_IEEE802_15_4;

 pstruAckPkt->nPacketId = 0;

 strcpy(pstruAckPkt->szPacketType, "MY_PACKET");

 //to see the packet in animation

 // Add SEND ACK subevent

 pstruEventDetails->dEventTime = dTime;

 pstruEventDetails->dPacketSize =

 pstruAckPkt->pstruMacData->dPacketSize;

 pstruEventDetails->nSubEventType = 0;

 pstruEventDetails->nEventType = PHYSICAL_OUT_EVENT;

 pstruEventDetails->pPacket = pstruAckPkt;

 fnpAddEvent(pstruEventDetails);

 //Free the packet

 fn_NetSim_Packet_FreePacket(pstruPacket);

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 231 of 304

 pstruPacket = NULL;

 return 0;

}

7. Inside the above function NetSim API

fn_NetSim_Packet_CreatePacket(MAC_LAYER); is used. This is the API which creates a new

packet in NetSim. Since in this example, new packet is created in MAC layer, it is passed as an

argument. Users can give the respective Layer name for creating packets in any other layers. In

the above code users can see the following line:

strcpy(pstruAckPkt->szPacketType, "MY_PACKET");

This is used visualize the packet transmission in the packet animation.

8. In 802_15_4.c file, goto fn_NetSim_Zigbee_Init() function and add the following code in red

color to call the timer_event. i.e. MY_EVENT

_declspec(dllexport) int fn_NetSim_Zigbee_Init()

{

 //MY_EVENT

 pstruEventDetails->nDeviceId = nGlobalPANCoordinatorId;

 pstruEventDetails->nInterfaceId = 1;

 pstruEventDetails->dEventTime = pstruEventDetails->dEventTime;

 pstruEventDetails->nEventType = TIMER_EVENT;

 pstruEventDetails->nSubEventType = MY_EVENT;

 pstruEventDetails->nProtocolId = MAC_PROTOCOL_IEEE802_15_4;

 fnpAddEvent(pstruEventDetails);

 //MY_EVENT

 return fn_NetSim_Zigbee_Init_F();

}

In the above function, subevent type, “MY_EVENT” is called. So this function calls the

MY_EVENT, timer event to execute.

9. fn_NetSim_Zigbee_Trace() is an API to print the trace details to the event trace. So inside

802_15_4.c file add the following lines of code in red color inside fn_NetSim_Zigbee_Trace(int

nSubEvent) as shown below:-

_declspec (dllexport) char* fn_NetSim_Zigbee_Trace(int nSubEvent)

{

 if (nSubEvent == MY_EVENT)

© TETCOS LLP. All rights reserved

Ver 13.2 Page 232 of 304

 return "MY_EVENT";

 return (fn_NetSim_Zigbee_Trace_F(nSubEvent));

}

10. Save the code and build Zigbee project, libZigBee.dll will get created in the bin folder of

NetSim’s current workspace path.

< C:\Users\PC\Documents\NetSim\Workspaces\<Your default workspace>\bin_x64 > for 64-bit.

11. Create a basic scenario in WSN with 2 sensors and 1 sink node.

12. While creating the application between two sensors, set

Application Type - Sensor App

Interarrival Time - 5000

13. Run simulation for 10 seconds.

14. Play packet animation. Here users can see that Sink node broadcasts “MY_PACKET” to the

sensor.

Figure 9-57: In animation window Sink node broadcasts “MY_PACKET” to the sensor

15. Also, open packet trace and users can filter the control packet and see all the packet details

of “MY_PACKET” written in the packet trace.

Figure 9-58: Filter the Packet Type to control packet and See “MY_PACKET” in Packet Trace

16. To analyze the “MY_EVENT” users can open event trace and filter the subevent type as

“MY_EVENT”. Here users can analyze that the event occurs for every 1 seconds.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 233 of 304

Figure 9-59: Filter Subevent type to “MY_EVENT”

9.5 NetSim API’s

NetSim provides a wide variety of APIs for protocol developers. These are available in

1. packet.h – Packet related APIs

▪ Create a new packet.

o fn_NetSim_Packet_CreatePacket_dbg(int nLayer,int line,const char* file);

▪ Copy a packet into a new packet.

o fn_NetSim_Packet_CopyPacket_dbg(const NetSim_PACKET* pstruPacket,int

line,const char* file);

▪ Create error in packet.

o fn_NetSim_Packet_DecideError(double dBER, long double dPacketSize);

▪ Free a packet

o fn_NetSim_Packet_FreePacket_dbg(NetSim_PACKET**pstruPacket,int line,char* file);

2. stack.h – Network / device / link and event related APIs

▪ Calculate distance between nodes.

o fn_NetSim_Utilities_CalculateDistance(NetSim_COORDINATES*

coordinate1,NetSim_COORDINATES* coordinates2);

▪ Stores the event details. Only one-time memory is allocated. Most used variable

o struct stru_NetSim_EventDetails* pstruEventDetails;

▪ Retrieve values from xml file.

o GetXmlVal(void* var,char* name,void* xmlNode,int flag, XMLDATATYPE type);

3. list.h -- Optimized list operation calls since NetSim uses lists extensively.

▪ Add elments in list.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 234 of 304

o list_add(void** list,void* mem,size_t offset,int (*check)(void* current,void* mem));

▪ Sorting the list

o list_sort(void** list,size_t offset,int (*check)(void* current, void* mem));

4. IP_Addressing.h – For setting & getting IP address per the appropriate format.

▪ Set Ip address of any node.

o NETSIM_IPAddress

▪ Checking ip address is broadcast or multicast.

o isBroadcastIP(NETSIM_IPAddress ip);

o isMulticastIP(NETSIM_IPAddress ip);

For detailed help please refer the appropriateheader (.h) files

inside:/NetSim_Standard/src/simulation/include or read through the doxygen source code

documentation available inside Home Page under Documentation > source code Help

▪ Include all the header (.h) files from the include folder.

▪ NetworkStack.lib is a “import library” file and has the definitions for the functions present in

the NetworkStack.dll

▪ When developing new protocols users should create their own protocol.h and declare all

the protocol specific variables here. Stack & packet related variables should be used from

stack.h and packet.h

NetSim Network Stack calling individual Protocol.

Every protocol should provide the following APIs as hooks to the network stack:

▪ int (*fn_NetSim_protocol_init)(conststruct stru_NetSim_Network*,conststruct

stru_NetSim_EventDetails*,constchar*,constchar*,int,constvoid**);

▪ Using this API the stack passes all the relevant pointers to variables, paths etc needed for

the protocol. Inside this function a) local variables should be initialized, b) Initial events if

any should be written, eg: Hello packet in RIP, STP in Ethernet c) File pointers for reading

& writing protocol_specific_IO files.

▪ int (*fn_NetSim_protocol_Configure)(conststruct stru_NetSim_Network*,int nDeviceId,

int nINterfaceID, int nlayertype, fnpAllocateMemory, fnpFreeMemory, fpConfigLog);

▪ The stack calls this API when reading the config file. Upon reaching the appropriate protocol

definition in the XML file, the stack calls this and passes all these pointers to the protocol.

▪ int (*fn_NetSim_protocol_run)(): This is called by the stack to run the protocol

▪ char* (*fn_NetSim_protocol_trace)(int): This called by the stack to write the event trace

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 235 of 304

▪ int(*fn_NetSim_protocol_CopyPacket)(constNetSim_PACKET* pstruDestPacket,const

NetSim_PACKET* pstruSrcPacket):

▪ This is for copying protocol specific parameters / data into the packed

▪ int (*fn_NetSim_protocol_FreePacket)(const NetSim_PACKET* pstruPacket): The this to

free the protocol specific parameters / data in the packet

▪ (*fn_NetSim_protocol_Metrics)(const FILE* fpMetrics): This is to write the metrics file upon

completion of the simulation

▪ int (*fn_NetSim_protocol_Finish)(): To release all memory after completion

▪ char* (*fn_NetSim_protocol_ConfigPacketTrace)(constvoid* xmlNetSimNode); To

configure the packet packet trace in terms of the parameters to be logged

▪ char* (*fn_NetSim_protocol_WritePacketTrace)(const NetSim_PACKET*); To configure

the event trace in terms of the parameters to be logged.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 236 of 304

10 Advanced Features

10.1 Random Number Generator and Seed Values

NetSim includes protocol and traffic models which include stochastic behavior. Typical examples

are a) WiFi node’s random back-off after collisions, and b) packet error decision by comparing a

random number chosen between 0 and 1 against the packet error probability.

NetSim uses an in-built prime modulus combined linear congruential Random Number Generator

(RNG) to generate the randomness. It is a single stream RNG with a period of ≈ 2 × 1018. Two

seeds values are used to initialize the RNG. These seeds can be input from NetSim GUI or via

the config file. Having the same set of seed values ensures that for a particular network

configuration the same output results will be got, irrespective of the system or time at which the

simulation is run. This ensures repeatability of experimentation.

Modifying the seed value will lead to the generation of a different stream of random numbers and

thereby lead to a different sequence of events in NetSim. Therefore, all simulation results are

dependent on the initial seeding of the RNG.

10.2 Confidence in simulation results and error bars

Since NetSim’s models include stochastic behavior, results are dependent on the initial seeding

of the random number generator. Because a particular random seed selection can potentially

result in an anomalous, or non-representative behavior, it is important for each model

configuration to be exercised with several random number seeds, to be able to determine

standard or typical behavior.

The field of statistics provides methods for calculating confidence in an estimate, based on a trial

or series of random trials. To calculate confidence intervals, users can do the following:

• Run 𝑁 simulations for the same model configuration, with a different initial seed (for the

random number generator) for each run.

• For any output metric 𝑋, calculate the mean (average) �̅� of the 𝑁 samples.

�̅� =
1

𝑁
(𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁)

• Calculate the standard deviation 𝜎 of the 𝑁 samples.

𝜎 = √(
1

𝑁 − 1
) × Σ (𝑋𝑖 − �̅�)2

• Confidence interval limits can be expressed as

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 237 of 304

Θlower = �̅� − 𝑧𝛼 × (
𝜎

√(𝑁)
) , Θupper = �̅� + 𝑧𝛼 × (

𝜎

√(𝑁)
)

This statement can be thought of as assigning a probability to the condition that the true

mean 𝜇 is within a particular distance of the random sample �̅�, as shown below

𝑃𝑟𝑜𝑏 [�̅� − 𝑧𝛼 × (
𝜎

√(𝑁)
) < 𝜇 < �̅� + 𝑧𝛼 × (

𝜎

√(𝑁)
)] = 𝛼

Confidence level (𝜶) 𝒛𝜶

99% 2.575

98% 2.327

95% 1.960

90% 1.645

80% 1.282

Table 10-1:Value of 𝒁𝜶 for different confidence intervals

• The above expression for confidence assumes the distribution of the output metric is

Normal, which is true (from the Central Limit Theorem) if the number of runs 𝑁 ≥ 30. If

the number of repetitions is less than 30 then it is better to use the t-statistic based

confidence-interval (details can be found in standard statistics textbooks).

Error bars are plotted as a vertical bar centered at the mean and ending at the upper and lower

confidence limits

10.3 Interfacing MATLAB with NetSim (Std/Pro versions)

NetSim provides run-time interfacing with MATLAB so that users do not have to rewrite code in

C for features that are already available in MATLAB and instead simply reuse MATLAB code. Lot

of work related to machine learning, artificial intelligence and specialized mathematical algorithms

which can be used for networking research, can be carried out using existing MATLAB code.

Figure 10-1: Interfacing MATLAB with NetSim

This interfacing feature can be used to either replace an existing functionality in NetSim or to

incorporate additional functionalities supported by MATLAB. Any existing

command/function/algorithm in MATLAB or a MATLAB M-script can be used.

In general, the following are done when a user interfaces NetSim to MATLAB:

© TETCOS LLP. All rights reserved

Ver 13.2 Page 238 of 304

▪ Initialize a MATLAB engine process in parallel with NetSim,

▪ Execute MATLAB workspace commands,

▪ Pass parameters to MATLAB workspace,

▪ Read parameters from MATLAB workspace,

▪ Generate dynamic three-dimensional plots,

▪ Make calls to functions that are part of MATLAB M-scripts or .m files, and

▪ Terminate the MATLAB engine process at NetSim simulation end.

Guidelines to interface NetSim with MATLAB

▪ Analyze what parameters the function or code in MATLAB expects as input.

▪ Identify the relevant variables in NetSim to be passed as input to MATLAB.

▪ Make calls from relevant places of NetSim source code to

o Pass parameters from NetSim to MATLAB.

o To read computed parameters from MATLAB workspace

▪ Identify and update the appropriate simulation variables in NetSim.

NetSim offers two different methods to interact with MATLAB during runtime.

▪ NetSim-MATLAB Socket Interface

▪ NetSim-MATLAB COM Interface

The first is an inbuilt socket interface that offers simplified NetSim API’s that can be used for

interactions with MATLAB. The second method involves importing MATLAB libraries, including

MATLAB headers, and using MATLAB Engine APIs for all interactions with MATLAB. The former

is a lot simpler since no additional settings will be required in the source code project settings.

The later involves multiple configuration steps but offers more flexibility.

10.3.1 NetSim-MATLAB Socket Interface

NetSim-MATLAB Socket Interface was introduced in NetSim v13.0 to reduce the complexity

involved in the NetSim-MATLAB COM Interface.

NetSim provides several inbuilt APIs that can be called from the underlying protocol C source

codes to interact with MATLAB. Following is some of the APIs with syntax and description:

NetSim API’s to interact with MATLAB Description

netsim_matlab_interface_configure(char*
appPath)

Starts a MATLAB engine process and adds
the appPath to the top of the search path for
current MATLAB session.

netsim_matlab_interface_close();
Sends exit command to MATLAB to
terminate the session.

netsim_matlab_send_ascii_command(char*
format, ...)

Sends commands, variables and values as
string to MATLAB.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 239 of 304

netsim_matlab_get_value(char* out, int
outLen, char* name, char* type)

Gets the value of a MATLAB variable as a
string. Currently supports double data type
only.

Table 10-2: MATLAB Engine API functions

These functions are defined as part of the NetSim_utility.h file which is part of the Include directory

of NetSim Source Codes. This header can be included in the C files where these APIs are to be

called from.

10.3.1.1 Prerequisites for MATLAB Socket Interfacing

▪ An installed version of MATLAB R2021(a) or lower version in the same system where

NetSim is installed.

Note:

o If the MATLAB is installed in different System in the same Network. Copy MATLAB_Interface.exe

present in bin folder from installed directory (C:\Program Files\NetSim\Standard_v13_1\bin) to the

system where MATLAB is installed.

o Execute the below command in the command prompt where MATLAB_Interface.exe is placed

followed by IP address of the system where the NetSim is installed.

Figure 10-2: Command to start the MATLAB interface

▪ Registration of MATLAB as a COM server by one of the following methods

o Start Command Prompt as administrator and execute the following command:

matlab -regserver

Note: If you have multiple versions of MATLAB installed on your computer, the best practice is to run the

matlab command from the matlabroot folder.

▪ Enter the following command in the command line of MATLAB version that you want to

interface with NetSim:

matlab -regserver

10.3.1.2 Implement Weibull Distribution of MATLAB without using .m file

In this example we will replace the default Rayleigh Fading (part of the path loss calculation) used

in NetSim, with a Fading Power calculated using the Weibull Distribution from MATLAB Socket

Interfacing.

“This example uses 64bit version of NetSim setup with MATLAB Engine”

Procedure

© TETCOS LLP. All rights reserved

Ver 13.2 Page 240 of 304

1. Create a MATLAB_Interface.c file inside the IEEE802_11 folder which can be found in the

current workspace location of NetSim that you are running, and it would be something like

“C:\Users\PC\Documents\NetSim\Workspaces\<Yourdefaultworkspace>\src\Simulation\IEEE

802_11”. Write the following code inside MATLAB_Interface.c file.

/*

*

* This is a simple program that illustrates how to call the MATLAB

* Engine functions from NetSim C Code.

*

*/

#include<windows.h>

#include<stdlib.h>

#include<stdio.h>

#include<string.h>

#include "main.h"

#include "Stack.h"

#include"NetSim_utility.h"

#include "direct.h"

char buf[BUFSIZ];

double status;

double* result;

double fn_netsim_matlab_init()

{

 netsim_matlab_interface_configure("");

 return 0;

}

double fn_netsim_matlab_run()

{

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 241 of 304

//write your own implementation here

 int weibull_noncentrality = 1, weibull_scale = 2;

 //use ProbDistUnivParam() function for matlab 2016 or lower

 //sprintf_s(buf, BUFSIZ, "h=ProbDistUnivParam('weibull',[%d %d])",

 //weibull_noncentrality, weibull_scale);//

 //use makedist() function for matlab 2017 or Higher

 sprintf_s(buf,BUFSIZ,"h=makedist('weibull',%d,%d)", weibull_noncentrality,

 weibull_scale);

 netsim_matlab_send_ascii_command(buf);

 sprintf_s(buf,BUFSIZ,"i=random(h)");//

 netsim_matlab_send_ascii_command(buf);

 netsim_matlab_get_value(buf,BUFSIZ,"i","double");

 double result = atof(buf);

 return result;

}

double fn_netsim_matlab_finish()

{

fprintf(stderr, "\nPress any key to close MATLAB\n");

_getch();

netsim_matlab_interface_close();

return 0;

}

© TETCOS LLP. All rights reserved

Ver 13.2 Page 242 of 304

Figure 10-3: Create a MATLAB_Interface.c inside the IEEE802_11 folder

2. Now open the code and configure Visual studio Software Platform to x64.

3. Right click on “IEEE802_11 Project” present in “Solution Explorer” window and select Add >

Existing Item > select the MATLAB_Interface.c

4. MATLAB_Interface.c file contains the following API functions.

I. netsim_matlab_interface_configure() under fn_netsim_matlab_init() - waits to

connect MATLAB after running MATLAB interface.exe i.e “Open MATLAB Interface”

option in the NetSim UI.

II. netsim_matlab_send_ascii_command() and netsim_matlab_get_value() inside

fn_netsim_matlab_run() -relevant variables in NetSim to be passed as input to

MATLAB and vice versa.

III. netsim_matlab_interface_close(); inside fn_netsim_matlab_finish() - Send the quit

command to MATLAB to terminate the connection.

5. In the Solution Explorer under IEEE802_11 project double click on the IEEE802_11.c file.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 243 of 304

Figure 10-4: Solution Explorer double click on the IEEE802_11.c file

6. Add a call to fn_netsim_matlab_init(); inside the fn_NetSim_IEEE802_11_Init() function.

Figure 10-5: Added a fn_netsim_matlab_init(); inside the fn_NetSim_IEEE802_11_Init() function

7. Similarly add a call to fn_netsim_matlab_finish(); inside the fn_NetSim_IEEE802_11_

Finish() function.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 244 of 304

Figure 10-6: Added a fn_netsim_matlab_finish(); inside the fn_NetSim_IEEE802_11_Finish() function

8. In the Solution Explorer under IEEE802_11 project double click on the IEEE802_11.h file. Add

definitions of the following functions.

double fn_netsim_matlab_init();

double fn_netsim_matlab_run();

double fn_netsim_matlab_finish();

Figure 10-7: Added Matlab definitions in IEEE802_11.h file

9. In the Solution Explorer under IEEE802_11 project double click on the IEE802_11_PHY.c file.

10. Inside fn_Netsim_IEEE802_11_PHYIn () function comment the lines,

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 245 of 304

dFadingPower = propagation_calculate_fadingloss(propagationHandle,packet-

>nTransmitterId,ifid,pstruEventDetails->nDeviceId, pstruEventDetails->nInterfaceId);

11. Make a call to the fn_netsim_matlab_run() function by adding the following line,

 dFadingPower = fn_netsim_matlab_run();

Figure 10-8: Call to the fn_netsim_matlab_run() function

Note: In MATLAB Socket Interfacing, compilation of MATLAB Engine is not required since the MATLAB

APIs are already called in function.

12. Now Right Click on IEEE802_11 project and select Rebuild.

Figure 10-9: Rebuild IEEE802_11 project

© TETCOS LLP. All rights reserved

Ver 13.2 Page 246 of 304

13. A new libIEEE802.11.dll gets created in the binx64 folder of NetSim’s current workspace path

C:\Users\PC\Documents\NetSim\Workspaces\<Your default workspace>\bin_x64> for 64-bit.

For more information, follow steps provided in Section 9.1 “Writing your own code”.

14. Run NetSim in Administrative mode. Create a Network scenario involving IEEE802_11 say

MANET, right click on the Adhoc link and select properties. Make sure that the Channel

Characteristics is set to PathLoss and Fading and Shadowing. Perform the simulation.

Figure 10-10: Wireless Link Properties Window in MANET

15. NetSim Simulation console waits for MATLAB Interface process to connect.

Figure 10-11: NetSim Simulation console waits for MATLAB Interface process to connect

16. If MATLAB is installed in the same system where NetSim is installed. MATLAB Interface

process can be initiated directly from the design window of NetSim.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 247 of 304

▪ Go to “Options” in design window and select the Open MATLAB Interface option as shown

below:

Figure 10-12: Option to open MATLAB Interface

▪ Click on the OK button when the below window is displayed. This opens the MATLAB

Session.

Figure 10-13: NetSim MATLAB Interfacing warning message

17. After clicking on “OK”, MATLAB interface will get initiated. MATLAB Command window will

open after which the simulation NetSim starts to simulate. During the simulation

communication between MATLAB and NetSim will established.

18. The dFading power value will be displayed in the MATLAB Console window as below. At

simulation end the MATLAB Interface process will get terminated.

Figure 10-14: Runtime MATLAB interfacing window with I value

© TETCOS LLP. All rights reserved

Ver 13.2 Page 248 of 304

10.3.1.3 Debug and understand communication between NetSim and MATLAB

1. In the Solution Explorer under IEEE802_11 project double click on MATLAB_Interface.c file

and place a breakpoint inside the fn_netsim_matlab_run() function before the return

statement.

Figure 10-15: Place a breakpoint inside the fn_netsim_matlab_run() function

2. Rebuild the code.

3. Now run the NetSim Scenario. The simulation window stops for user interrupt.

4. In Visual studio, go to Debug =>Attach to Process.

5. From the list of Processes select NetSimCore.exe and click on Attach.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 249 of 304

Figure 10-16: Select NetSimCore.exe in Attach to Process Window

6. Now go to the Simulation window and press Enter. Simulation will pause at Waiting for matlab

interface to connect, go to Design window/GUI -> Options -> Open MATLAB interface ->click

on OK

7. MATLAB Command Window will start and breakpoint in Visual Studio gets triggered.

Figure 10-17: Breakpoint gets triggered in Visual Studio.

8. Now place another breakpoint after the line dFadingPower = fn_netsim_matlab_run()

© TETCOS LLP. All rights reserved

Ver 13.2 Page 250 of 304

Figure 10-18: Added Breakpoint under fn_netsim_matlab_run()

9. Add the variable dFadingPower in IEEE802_11_Phy.c file, to watch. For this, right click on the

variable dFadingPower and select “Add Watch” option. You will find a watch window containing

the variable name and its value in the bottom left corner.

Figure 10-19: Right Click on dFadingPower and Select “Add Watch” option

10. Now when debugging (say by pressing F5 each time) you will find that the watch window

displays the value of dFadingPower whenever the control reaches the recently set breakpoint.

You will also find that the value of dFadingPower in the Visual Studio Watch window and the

value of i in the MATLAB Console window appear to be similar.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 251 of 304

Figure 10-20: The Visual Studio Watch window and the value of i in the Runtime MATLAB window are

similar

10.3.1.4 Implement Weibull Distribution of MATLAB in NetSim using .m file

Procedure:

1. Create the weibull_distribution.m file inside <bin_x64 folder of where workspace is created>

C:\Users\PC\Documents\NetSim\Workspaces\<Your default workspace>\bin_x64 for 64 bit.

The weibull_distribution.m file contains the following code:

 function WLAN= weibull_distribution(noncentrality,scale)

 %use ProbDistUnivParam() function for matlab 2016

%h=ProbDistUnivParam('weibull',[noncentrality,scale]);

%use makedist() function for matlab 2017

h=makedist('weibull',noncentrality,scale);

i=random(h,1);

WLAN=i;

▪ Create matlab folder inside working workspace bin_x64 folder

© TETCOS LLP. All rights reserved

Ver 13.2 Page 252 of 304

Figure 10-21: Bin folder of x64 of current workspace

▪ Place the weibull_distribution.m file inside matlab folder.

Figure 10-22: Place Weibull_distribution.m file inside matlab folder

2. You will have to create a MATLAB_Interface.c file in the IEEE802_11 folder similar to the

previous example.The functions fn_netsim_matlab_init() and fn_netsim_matlab_finish()

will remain the same. Modify the function fn_netsim_matlab_run() that is part of

MATLAB_Interface.c which was used in the previous example as shown below:

double fn_netsim_matlab_run()

{

 //write your own implementation here

 int weibull_noncentrality = 1, weibull_scale = 2;

 netsim_matlab_send_ascii_command(buf);

 sprintf_s(buf,BUFSIZ, "k=weibull_distribution(%d,%d)", weibull_noncentrality,

weibull_scale);

 netsim_matlab_send_ascii_command(buf);

 netsim_matlab_get_value(buf, BUFSIZ, "k", "double");

 double result = atof(buf);

 return result;

}

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 253 of 304

3. Follow the similar steps 2 to 17 as explained in the section “Implement Weibull Distribution of

MATLAB in NetSim without using .m file”.

4. You will find that once the Simulation is run MATLAB Command Window starts to execute and

dfading power value will be printed based on the weibull_distribution.m file.

Figure 10-23: Runtime MATLAB interfacing window with k value

10.3.2 NetSim-MATLAB COM Interface

NetSim-MATLAB COM Interface was introduced in NetSim v9. This allows runtime interaction

between NetSim and MATLAB taking advantage of rich MATLAB Engine and matrix API’s.

MATLAB functions can be called from NetSim's underlying protocol C source codes using

MATLAB APIs. Following is some of the MATLAB Engine API functions that can be used from

NetSim C source codes:

MATLAB Engine API Functions Description

Engine Type for MATLAB engine

engOpen Start MATLAB engine session

engOpenSingleUse Start MATLAB engine session for single,
nonshared use

engClose Quit MATLAB engine session

engEvalString Evaluate expression in string

engGetVariable Copy variable from MATLAB engine
workspace

engPutVariable Put variable into MATLAB engine
workspace

engGetVisible Determine visibility of MATLAB engine
session

engSetVisible Show or hide MATLAB engine session

engOutputBuffer Specify buffer for MATLAB output

Table 10-3: MATLAB Engine API functions

In addition to these API’s there are several C Matrix API’s of MATLAB that can be used.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 254 of 304

10.3.2.1 Pre-requisites for NetSim-MATLAB COM Interface

▪ MATLAB Interfacing requires an installed version of MATLAB. Engine API functions cannot

be run on a machine that only has the MATLAB Runtime.

▪ Both NetSim and MATLAB should use the same build; 64-bit.

▪ Make sure that the following path is added to the environment variable PATH:

<Path where MATLAB is installed>\bin\win64

▪ If the machine has more than one MATLAB installed, the directory for the target platform

must be ahead of any other MATLAB directory (for instance, when compiling a 64-bit

application, the directory in the MATLAB 64-bit installation must be the first one on the

PATH).

▪ Registration of MATLAB as a COM server by one of the following methods

o Start Command Prompt as administrator and execute the following command:

matlab -regserver

Note:

o If you have multiple versions of MATLAB installed on your computer, the best practice

is to run the matlab command from the matlabroot folder.

o Enter the following command in the command line of MATLAB version that you want to

interface with NetSim:

matlab -regserver

10.3.2.2 Implement Weibull Distribution of MATLAB without using .m file

In this example we will replace the default Rayleigh Fading (part of the path loss calculation)

used in NetSim, with a Fading Power calculated using the Weibull Distribution from MATLAB.

Note: This example uses 64-bit version of NetSim and MATLAB.

Procedure:

1. Create a MATLAB_Interface.c file inside the IEEE802_11 folder which can be found in the

current workspace location of NetSim that you are running, and it would be something like

“C:\Users\PC\Documents\NetSim\Workspaces\<Your default workspace>\src\Simulation\

IEEE802_11” For more information on NetSim workspace refer Section 4 “Workspaces and

Experiments”. Write the following code inside the MATLAB_Interface.c file:

/*

*

* This is a simple program that illustrates how to call the MATLAB

* Engine functions from NetSim C Code.

*

*/

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 255 of 304

#include<windows.h>

#include<stdlib.h>

#include<stdio.h>

#include<string.h>

#include"engine.h"

#include"mat.h"

#include"mex.h"

#include"main.h"

char buf[BUFSIZ];

Engine *ep;

int status;

mxArray *h = NULL, *i = NULL, *j = NULL, *k = NULL;

mxArray *out;

double *result;

double fn_netsim_matlab_init()

{

 /*

 * Start the MATLAB engine

 */

 fprintf(stderr, "\nPress any key to Initialize MATLAB\n");

 _getch();

 if(!(ep = engOpen(NULL))) {

 MessageBox((HWND)NULL, (LPCWSTR)"Can't start MATLAB engine",

 (LPCWSTR) "MATLAB_Interface.c", MB_OK);

 exit(-1);

 }

 engEvalString(ep, "desktop");

 return 0;

}

double fn_netsim_matlab_run()

{

 //write your own implementation here

© TETCOS LLP. All rights reserved

Ver 13.2 Page 256 of 304

 int weibull_noncentrality = 1, weibull_scale = 2;

 engPutVariable(ep, "h", h);

//use ProbDistUnivParam() function for matlab 2016

 /*sprintf_s(buf, BUFSIZ, "h=ProbDistUnivParam('weibull',[%d %d])",
weibull_noncentrality, weibull_scale);*/

//use makedist() function for matlab 2017 or higher

 sprintf_s(buf, BUFSIZ, "h=makedist('weibull',%d,%d)", weibull_noncentrality,
weibull_scale);

 status = engEvalString(ep, buf);

 engPutVariable(ep, "i", i);

 sprintf_s(buf, BUFSIZ, "i=random(h,1)");

 status = engEvalString(ep, buf);

 out = engGetVariable(ep, "i");

 result = mxGetPr(out);

 return *result;

}

double fn_netsim_matlab_finish()

{

 fprintf(stderr, "\nPress any key to close MATLAB\n");

 _getch();

 status = engEvalString(ep, "exit");

 return 0;

}

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 257 of 304

Figure 10-24: Create a MATLAB_Interface.c inside the IEEE802_11 folder

2. Now open the code and you can configure Visual studio platform to x64 to build 64 bit Dll files.

3. Right click on “IEEE802_11 Project” present in “Solution Explorer” window and select Add →

Existing Item and select the MATLAB_Interface.c file.

4. MATLAB_Interface.c file contains the following functions.

i. fn_netsim_matlab_init() - Opens the MATLAB Engine

ii. fn_netsim_matlab_run() - Communicates with MATLAB Command Window

iii. fn_netsim_matlab_finish() - Closes the MATLAB Engine

5. In the Solution Explorer under IEEE802.11 project Double click on the IEEE802_11.c file

© TETCOS LLP. All rights reserved

Ver 13.2 Page 258 of 304

Figure 10-25: Solution Explorer double click on the IEEE802_11.c file
6. Add a call to fn_netsim_matlab_init(); inside the fn_NetSim_IEEE802_11_Init() function.

Figure 10-26: Added a fn_netsim_matlab_init(); inside the fn_NetSim_IEEE802_11_Init() function

7. Similarly add a call to fn_netsim_matlab_finish(); inside the fn_NetSim_IEEE802_11_

Finish() function.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 259 of 304

Figure 10-27: Added a fn_netsim_matlab_finish(); inside the fn_NetSim_IEEE802_11_Finish() function

8. In the Solution Explorer under IEEE802_11 project Double click on the IEEE802_11.h file. Add

definitions of the following functions.

double fn_netsim_matlab_init();

double fn_netsim_matlab_run();

double fn_netsim_matlab_finish();

© TETCOS LLP. All rights reserved

Ver 13.2 Page 260 of 304

Figure 10-28: Added Matlab definitions in IEEE802_11.h file

9. In the Solution Explorer under IEEE802_11 project Double click on the IEEE802_11_PHY.c

file

10. Inside fn_Netsim_IEEE802_11_PHYIn () function comment the lines,

dFadingPower = propagation_calculate_fadingloss(propagationHandle,

packet->nTransmitterId,ifid,pstruEventDetails->nDeviceId, pstruEventDetails->nInterfaceId);

11. Make a call to the fn_netsim_matlab_run() function by adding the following line,

dFadingPower = fn_netsim_matlab_run();

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 261 of 304

Figure 10-29: Call to the fn_netsim_matlab_run() function

12. To compile a MATLAB engine application in the Microsoft Visual Studio (2019) environment,

Right click on the IEEE802_11 project and select PROPERTIES in the solution explorer. Once

this window has opened, make the following changes:

Figure 10-30: Right click on the IEEE802_11 project and select Properties

© TETCOS LLP. All rights reserved

Ver 13.2 Page 262 of 304

13. Under C/C++ → General, add the following directory to the field ADDITIONAL INCLUDE

DIRECTORIES:

<Path where MATLAB is installed>\extern\include

NOTE: To determine path where MATLAB is installed, entering the following command in the MATLAB command

prompt:

matlabroot

Figure 10-31: MATLAB Command Prompt

Figure 10-32: Determine MATLAB Path in Additional Include Directories

14. Under C/C++ → Precompiled Headers, set PRECOMPILED HEADERS as "Not Using

Precompiled Headers".

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 263 of 304

Figure 10-33: Select Precompiled Header as “Not Using Precompiled Headers”

15. Under Linker → General, add the directory to the field ADDITIONAL LIBRARY DIRECTORIES:

<Path where MATLAB is installed>\extern\lib\win64\microsoft

Figure 10-34: SetAdditional Library Directories to <Path where MATLAB is

installed>\extern\lib\win64\microsoft

16. Under Configuration Properties →Debugging, Add the following Target path in the

ENVIRONMENT: <Path where MATLAB is installed>\bin\win64

© TETCOS LLP. All rights reserved

Ver 13.2 Page 264 of 304

Figure 10-35: Set Environment to <Path where MATLAB is installed>\bin\win64

17. Under Linker → Input, add the following names to the field marked ADDITIONAL

DEPENDENCIES: libeng.lib;libmx.lib;libmat.lib; and Click on Apply and OK.

Figure 10-36: Set Additional Dependencies as libeng.lib;libmx.lib;libmat.lib;

18. Now Right Click on IEEE802_11 project and select Rebuild.

Note:

• Before Rebuilding make sure you have access to IEEE802.11 folder, if the access denied while

rebuilding go to

"C:\Users\PC\Documents\NetSim\Workspaces\<Yourdefaultworkspace>\src\Simulation\IEEE802_1

1" path..

file:///C:/Users/PC/Documents/NetSim/Workspaces/%3cYour

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 265 of 304

• Right click on IEEE802.11 folder, select on properties and deselect "Read only" attribute and click

on apply.

Figure 10-37: Rebuild IEEE802_11 project

19. A new libIEEE802.11.dll gets created in the bin_x64 folder of NetSim’s current workspace path

<C:\Users\PC\Documents\NetSim\Workspaces\<Your default workspace>\bin_x64>.

For more information, follow steps provided in Section 9.1 “Writing your own code”.

20. Run NetSim in Administrative mode. Create a Network scenario involving IEEE802_11 say

MANET, right click on the Adhoc link and select properties. Make sure that the Channel

Characteristics is set to PathLoss and Fading and Shadowing.

Figure 10-38: Wireless Link Properties Window

21. Perform Simulation. You will be observed to initiate the MATLAB in NetSim console window

After clicking on enter, MATLAB command window starts and gets closed once the simulation

is over.

file:///C:/Users/PC/Documents/NetSim/Workspaces/%3cYour

© TETCOS LLP. All rights reserved

Ver 13.2 Page 266 of 304

10.3.2.3 Debug and understand communication between NetSim and MATLAB

1. In the Solution Explorer under IEEE802_11 project double click on MATLAB_Interface.c file

and place a breakpoint inside the fn_netsim_matlab_run() function before the return

statement as shown in below screenshot.

Figure 10-39: Place a breakpoint inside the fn_netsim_matlab_run() function

2. Rebuild the code.

3. Now run the NetSim Scenario. The simulation window stops for user interrupt.

4. In Visual studio, go to Debug → Attach to Process.

5. From the list of Processes select NetSimCore.exe and click on Attach.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 267 of 304

 Figure 10-40: Select NetSimCore.exe in Attach to Process Window
6. Now go to the Simulation window and press Enter.

7. MATLAB Command Window and MATLAB Desktop Window will start and breakpoint in Visual

Studio gets triggered.

Figure 10-41: Once Simulation Start and breakpoint gets triggered in Visual Studio

© TETCOS LLP. All rights reserved

Ver 13.2 Page 268 of 304

8. Now when debugging (say, by pressing F5 each time) you will find the computation taking

place in the MATLAB Workspace.

Figure 10-42: MATLAB Workspace

9. This value of i obtained from MATLAB is used to calculate fading power instead of the already

available models in NetSim.

10. Now place another breakpoint after the line dFadingPower = fn_netsim_matlab_run()

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 269 of 304

Figure 10-43: Added Another breakpoint after the line dFadingPower = fn_netsim_matlab_run()

11. Add the variable dFadingPower in IEEE802_11_Phy.c file, to watch. For this, right click on the

variable dFadingPower and select “Add Watch” option. You will find a watch window containing

the variable name and its value in the bottom left corner.

Figure 10-44: Right Click on dFadingPower and Select “Add Watch” option

12. Now when debugging (say by pressing F5 each time) you will find that the watch window

displays the value of dFadingPower whenever the control reaches the recently set breakpoint.

You will also find that the value of dFadingPower in the Visual Studio Watch window and the

value of i in the MATLAB workspace window are similar.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 270 of 304

Figure 10-45: The Visual Studio Watch window and the value of i in the MATLAB workspace window are

similar.

10.3.2.4 Implement Weibull Distribution of MATLAB in NetSim using .m file:

Procedure:

1. Create a file named weibull_distribution.m file inside <Path where MATLAB is installed>. The

weibull_distribution.m file contains the following code:

function WLAN= weibull_distribution(noncentrality,scale)

%use ProbDistUnivParam() function for matlab 2016

%h=ProbDistUnivParam('weibull',[noncentrality,scale]);

%use makedist() function for matlab 2017

h=makedist('weibull',noncentrality,scale);

 i=random(h,1);

WLAN=i;

2. Place this file in the MATLAB’s default working directory. This will usually be MATLAB’s root

directory or the bin folder in MATLAB’s installation path.

NOTE: To determine path where MATLAB is installed, entering the following command in the MATLAB command

prompt:

matlabroot

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 271 of 304

Figure 10-46: MATLAB Command Prompt

o Execute the below command in MATLAB command window to clear cache.

restoredefaultpath % This will remove any custom paths

rehash toolboxcache

savepath

Figure 10-47: MATLAB command window to clear cache

© TETCOS LLP. All rights reserved

Ver 13.2 Page 272 of 304

3. You will have to create a MATLAB_Interface.c file in the IEEE802_11 folder similar to the

previous example. The functions fn_netsim_matlab_init() and fn_netsim_matlab_finish()

will remain the same. Modify the function fn_netsim_matlab_run() that is part of

MATLAB_Interface.c which was used in the previous example as shown below:

double fn_netsim_matlab_run()

{

 //write your own implementation here

 int weibull_noncentrality = 1, weibull_scale = 2;

 engPutVariable(ep, "h", h);

 sprintf_s(buf,BUFSIZ, "k=weibull_distribution(%d,%d)", weibull_noncentrality, weibull_scale);

 status = engEvalString(ep, buf);

 out = engGetVariable(ep, "k");

 result = mxGetPr(out);

 return *result;

}

4. Follow steps 2 to 17 as explained in the section “Implement Weibull Distribution of MATLAB in

NetSim without using .m file” above.

5. A call to the weibull_distribution () function inside the weibull_distribution.m file is made, and

weibull_noncentrality and weibull_scale parameters are passed from NetSim.

6. Right Click on IEEE802_11 project and select Rebuild.

7. A new libIEEE802.11.dll will get created in the bin_x64 folder of NetSim’s current workspace

path <C:\Users\PC\Documents\NetSim\Workspaces\<Your default workspace>\bin_x64> for

64-bit.

Open NetSim in Administrative mode. Create a Network scenario involving IEEE802_11 say

MANET, right click on the properties, make sure that the Channel Characteristics is set to

PathLoss and Fading and Shadowing.

8. You will find that once the Simulation is run MATLAB Command Window starts and gets closed

once the Simulation is over. You can also debug the code to understand the communication

between NetSim and MATLAB as explained in the DEBUGGING section above.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 273 of 304

10.3.2.5 Plot a histogram in MATLAB per a Weibull distribution (using .m file)

Procedure:

1. Create a file NETSIM_MATLAB.m file containing the following code, Place this file in the

MATLAB’s default working directory. This will usually be MATLAB’s root directory or the bin

folder in MATLAB’s installation path.

Figure 10-48: MATLAB’s default working directory path

function WLAN=NETSIM_MATLAB(choice,varargin)

switch(choice)

 case'weibull'

 %use ProbDistUnivParam function for matlab 2016

 %h=ProbDistUnivParam('weibull',[varargin{1},varargin{2}]);

 %use makedist function for matlab 2017

 h=makedist('weibull',varargin{1}, varargin{2});

 logpath=strcat(varargin{3},'\plotvalues.txt');

 i=random(h,1);

 fid = fopen(logpath,'a+');

 fprintf(fid,'%f',i);

 fprintf(fid,'\r\n');

 fclose('all');

 WLAN=i;

 case'plothistogram'

 logpath=strcat(varargin{1},'\plotvalues.txt');

 fid=fopen(logpath);

 mx=fscanf(fid,'%f');

© TETCOS LLP. All rights reserved

Ver 13.2 Page 274 of 304

 hist(mx);

 fclose('all');

 WLAN=0;

end

2. Modify the function fn_netsim_matlab_run() that is part of MATLAB_Interface.c which was

used in the previous example.

double fn_netsim_matlab_run(char* arr)

{

 //write your own implementation here

 int weibull_noncentrality = 1, weibull_scale = 2;

 if (strcmp(arr, "weibull") == 0)

 {

 engPutVariable(ep, "h", h);

 //engPutVariable(ep, "logpath=%s", pszIOLogPath);

 //sprintf_s(buf, BUFSIZ, "logpath=%s", pszIOLogPath);

 //status = engEvalString(ep, buf);

 sprintf_s(buf, BUFSIZ, "h=NETSIM_MATLAB('weibull',%d,%d,'%s')",

 weibull_noncentrality, weibull_scale, pszIOLogPath);

 status = engEvalString(ep, buf);

 out = engGetVariable(ep, "h");

 result = mxGetPr(out);

 return *result;

 }

 else if (strcmp(arr, "plothistogram") == 0)

 {

 //engPutVariable(ep, "logpath=%s", pszIOLogPath);

 sprintf(buf, "NETSIM_MATLAB('plothistogram','%s')", pszIOLogPath);

 engEvalString(ep, buf);

 status = engEvalString(ep, buf);

 return 0;

 }

 else

 return 0;

}

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 275 of 304

Follow steps 2 to 17 as explained in the section on “Implement weibull Distribution of MATLAB in

NetSim without using .m file” above.

▪ A call to the NetSim_MATLAB() function inside the NetSim_MATLAB.m file is made, for fading

power calculation with parameters distribution(‘weibull’), weibull_noncentrality and

weibull_scale parameters are passed from NetSim.

▪ A call to the NetSim_MATLAB() function inside the NetSim_MATLAB.m file is made, for

plotting histogram for the values generated by MATLAB.

▪ Also add the following call to fn_netsim_matlab_run() function to plot the histogram before

closing the MATLAB Engine.

Figure 10-49: Added the parameter "plothistogram" in fn_netsim_matlab_run() function to get histograms

▪ Similarly in the call made to fn_netsim_matlab_run() function in IEEE802_11_Phy.c file add

the parameter “weibull” as shown below.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 276 of 304

Figure 10-50: Added the parameter “weibull” in fn_netsim_matlab_run() function in IEEE802_11_Phy.c

file

▪ Also modify the function definition of fn_netsim_matlab_run() function in IEEE802_11.h file

as shown below:

Figure 10-51: Modify the Function definition of fn_netsim_matlab_run() function in IEEE802_11.h file

▪ Right Click on IEEE802_11 project and select Rebuild will create a new libIEEE802.11. in the

bin_x64 folder of NetSim’s current workspace path

< C:\Users\PC\Documents\NetSim\Workspaces\<Your default workspace>\bin_x64 > for 64-

bit.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 277 of 304

▪ Open NetSim in Administrative mode. Create a Network scenario involving IEEE802_11 say

MANET, Right click on Adhoc link or Wireless link. Make sure that the Channel Characteristics

is set to PathLoss and Fading and Shadowing.

▪ You will find that once the Simulation is run MATLAB Command Window starts and once the

Simulation is over a histogram is displayed in MATLAB for the values that were generated

using weibull distribution.

Figure 10-52: Histogram plot is displayed in MATLAB

▪ The graph and the MATLAB windows get closed once you press any key.

You can also debug the code to understand the communication between NetSim and MATLAB

as explained in the DEBUGGING section above.

10.4 Interfacing tail with NetSim

What is a tail command?

The tail command is a command-line utility for outputting the last part of files given to it via

standard input. It writes results to standard output. By default, tail returns the last ten lines of each

file that it is given. It may also be used to follow a file in real-time and watch as new lines are

written to it.

PART 1:

Tail options

▪ The following command is used to log the file.

tail " path_to_file " -f

where -f option is used to watch a file for changes with the tail command pass the -f option. This

will show the last ten lines of a file and will update when new lines are added. This is commonly

© TETCOS LLP. All rights reserved

Ver 13.2 Page 278 of 304

used to watch log files in real-time. As new lines are written to the log the console will update will

new lines.

▪ If users do not want the last ten lines of the file, then use the following command.

tail -n 0 " path_to_file " –f

where –n option is used to show the last n number of lines.

▪ If you want to open more than 1 file then use the following command

tail –n 0 " path_to_file " " path_to_file " –f

PART 2:

Steps to log NetSim files using tail console.

Note: Before Executing below steps, User need to generate/Simulate a scenario of a network to which tail

command is being executed.

▪ Open command window from Install directory path of Netsim (<C:\Program

Files\NetSim\Pro_v13_1\bin) which contains tail.exe

▪ Type the following command to open ospf_hello.log.txt file and press enter.

tail -n 0 “<NetSim_IOPath>\log\ospf_hello.log” -f

For example,

tail -n 0 "C:\Users\Admin\AppData\Roaming\NetSim\pro_13.1\log\ospf_hello.log" -f

Figure 10-53: Enter the ospf_hello.log.txt file path is Command Prompt

▪ Open solution file and add the following line in fn_NetSim_OSPF_Init() function in ospf.c file

present inside OSPF project

Figure 10-54: Add the following line in fn_NetSim_OSPF_Init() function in ospf.c file present inside OSPF

project

▪ Rebuild the project.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 279 of 304

▪ Upon rebuilding, libOSPF.dll will get created in the bin folder of NetSim’s current workspace

path <C:\Users\PC\Documents\NetSim\Workspaces\<Your default workspace>\bin_x64 > for

64-bit

▪ Create a scenario in NetSim as per the screenshot below and run simulation.

Figure 10-55: Network Topology

▪ In the console window user would get a warning message shown in the below screenshot

Figure 10-56 (because of changed DLL) and then the simulation will pause for user input

(because of _getch() added in the init function)

Figure 10-56: Modified Project DLL Warning Message in NetSim Console

▪ In Visual Studio, put break point inside all the functions in OSPF_Hello.c file present inside

OSPF project.

▪ Go to “Debug->Attach to Process” in Visual studio and attach to NetSimCore.exe.

▪ Press enter in the command window. Then control goes to the project and stops at the break

point in the source code as shown below Figure 10-57.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 280 of 304

Figure 10-57: Control goes to the project and stops at the break point in the source code.

▪ Once after pressing enter in command window, check the tail console to watch the

ospf_hello.log would look like the following screenshot Figure 10-57.

▪ Below Screenshot shows that scheduling time of hello interval for each Routers connected in

Network.

Figure 10-58: Scheduling hello interval for Routers.

Figure 10-59: Adding new neighbor and terminating process if it is 1-way event

▪ Above Screenshot shows of adding neighbor to hello message, at Time 0.0101 ms, Router 5

interface 1 (11.4.1.2) received hello msg from neighbor 11.2.1.1.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 281 of 304

Figure 10-60: Adding Neighbor and Performing 2-way Event if neighbor is present in Router’s list.

Above Screenshot indicates the Router 2’s interface 1 (11.2.1.2) has received hello message

from neighbor 11.2.1.1, if neighbor is present in Router’s list 2-way event will be performed.

▪ Similarly, users can debug the code and observe how the OSPF tables get filled.

▪ Users can also open multiple files by using the command given in Part 1.

10.5 Adding Custom Performance Metrics

NetSim allows users to add additional metrics tables to the Simulation Results window in addition

to the default set of tables that are available at the end of any simulation. This can be achieved

by editing the source codes of the respective protocol.

General format to add custom metrics in Result window:

Every protocol has a main C file which contains a Metrics () function. For E.g., TCP project will

have a TCP.c file, UDP will have an UDP.c file etc. In the following example we have added a

new table as part of TCP protocol. TCP.c file contains fn_NetSim_TCP_Metrics() function where

code related to custom metrics is added as shown below:

_declspec(dllexport) int fn_NetSim_TCP_Metrics(PMETRICSWRITER metricsWriter)
{

//CUSTOM METRICS
//Set table name
PMETRICSNODE table = init_metrics_node(MetricsNode_Table, "CUSTOM METRICS",
NULL);
//set table headers
add_table_heading(table, "COLUMN_HEADER_1", true, 0);
add_table_heading(table, "COLUMN_HEADER_2", false, 0);
//Add table data
add_table_row_formatted(false, table, "%s,%s,", "ROW_DATA1","ROW_DATA2");
PMETRICSNODE menu = init_metrics_node(MetricsNode_Menu,"CUSTOM_METRICS",
NULL);
//Add table to menu
add_node_to_menu(menu, table);
//Write to Metrics file
write_metrics_node(metricsWriter, WriterPosition_Current, NULL, menu);
delete_metrics_node(menu);
//CUSTOM METRICS
return fn_NetSim_TCP_Metrics_F(metricsWriter);

© TETCOS LLP. All rights reserved

Ver 13.2 Page 282 of 304

}

Figure 10-61: Added Custom metrics table to the Simulation Results window

For illustration, an example regarding Wireless Sensor Network is provided. In this example,

parameters such as Sensor Node Name, Residual Energy, State (On/Off) and turn–off time are

tracked and added to a new table in the Simulation Results window.

Refer Section 9.1 on writing your own code, for more information.

After loading the source codes in Visual Studio, perform the following modifications:

Step 1: Copy the provided code at the top in 802_15_4.h file.

double NetSim_Off_Time[100]; //Supports upto Device ID 100. Array size can be increased for
higher number of Devices/Device ID's

Step 2:

Add the header file in 802_15_4.c file.

#include "../BatteryModel/BatteryModel.h"

Step 3:

Copy the below code (in red colour) in 802_15_4.c file (inside fn_NetSim_Zigbee_Metrics()

function)

/** This function write the metrics in metrics.txt */

_declspec(dllexport) int fn_NetSim_Zigbee_Metrics(PMETRICSWRITERmetricsWriter)

 {

//CUSTOM METRICS

 ptrIEEE802_15_4_PHY_VAR phy;

 ptrBATTERY battery;

 char radiostate[BUFSIZ];

 NETSIM_ID nDeviceCount = NETWORK->nDeviceCount;

 //Set table name

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 283 of 304

 PMETRICSNODE table = init_metrics_node(MetricsNode_Table,
"NODE_FAILURE_METRICS", NULL);

 //set table headers

 add_table_heading(table, "Node Name", true, 0);

 add_table_heading(table, "Status(ON/OFF)", true, 0);

 add_table_heading(table, "Residual_Energy (mJ)", true, 0);

 add_table_heading(table, "Time - Turned OFF (microseconds)", false, 0);

 for (int i = 1; i <= nDeviceCount; i++)

 {

 sprintf(radiostate, "ON");

 phy = WSN_PHY(i);

 if (strcmp(DEVICE(i)->type, "SENSOR"))

 continue;

 if (WSN_MAC(i)->nNodeStatus == 5 || phy->nRadioState==RX_OFF)

 sprintf(radiostate, "OFF");

 //Add table data

 add_table_row_formatted(false, table, "%s,%s,%.2lf,%.2lf,", DEVICE_NAME(i), radiostate,
battery_get_remaining_energy((ptrBATTERY)phy->battery), NetSim_Off_Time[i]);

 }

 PMETRICSNODE menu = init_metrics_node(MetricsNode_Menu, "CUSTOM_METRICS",
NULL);

 add_node_to_menu(menu, table);

 write_metrics_node(metricsWriter, WriterPosition_Current, NULL, menu);

 delete_metrics_node(menu);

 //CUSTOM METRICS

return fn_NetSim_Zigbee_Metrics_F(metricsWriter);

}

Step 4:

Copy the below code (in red colour) at the end of ChangeRadioState.c file.

if(isChange)

 {

 phy->nOldState = nOldState;

 phy->nRadioState = nNewState;

 }

 else

 {

 phy->nRadioState = RX_OFF;

 WSN_MAC(nDeviceId)->nNodeStatus = OFF;

© TETCOS LLP. All rights reserved

Ver 13.2 Page 284 of 304

NetSim_Off_Time[nDeviceId] = ldEventTime;

 }

 return isChange;

 }

Step 5:

Build DLL with the modified code and run a Wireless Sensor Network scenario. After Simulation,

user will notice a new Performance metrics named “Custom Metrics” is added. The newly added

NODE_FAILURE_METRICS table is shown below Figure 10-62.

Figure 10-62: Added Custom metrics table to the Simulation Results window

10.6 Simulation Time and its relation to Real Time (Wall

clock)

The notion of time in a simulation is not directly related to the actual time that it takes to run a

simulation (as measured by a wall-clock or the computer's own clock), but is a variable maintained

by the simulation program. NetSim uses a virtual clock which ticks virtual time. Virtual time starts

from zero progresses as a positive real number.

Time is as a global parameter. All components of the network share the same time throughout

the simulation independently of where they are physically located or how they are logically

connected to the network. There are not differences among the local time of the communication

network components.

This virtual time is referred to as simulation time to clearly distinguish it from real (wall-clock) time.

NetSim is a discrete event simulator (DES), and in any DES, the progression of the model over

simulation time is decomposed into individual events where change can take place. The flow of

time is only between events and is not continuous. Therefore, simulation time is not allowed to

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 285 of 304

progress during an event, but only between events. In fact, the simulation time is always equal to

the time at which the current event occurs. Thus, simulation time can be viewed as a variable that

"jumps" to track the time specified for each new event.

The answer to the question "Will NetSim run for 10 seconds if Simulation time is set to 10 sec?"

is, the simulation may take more than 10 seconds (Wall clock) if the network scenario is very large

and heavy traffic load. It may take a much shorter time (wall clock) for small networks with low

traffic loads.

Note that when running in "Emulation mode" simulation time and wall clock will be exactly

synchronized since it involves the transfer of real packets across the virtual network in NetSim.

In NetSim, the current simulation time can be got using -pstruEventDetails->dEventTime

10.7 Adding Custom Plots

NetSim’s plot option can be used to obtain Link and application throughput plots, which can be

accessed from the results dashboard after the simulation. In addition, TCP Congestion Window

plots and Buffer occupancy plots can be obtained by enabling the respective option in the device

properties.

Users can also log additional parameters with respect to time and get them plotted in NetSim

results dashboard. Following are some of the API’s which are part of NetSim_Plots.h file that can

be used for this purpose:

▪ fn_NetSim_Install_Metrics_Plot() - This function creates a plot log file and returns a value

of type PNETSIMPLOT which can be stored in a pointer and be used for adding values

using add_plot_data_formatted(). This function can generally be called at simulation start.

This function can be called one time for each plot that is to be generated.

For Eg: If a plot is to be generated for each node. Then this function needs to be called the

number of device times.

▪ add_plot_data_formatted() - This function can be used to add values to the plot log created

using the call to fn_NetSim_Install_Metrics_Plot(). This function needs to be called each

time you want to add new values to the plot log file. The call should be made at appropriate

section of code where the value being plotted changes with time.

10.7.1 Plotting SNR for each UE-gNB pair in 5G NR

SNR measured by UE’s from each gNB can be logged and plotted as part of NetSim results

window without having to use additional tools. Following is one such example where we log the

SNR for each UE-gNB pair and obtain plots at the end of the simulation.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 286 of 304

Step 1: Open NetSim source code in NetSim current workspace. For more information, please

refer section “4.12 How does a user open and modify source codes”.

Step 2: Go to LTE_NR project through the solution explorer and open the LTE_NR.c file. In the

function fn_NetSim_LTE_NR_Init(), modify code as shown below:

_declspec(dllexport) int fn_NetSim_LTE_NR_Init()

{

 //custom plot

 int ret = fn_NetSim_LTE_NR_Init_F();

 for (NETSIM_ID r = 0; r < NETWORK->nDeviceCount; r++)

 {

 for (NETSIM_ID rin = 0; rin < DEVICE(r + 1)->nNumOfInterface; rin++)

 {

 if (!isLTE_NRInterface(r + 1, rin + 1))

 continue;

 ptrLTENR_PROTODATA data = LTENR_PROTODATA_GET(r + 1, rin + 1);

 switch (data->deviceType)

 {

 case LTENR_DEVICETYPE_UE:

 {

 for (NETSIM_ID r1 = 0; r1 < NETWORK->nDeviceCount; r1++)

 {

 for (NETSIM_ID rin1 = 0; rin1 < DEVICE(r1 + 1)->nNumOfInterface; rin1++)

 {

 if (!isLTE_NRInterface(r1 + 1, rin1 + 1))

 continue;

 ptrLTENR_PROTODATA data = LTENR_PROTODATA_GET(r1 + 1, rin1 + 1);

 switch (data->deviceType)

 {

 case LTENR_DEVICETYPE_GNB:

 {

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 287 of 304

 char heading[BUFSIZ], plotname[BUFSIZ];

 sprintf(heading, "UE_%d_GNB_%d_SNR", r + 1, r1 + 1);

 sprintf(plotname, "plot_UE_%d_GNB_%d_SNR", r + 1, r1 + 1);

 fn_NetSim_Install_Metrics_Plot(Plot_Custom, "LTE_NR SNR Plot", heading,
"SNR(dB)", 1, plotname);

 }

 break;

 default:

 break;

 }

 }

 }

 break;

 default:

 break;

 }

 break;

 }

 }

 }

 return ret;

 //custom plot

}

Step 3: In the file LTENR_GNBRRC.c go to the function

fn_NetSim_LTENR_RRC_GENERATE_UE_MEASUREMENT_REPORT() and add the lines of

code highlighted in red as shown below:

void fn_NetSIM_LTENR_RRC_GENERATE_UE_MEASUREMENT_REPORT()

{

 NETSIM_ID d = pstruEventDetails->nDeviceId;

 NETSIM_ID in = pstruEventDetails->nInterfaceId;

© TETCOS LLP. All rights reserved

Ver 13.2 Page 288 of 304

 ptrLTENR_UERRC ueRRC = LTENR_UERRC_GET(d, in);

 ptrLTENR_GNBRRC gnbRRC = LTENR_GNBRRC_GET(ueRRC->SelectedCellID, ueRRC-
>SelectedCellIF);

 ptrLTENR_RRC_UE_MEASUREMENT_REPORT report = NULL;

 ptrLTENR_RRC_UE_MEASUREMENT_REPORT temp = NULL;

 ptrLTENR_GNBPHY phy = NULL;

 for (NETSIM_ID r = 0; r < NETWORK->nDeviceCount; r++)

 {

 for (NETSIM_ID rin = 0; rin < DEVICE(r + 1)->nNumOfInterface; rin++)

 {

 if (!isLTE_NRInterface(r + 1, rin + 1))

 continue;

 ptrLTENR_PROTODATA data = LTENR_PROTODATA_GET(r + 1, rin + 1);

 switch (data->deviceType)

 {

 case LTENR_DEVICETYPE_GNB:

 temp = MEASUREMENT_REPORT_ALLOC();

 temp->ueID = d;

 temp->cellID = r + 1;

 temp->cellIF = rin + 1;

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 289 of 304

 temp->rs_type = RS_TYPE_SSB;

 temp->reportAmount = ReportAmount_r1;

 temp->reportInteval = gnbRRC->ueMeasReportInterval;

 phy = LTENR_GNBPHY_GET(r + 1, rin + 1);

 temp->sinr = LTENR_PHY_RRC_RSRP_SINR(r + 1, rin + 1, d, in);

 //custom plot

 char plotname[BUFSIZ];

 sprintf(plotname, "%s\\plot_UE_%d_GNB_%d_SNR.txt",pszIOPath, d, r + 1);

 FILE* fp = fopen(plotname, "a+");

 if (fp)

 {

 fprintf(fp, "%lf,%lf\n",pstruEventDetails->dEventTime,temp->sinr);

 fclose(fp);

 }

 //custom plot

 LIST_ADD_LAST((void**)&report, temp);

 break;

 default:

 break;

 }

© TETCOS LLP. All rights reserved

Ver 13.2 Page 290 of 304

 }

 }

 ptrLTENR_RRC_Hdr hdr = calloc(1, sizeof * hdr);

 hdr->msg = report;

 hdr->msgType = LTENR_MSG_RRC_UE_MEASUREMENT_REPORT;

 hdr->SenderID = d;

 hdr->SenderIF = in;

 fn_NetSIm_LTENR_RRC_ADD_HDR_INTO_PACKET(pstruEventDetails->pPacket, hdr, ueMEASID,
LTENR_MSG_RRC_UE_MEASUREMENT_REPORT);

 LTENR_CallPDCPOut();

}

Step 4: In LTENR.c add the following lines #include "NetSim_Plot.h".

Step 5: Save the changes and right-click on the LTE_NR module in the solution explorer and

select Rebuild.

Step 6: Upon a successful build, NetSim will automatically update the modified binaries in the

respective binary folder.

Step 7: Now on running any simulation in LTE/5G NR networks, you will get individual SNR plots

for each UE-GNB/UE-ENB pair, in the NetSim Metrics window under Plots ->LTE_NR SNR Plot

shown below Figure 10-63.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 291 of 304

Figure 10-63: LTE_NR SNR Plots in Result Window

Figure 10-64: SNR Plot

The above results are based on the Handover in 5G NR Experiment which is part of NetSim v13.1

experiment manual. The plot shows how the SNR drops as UE 3 moves away from GNB 1.

10.8 Environment Variables in NetSim

1. NETSIM_PACKET_FILTER = <filter_string> //used by NetSim developers to debug. Emulator

code to passes filter string to windivert. See windivert doc for more information.

2. NETSIM_EMULATOR_LOG = <log_file_path> // Used by Real time sync function to log get

event and add event. Used by NetSim developers to debug.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 292 of 304

3. NETSIM_EMULATOR = 1 // Set by application dll or user to notify NetSim internal modules to

run in emulation mode

4. NETSIM_CUSTOM_EMULATOR = 1 // To notify NetworkStack to not load emulation dll and

to only do time sync.

5. NETSIM_SIM_AREA_X = <int> // Area used by Mobility functions for movement of device. Set

by config file parser or user.

6. NETSIM_SIM_AREA_Y = <int> // Same as above

7. NETSIM_ERROR_MODE = 1 // if set then windows won't popup gui screen for error reporting

on exception.

8. NETSIM_BREAK = <int> // Event id at which simulation will break and wait for user input.

Equivalent to -d command in CLI mode.

9. NETSIM_AUTO = <int> // If set NetSim will not ask for keypress after simulation. //Useful to

run batch simulations.

10. NETSIM_IO_PATH = <path> // IO path of NetSim from where it will read Config file and write

output file. Equivalent to -IOPATH command in CLI mode.

11. NETSIM_MAP = 1 // Set by Networkstack to inform other modules that simulation is running

per map view.

12. NETSIM_ADVANCE_METRIC // If set, NetSim provides a set of extra metrics.

In application metrics, you can see duplicate packets received.

13. NETSIM_CONFIG_NAME = <FILE NAME> // Config file name. This file must present in

IOPath. If not set default value is Configuration.netsim

14. NETSIM_NEG_ID = 1 // If set, then control packets will have negative id.

15. NETSIM_PACKET_DBG = 1 // If set, then Simulation engine will log the packet creation and

freeing

16. NETSIM_MEMCHECK = 1 // If set, then simulation will enable memory check.

17. NETSIM_MEMCHECK_1 = x // Lower event id

18. NETSIM_MEMCHECK_2 = x // Upper event id

10.9 Best practices for running large scale simulations

As we scale simulations, the number of events processed and the memory consumed increase.

Simulation scale can be defined in terms of:

1. Number of Nodes

▪ End nodes

▪ Intermediate devices

2. Total traffic in the network

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 293 of 304

▪ Number of traffic sources

▪ Average generation rate per source

3. Simulation time

The simulators performance is additionally affected by:

▪ Protocols running

▪ Network Parameters such as Topology, Mobility, Wireless Channel etc.

▪ Enabling/Disabling - Animation, Plots, Traces and Logs

▪ External Interfacing – MATLAB, Wireshark, SUMO

NetSim GUI limitation on total number of Nodes is as follows:

▪ NetSim Academic – 100

▪ NetSim Standard – 500

▪ NetSim Professional – No software limit

Recommended best practices for running large scale simulations are:

▪ Run 64-bit Build of NetSim

▪ Use the latest Windows 10 Build.

▪ Use a system running a high-end processor with minimum 32 GB RAM

▪ Disable Animation – NetSim writes one file per node and windows limits the number of

simultaneously opened files to 512.

▪ Disable plots, traces and logs to speed up the simulation.

▪ If plots are enabled NetSim writes one file for each link and for each application. Therefore,

it is recommended users only select those links/applications for which they wish to plot

output performance. Plots for all other applications/links should be disabled.

▪ NetSim writes one packet trace and one event trace file per simulation. If users wish to open

this file in MS-Excel, please note Excel’s limit of 1 Million rows.

▪ Packet trace and Event trace can be disabled to speed up the simulation.

▪ Running simulations via CLI mode will save memory.

10.10 Batch experimentation and automated simulations

NetSim Batch Automation allows users to execute a series of simulations without manual

intervention. Consider a requirement, where a user wishes to create and simulate hundreds of

network scenarios and store and analyse the performance metrics of each simulation run. It is

impossible to do this manually using the GUI. This requirement can be met using NetSim Batch

Automation script which runs NetSim via CLI.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 294 of 304

A related requirement of advanced simulation users is a multi-parameter sweep. When

you sweep one or more parameters, you change their values between simulation runs, and

compare and analyze the performance metrics from each run.

The documentation and codes for batch experimentation script is available TETCOS -

https://www.tetcos.com/file-exchange.html

https://www.tetcos.com/file-exchange.html

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 295 of 304

11 NetSim Emulator

NOTE: Emulator will be featured in NetSim only if license for Emulator Add-on is available

11.1 Introduction

A network simulator mimics the behavior of networks but cannot connect to real networks. NetSim

Emulator enables users to connect NetSim simulator to real hardware and interact with live

applications.

11.1.1 Simulating and Analyzing Emulation Examples

To simulate the different types of Emulations Examples such as PING (both one-way and two-

way communications), Video (one-way communication), File transfer using FileZilla, Skype etc.

1. Refer to the Emulation Technology Library document, which explains the following:

i. Introduction to Emulation.

ii. How to set up and configure Emulation Server in NetSim

iii. NetSim Emulation Features with added examples

iv. Latest FAQs

2. To access the Emulation Technology Library document,

i. You can access from the Technology Libraries link present under Documentation in

NetSim Homescreen

ii. From the Help Menu inside the design window, choose Technology Libraries Manuals

→ Emulation.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 296 of 304

12 Troubleshooting in NetSim

This section discusses some common issues and solutions:

12.1 CLI mode

While running NetSim via CLI for the scenarios described in the Configuration file, you may bump

into a few problems. While running NetSim via CLI, try to ensure that there are no errors in the

Configuration.netsim file. The ConfigLog.txt file written to the windows temp path would show

errors, if any, found by NetSim’s config parser.

12.2 Warnings when running CLI mode

12.2.1 I/O warning

Reason: While typing the CLI command if you enter the wrong I/O Path, or if there is no

Configuration.netsim file then the following error is thrown

Figure 12-1: I/O warning displayed in CLI mode

Solution: Check and correct the I/O path.

12.2.2 Error in getting License displayed

Reason: Unable to communicate with the license server

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 297 of 304

Figure 12-2: Error in getting license

Solution: In this example, license server IP address is 10.10.10.122 but it is entered as

10.10.10.150. This is a case where the server IP address is wrong. The same error message is

shown for wrong port number, wrong tag name like–apppath, -iopath, -license …, etc. Therefore,

this message is also shown if –appppath is typed instead of –apppath. Users are advised to check

the command line arguments carefully.

12.2.3 Unable to load license config dll(126)

Reason: Apppath and I/O path have white spaces

Figure 12-3: Unable to load license config dll

Solution: If the folder name contains white space, then mention the folder path within double

quotes while specifying the folder name in the command prompt. For example, if app path

contains white space, then the app path must be mentioned within double quotes in the command

prompt.

12.2.4 “License is NULL” error in CLI mode

Simulation does not commence. “License is NULL" is displayed in the command prompt.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 298 of 304

Example:

Figure 12-4: “License is NULL” error in CLI mode

Solution: This indicates unavailability of licenses for the network (component) being simulated.

12.3 Configuration.netsim

12.3.1 Invalid attribute in configuration file attributes

Specific attributes in the Configuration file are highlighted with zigzag lines.

Reason: If invalid input is given in the Configuration file, then the corresponding attribute is

highlighted as blue lines as shown in the figure given below Figure 12-5.

Figure 12-5: Invalid attribute in configuration file

Solution: To resolve this issue mouse over the corresponding attribute, in order to get the tool

tip that furnishes the details about the valid input for that attribute.

Note: If the schema file and the configuration file are not present in the same folder, the zigzag lines won’t

appear. So, place the Configuration file and Schema File in the same location or change the path of schema

file in the configuration file.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 299 of 304

12.3.2 Error in tags in configuration file attributes

Simulation does not commence, and error is displayed at the command prompt. Also, red lines

appearing at the tag specifying the Layer in the Configuration file

Reason: This issue arises mainly when the closing tag is not specified correctly for a particular

layer in the Configuration file.

Example: If the closing tag is not specified for the Data link Layer, then the zigzag lines appear

at the starting tags of Data link Layer and the Network Layer.

Figure 12-6: Error in tags in configuration file

When NetSim is made to run through CLI, then the following error gets displayed in the command

prompt.

Figure 12-7: NetSim Run through CLI and following error displayed in the command prompt

Solution: The bug can be fixed by setting the closing tag correctly in the Configuration file

12.3.3 Error lines in configuration.xsd in the Configuration file

Blue lines appear at configuration.xsd in the Configuration file.

Reason: This issue arises when the schema and the configuration file are not in the same folder.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 300 of 304

Figure 12-8: Error lines in configuration.xsd in the Configuration file

Solution: The bug can be fixed by placing the Configuration file and schema in the same folder.

12.4 Simulation terminates and “NetSim Backend has

stopped working” displayed

Simulation terminates and exhibits unpredictable behavior. An error message stating, “NetSim

Crashed or Terminated” is thrown.

Example:

Figure 12-9: NetSim Crashed or Terminated window

This problem arises if there is any flaw in the Configuration.netsim or in the dll.

Solution: Check whether the desired scenario has been configured properly in the

Configuration.netsim.

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 301 of 304

12.5 Licensing

12.5.1 No License for product (-1) error

NetSim dongle is running in the server system. When running the NetSim in the Client system

showing “No License for product (-1)” error.

Possible Reasons:

1. Firewall in the client system is blocking the Network traffic.

2. No network connection between Client and Server.

3. License Server is not running in the Server system.

Solution:

1. The installed firewall may block traffic at 5053 port used for licensing. So, either the user

can stop the firewall, or may configure it to allow port 5053.

2. Contact the Network-in-charge and check if the Server system can be pinged from client.

3. Check whether License Server is running in the Server system or not.

12.6 Troubleshooting VANET simulations that interface with

SUMO

12.6.1 Guide for Sumo

▪ Link for the Sumo Website - http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-

9883/16931_read-41000/for help related to Sumo.

▪ In case sumo Configuration files do not open, Right click on any Sumo Configuration file,

go to properties→open with→sumo.

▪ While Running NetSim Vanet Simulation – If any message pops up as “SUMO_HOME”

Not found→ Go to My computer → System Properties → Advanced system settings →

Environment Variables. Add an Environment variable as “SUMO_HOME”.

▪ Sumo Configuration File must contain the paths of the Vehicle routes and Networks file.

▪ Set the exact End Time for Sumo Simulation in Sumo Configuration File.

12.6.2 Guide for Python

▪ Any Python 2.7 version Installer would work fine for running simulations.

▪ If you have installed python by an external Installer, make sure the Python Path is set. It

would be set automatically by python installer that comes with NetSim.

▪ In case “Pywin 32” is not getting installed, or during simulation, error occurs as “win32

modules not found” try the code below (Run it as a python Code).

http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/
http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/

© TETCOS LLP. All rights reserved

Ver 13.2 Page 302 of 304

import sys

from _winreg import *

tweak as necessary

version = sys.version[:3]

installpath = sys.prefix

regpath = "SOFTWARE\\Python\\Pythoncore\\%s\\" % (version)

installkey = "InstallPath"

pythonkey = "PythonPath"

pythonpath = "%s;%s\\Lib\\;%s\\DLLs\\" % (

 installpath, installpath, installpath

)

def RegisterPy():

 try:

 reg = OpenKey(HKEY_CURRENT_USER, regpath)

 except EnvironmentError as e:

 try:

 reg = CreateKey(HKEY_CURRENT_USER, regpath)

 SetValue(reg, installkey, REG_SZ, installpath)

 SetValue(reg, pythonkey, REG_SZ, pythonpath)

 CloseKey(reg)

 except:

 print "*** Unable to register!"

 return

 print "--- Python", version, "is now registered!"

 return

 if (QueryValue(reg, installkey) == installpath and

 QueryValue(reg, pythonkey) == pythonpath):

 CloseKey(reg)

 print "=== Python", version, "is already registered!"

 return

 CloseKey(reg)

 print "*** Unable to register!"

 print "*** You probably have another Python installation!"

if __name__ == "__main__":

 RegisterPy()

 © TETCOS LLP. All rights reserved

Ver 13.2 Page 303 of 304

12.6.3 VANET Simulation

i. Changing Vehicle (Node) Names, Moving or deleting vehicles etc. are disabled in

Vanets Simulation.

ii. On running simulation, Backend calls Python file.

iii. NetSim protocol engine waits for the Pipes connection to be established.

12.6.4 Python

▪ SUMO_HOME Environment variable is checked. If Environment variable is not present,

Error is displayed as “key interrupt error” in SUMO_HOME.

▪ Python File waits for Pipes connection. (“waiting for pipes to connect”).

▪ It reads initial data as GUI enable/disable from simulation engine.

▪ “Checking sumo” is printed. If the environment variable SUMO_HOME points to wrong

directory, error is displayed.

▪ Sumo Simulation is started where Sumo Binary is checked (To check Sumo.exe or Sumo

GUI are working in the system or not). Then a TCP connection is made

▪ A while loop runs – It follows the following procedure.

i. Send Garbage value to Backend to clear pipe buffers (pipes).

ii. Read Vehicle name from NetSim (pipes).

iii. Compare with each vehicle present in Sumo. If vehicle is present –Then write

confirmation (pipes) and read its position from NetSim (2pipes for X and Y

coordinates). Also, sumo is stepped forward for every first vehicle in the list of current

vehicles in sumo.

▪ If vehicle not present, fail (‘f’) is sent.

▪ Pipes and TCP closed.

12.6.5 NetSim Core Protocol Library

▪ After establishing the connection, NetSim VANET Library checks for GUI flag, and sends

‘1’ if animation status is online.

▪ As simulation proceeds, NetSim VANET library sends vehicle name to python, and receives

XY positions, which are passed from python.

▪ Positions are updated and simulation proceeds.

© TETCOS LLP. All rights reserved

Ver 13.2 Page 304 of 304

13 NetSim Videos

In order to have a better understanding of NetSim, users can access YouTube channel of Tetcos

at www.youtube.com/tetcos and check out the various videos available.

14 R&D projects in NetSim

Example R & D projects in NetSim is available in www.tetcos.com/file-exchange.

15 NetSim FAQ/Knowledgebase

NetSim knowledgebase with hundreds on FAQs on how NetSim works is available at

https://tetcos.freshdesk.com/support/home

List of known issues in v13.1 is available at

https://support.tetcos.com/support/solutions/articles/14000101817-list-of

http://www.youtube.com/tetcos
http://www.tetcos.com/file-exchange
https://tetcos.freshdesk.com/support/home
https://support.tetcos.com/support/solutions/articles/14000101817-list-of

	1 NetSim – Introduction
	1.1 Introduction to modeling and simulation of networks
	1.2 Versions of NetSim – Academic, Standard & Pro
	1.3 Components (Technology Libraries) in Pro and Standard versions

	2 Installation and License Server Set-up
	2.1 System Requirements
	2.1.1 NetSim Client (installs locally)
	2.1.2 License Server

	2.2 Installing NetSim
	2.2.1 Express Installation
	2.2.2 Custom (Step-by-step) installation
	2.2.3 Silent installation

	2.3 Setting up License Server
	2.3.1 Installing NetSim RLM Dongle Driver Software (Dongle Based Licenses)
	2.3.2 Running NetSim License Server
	2.3.3 Running NetSim Software

	3 NetSim GUI
	3.1 Menus in the NetSim Home Screen
	3.1.1 Creating “New” Simulations
	3.1.2 Environment Settings
	3.1.2.1 The Gird

	3.2 Modeling and Simulating a simple network
	3.2.1 Creating a Network scenario
	3.2.2 Configuring devices and links in the scenario
	3.2.3 Display Settings
	3.2.4 Copy/Paste
	3.2.5 Modeling Application Traffic
	3.2.6 Logging Packet/ Event Trace
	3.2.7 Run Simulation

	3.3 Saving & Opening experiments and Printing results
	3.3.1 Opening Saved Experiments:
	3.3.2 Saving an Experiment

	3.4 NetSim Keyboard Shortcuts
	3.5 NetSim Interactive Simulation
	3.5.1 Simulation specific (Not applicable for file based interactive simulation)
	3.5.2 Ping Command
	3.5.2.1 Ping Command Results

	3.5.3 Route Commands
	3.5.4 ACL Configuration
	3.5.4.1 Step to Configure ACL
	3.5.4.2 Results

	3.5.5 Interactive Simulation using file

	4 Workspaces and Experiments
	4.1 What is an Experiment and workspace in NetSim?
	4.2 How does a user create and save an experiment in a workspace?
	4.3 Should each user have a workspace?
	4.4 How does a user export an experiment?
	4.5 How does a user delete an Experiment in a workspace?
	4.6 How does a user create a new workspace?
	4.7 How does a user switch between workspaces?
	4.8 How does a user export a workspace?
	4.9 How does a user import experiment and workspace?
	4.9.1 Importing Configuration.netsim file from experiment folder
	4.9.2 Import workspace or multiple experiments file

	4.10 Import Experiments or Workspace folder
	4.11 Import into current workspace vs. creating a new workspace
	4.12 How does a user delete a workspace?
	4.13 How does a user open and modify source codes?
	4.14 How do I reset my code changes?

	5 Simulating different networks in NetSim
	5.1 Internetworks
	5.1.1 Internetworks Examples
	5.1.2 Internetwork Documentation

	5.2 Legacy Networks
	5.2.1 Legacy Networks Examples
	5.2.2 Legacy Network Documentation

	5.3 Cellular Networks
	5.3.1 Cellular Networks Examples
	5.3.2 Cellular Networks Documentation

	5.4 Advanced Routing
	5.4.1 Advanced Routing Examples
	5.4.2 Advanced Routing Documentation

	5.5 MANETs
	5.5.1 MANET Examples
	5.5.2 MANET Documentation

	5.6 Wireless Sensor Networks (WSN)
	5.6.1 Wireless Sensor Networks (WSN) Examples
	5.6.2 WSN Library Documentation

	5.7 Internet of Things
	5.7.1 Internet of Things (IOT) Examples
	5.7.2 IOT Library Documentation

	5.8 Software Defined Networks (SDN)
	5.8.1 Software Defined Networks (SDN) Examples
	5.8.2 SDN Library Documentation

	5.9 Cognitive Radio
	5.9.1 Cognitive Radio Examples
	5.9.2 Cognitive Radio Library Documentation

	5.10 LTE/LTE-A
	5.10.1 LTE Examples
	5.10.2 LTE Library Documentation

	5.11 5G NR
	5.11.1 5G NR Examples
	5.11.2 5G NR Library Documentation

	5.12 VANETs
	5.12.1 VANET Examples
	5.12.2 VANET Library Documentation

	5.13 Satellite Communication
	5.13.1 Satellite Communication Examples
	5.13.2 Satellite Communication Documentation

	5.14 Underwater Acoustic Networks
	5.14.1 UWAN Documentation

	5.15 TDMA Radio Networks
	5.15.1 TDMA Radio Network Examples
	5.15.2 TDMA Radio Network Library Documentation

	5.16 Network Emulator Add On
	5.16.1 Emulation Library Documentation

	6 Applications (Network Traffic Generator)
	6.1 Common properties for all applications
	6.2 Application Types
	6.2.1 Voice Models
	6.2.2 Video Models
	6.2.2.1 Video Models in NetSim

	6.3 Network Traffic Generation Rate for Different Applications
	6.4 Priority and QoS of Applications
	6.5 Capture real applications and simulate in NetSim
	6.6 Modelling Poisson arrivals in NetSim
	6.7 Application Configuration – Special Conditions

	7 Running Simulation via Command Line Interface
	7.1 Running NetSim via CLI
	7.1.1 Running in CLI Mode when using floating licenses
	7.1.2 Running in CLI Mode when using node-locked or cloud licenses
	7.1.3 Quick edit for copy pastes in CLI mode

	7.2 Understanding the Configuration.netsim file
	7.2.1 How to use Visual Studio to edit the Configuration file?
	7.2.2 Sections of Configuration file
	7.2.3 Sample Configuration file
	7.2.4 Configuration.xsd file

	8 Outputs: Results, Plots and Data Files
	8.1 Result Window and Plots Windows
	8.1.1 Application and Link Throughput Plots
	8.1.2 Buffer Occupancy Plot
	8.1.3 TCP Congestion Window Plot
	8.1.4 Notes on plots
	8.1.5 Link metrics
	8.1.6 Queue Metrics
	8.1.7 Protocol Metrics
	8.1.8 Device Metrics
	8.1.9 Cellular Metrics
	8.1.10 Channel metrics
	8.1.11 Sensor Metrics (IEEE802.15.4_Metrics)
	8.1.12 Battery Model
	8.1.13 CR metrics
	8.1.13.1 Base station Metrics
	8.1.13.2 CPE metrics
	8.1.13.3 Incumbent Metrics
	8.1.13.4 Channel Metrics

	8.1.14 Application Metrics
	8.1.15 LTENR Cell Metrics
	8.1.16 IP Metrics
	8.1.17 Advanced Metrics
	8.1.18 Notes on metrics
	8.1.19 The different results files written at the end of simulation

	8.2 Export to .csv
	8.3 Packet Animation
	8.3.1 Packet animation Table
	8.3.2 Packet animation – Display Settings
	8.3.3 Example on how to use NetSim packet animation feature:
	8.3.4 How to record and save Packet animation as a Video file

	8.4 Packet Trace
	8.4.1 How to Enable Packet trace
	8.4.2 How to set filters to NetSim trace file
	8.4.3 Observing packet flow in the Network through packet trace file
	8.4.4 Analysing Packet Trace using Pivot Tables
	8.4.5 Packet Transmitted / Received Analysis
	8.4.6 Delay analysis
	8.4.7 Throughput analysis
	8.4.8 Plotting with Pivot Charts
	8.4.9 Packet Trace Fields

	8.5 Event Trace (only in Standard/Pro Version)
	8.5.1 NetSim Network Stack and Discrete Event Simulation working
	8.5.2 Event Trace
	8.5.3 Calculation of Delay and Application throughput from event trace
	8.5.3.1 Application Delay Analysis:
	8.5.3.2 Application Throughput Analysis

	8.6 Packet Capture & analysis using Wireshark
	8.6.1 Enabling Wireshark Capture in a node for packet capture
	8.6.2 Viewing captured packets
	8.6.3 Filtering captured packets
	8.6.4 Analyzing packets in Wireshark
	8.6.4.1 Analyzing Conversation using graphs

	8.6.5 Window Scaling
	8.6.5.1 Comparing the packet lengths
	8.6.5.2 Creating IO graphs
	8.6.5.3 Creating Flow graphs

	9 Writing Custom Code in NetSim
	9.1 Writing your own code
	9.1.1 Microsoft Visual Studio 2019 Installation Settings
	9.1.2 Modifying code
	9.1.3 Building DLLs
	9.1.3.1 Error:

	9.1.4 Running Simulation
	9.1.5 Source Code Dependencies
	9.1.6 Enabling Additional Security Checks

	9.2 Implementing your code - Examples
	9.2.1 Hello World Program
	9.2.2 Introducing Node Failure in MANET

	9.3 Debugging your code
	9.3.1 Via GUI
	9.3.1.1 Using _getch()
	9.3.1.2 Using Environment Variable

	9.3.2 Via CLI
	9.3.3 Co-relating with Event Trace
	9.3.4 Viewing & Accessing variables
	9.3.5 Print to console window in NetSim

	9.4 Creating a new packet and adding a new event in NetSim
	9.5 NetSim API’s

	10 Advanced Features
	10.1 Random Number Generator and Seed Values
	10.2 Confidence in simulation results and error bars
	10.3 Interfacing MATLAB with NetSim (Std/Pro versions)
	10.3.1 NetSim-MATLAB Socket Interface
	10.3.1.1 Prerequisites for MATLAB Socket Interfacing
	10.3.1.2 Implement Weibull Distribution of MATLAB without using .m file
	10.3.1.3 Debug and understand communication between NetSim and MATLAB
	10.3.1.4 Implement Weibull Distribution of MATLAB in NetSim using .m file

	10.3.2 NetSim-MATLAB COM Interface
	10.3.2.1 Pre-requisites for NetSim-MATLAB COM Interface
	10.3.2.2 Implement Weibull Distribution of MATLAB without using .m file
	10.3.2.3 Debug and understand communication between NetSim and MATLAB
	10.3.2.4 Implement Weibull Distribution of MATLAB in NetSim using .m file:
	10.3.2.5 Plot a histogram in MATLAB per a Weibull distribution (using .m file)

	10.4 Interfacing tail with NetSim
	10.5 Adding Custom Performance Metrics
	10.6 Simulation Time and its relation to Real Time (Wall clock)
	10.7 Adding Custom Plots
	10.7.1 Plotting SNR for each UE-gNB pair in 5G NR

	10.8 Environment Variables in NetSim
	10.9 Best practices for running large scale simulations
	10.10 Batch experimentation and automated simulations

	11 NetSim Emulator
	11.1 Introduction
	11.1.1 Simulating and Analyzing Emulation Examples

	12 Troubleshooting in NetSim
	12.1 CLI mode
	12.2 Warnings when running CLI mode
	12.2.1 I/O warning
	12.2.2 Error in getting License displayed
	12.2.3 Unable to load license config dll(126)
	12.2.4 “License is NULL” error in CLI mode

	12.3 Configuration.netsim
	12.3.1 Invalid attribute in configuration file attributes
	12.3.2 Error in tags in configuration file attributes
	12.3.3 Error lines in configuration.xsd in the Configuration file

	12.4 Simulation terminates and “NetSim Backend has stopped working” displayed
	12.5 Licensing
	12.5.1 No License for product (-1) error

	12.6 Troubleshooting VANET simulations that interface with SUMO
	12.6.1 Guide for Sumo
	12.6.2 Guide for Python
	12.6.3 VANET Simulation
	12.6.4 Python
	12.6.5 NetSim Core Protocol Library

	13 NetSim Videos
	14 R&D projects in NetSim
	15 NetSim FAQ/Knowledgebase

