NetSim: Getting Started

Kalpalatha S Krishna Bharadwaj, Venkatesh Ramaiyan

Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India.

Outline of the Presentation

- Introduction to NetSim
- Installation Guidelines
- Help & Resources
- A Simple Network Simulation
- NetSim Simulation Libraries
- Simulation Results
- A Comparison with NS-3
- R&D with NetSim: RRM for WiFi

Introduction to NetSim

- NetSim: A Simulation and Emulation Tool
 - Network Design and Planning
 - Protocol and Network Modeling
- Highlights
 - Cognitive Radio, LTE 5G, MANETs, VANETs, WLANs, WSNs, IoTs
 - GUI
 - Packet Animator
 - Interface with Matlab, Wireshark and SUMO
 - NetSim Emulator
- Applications
 - Network R&D and Academic Projects
 - Focus on Defense Applications, Tactical Communications, Public Utility Networks

How is NetSim Used? Design the Network

- Design the Network
 - using NetSim GUI or .XML config files

How is NetSim Used? Run the Simulation

- Run the Simulation
 - from GUI or CLI
 - log packet traces and event traces

```
C:\Program Files (x86)\NetSim Standard\bin\NetSimCore.exe
                                                                                                                   [[0mNetworkStack loaded from path- C:\Program Files (x86)\NetSim Standard\bin/NetworkStack.dll
NetSim start
Network Stack loaded
Initializing simulation
Config file reading complete
License re-validation complete
Protocol binaries loaded
Stack variables initialized
Metrics variables initialized
Protocol variables initialized
Executing command --- DEL "C:\Users\BHARAD~1\AppData\Local\Temp\NetSim\*.pcap"
Could Not Find C:\Users\BHARAD~1\AppData\Local\Temp\NetSim\*.pcap
Executing command-- start wireshark -k -i "\\.\pipe\WIRED_NODE_A_1".....done.
Executing command-- start wireshark -k -i "\\.\pipe\WIRED NODE B 1"......done.
Executing command-- start wireshark -k -i "\\.\pipe\ROUTER C 1"......done.
Executing command-- start wireshark -k -i "\\.\pipe\ROUTER C 2"......done.
NETSIM CUSTOM EMULATOR=(null)
Emulation is disabled
Applications created
Simulation in progress...
Press CTRL+C to terminate the simulation mid-way
32 % is completed... Simulation Time=5000.000 ms Event Id=45
ragmenting packet... segment count = 6849
78 % is completed... Simulation Time=7704.871 ms Event Id=34632
```

How is NetSim Used? Visualize using Packet Animator

- Visualize the Simulation
 - using Packet Animator

How is NetSim Used? Analyse the Results

Analyse the Results

- application, queue, network, and protocol metrics at different layers
- available in different file formats for post processing

How is NetSim Used?

- Design the Network
 - using NetSim GUI or .XML config files
- Run the Simulation
 - from GUI or CLI
 - log packet traces and event traces
- Visualize the Simulation
 - using Packet Animator
- Analyse the Results
 - application, queue, network, and protocol metrics at different layers
 - available in different file formats for post processing
- Develop your own Protocol/Algorithm
 - modify or create algorithms and protocols
 - support for debug in IDE
- Interface with External Software
 - such as MATLAB, SUMO

Introduction to NetSim: Simulator Framework

NetSim Installation: Download Executable File

- Download NetSim Software Executable File (only for licensed users)
 - http://www.tetcos.com/software-download.html
 - Available as Pro, Standard and Academic versions
 - Requires Username and Password

NetSim Installation

- NetSim Installation
 - Double Click .exe file (e.g., NetSim_Standard_10_32bit.exe)
 - Install NetSim and Association Packages (WireShark, Python, etc)

NetSim Installation: Copy License File

License

 Copy License File into the NetSim folder (e.g., C:\Program Files(x86)\NetSim Standard\bin\)

NetSim Installation

- Download NetSim Software Executable File
 - http://www.tetcos.com/software-download.html
 - Available as Pro, Standard and Academic versions
 - Requires Username and Password
- Installation
 - Double Click .exe file (e.g., NetSim_Standard_10_32bit.exe)
 - Install NetSim and Association Packages (WireShark, Python, etc)
- License
 - Copy License File into the NetSim folder (e.g., C:\Program Files(x86)\NetSim Standard\bin\)
- Launch NetSim
- Other Prerequisites
 - MS Visual Studio 2015 (for code modification)

NetSim Help & Resources

- NetSim Homepage http://www.tetcos.com/
 - Simulation Software Versions and Features
 - Download Page and Support
 - Documentation User Manual, Experimental Manual, Help Files
 - List of Supported Technologies, Protocols and Algorithms
- Simulator Information https://tetcos.freshdesk.com/support/home
 - FAQs, Getting Started
 - Modeling and Simulation, Emulation,
 - Cognitive radios, IoTs, WSNs, WLANs, LTE
- NetSim Videos https://www.youtube.com/user/Tetcos/videos
 - Help, Webinars and Informational Videos
- On Facebook https://www.facebook.com/tetcosnetsim/
- On Twitter https://twitter.com/tetcos?lang=en

NetSim User Manual

- Getting Started
 - Installation, About NetSim Environment, Simple Experiments
- Illustrations by Examples
 - Discusses All Network Protocols and Components
 - Details on Traffic Models and Generators
 - Details on Mobility Models
- Measurements and Analysis
 - Network Simulation Data Traces
 - Analysis with Pivot Tables, Wireshark, etc
 - Packet Animator
- List of Advanced Features
 - Writing Custom Code in NetSim
 - Interfacing with Matlab
- Lists Known Issues and Solutions

NetSim Experiment Manual

- Lists Experiments to Illustrate Network Protocols and Features
 - Performance of IoTs, MANETs, LTE, WiFi, ZigBee
 - TCP Connection Establishment and Congestion Control
 - IP Forwarding, Network Routing Protocls (OSPF, RIP)
 - Spanning Tree Algorithm
 - Legacy Networks such as ALOHA, CSMA
- Knowledge Base with Project Code http://www.tetcos.com/file-exchange.html

A Simple Experiment

- Network Model and Scenario
 - FTP Application between a Server and a Client
 - Wired Network Connection with Static Nodes
- Performance Measure
 - File Download Throughput (in bits per second)
 - Short-term Throughput (in bits per second)

A Simple Experiment: Network Configuration

A Simple Experiment: NetSim Simulation

- Input via GUI or .XML (Enable Traces and Dynamic Metrics)
- Run Simulation (must specify Simulation Time)

Performance Metrics

Average Throughput @ Application Layer

$$\mathsf{AT} = \frac{(\mathsf{Total}\ \mathsf{Payload}\ \mathsf{Delivered}\ \mathsf{to}\ \mathsf{Destination}\ (\mathsf{in}\ \mathsf{bytes})\ *\ 8)}{\mathsf{Simulation}\ \mathsf{Time}}$$

- Fundamental Measure of Performance for Voice, Video or BE Traffic
- Average Delay

$$\mathsf{AD} = \frac{\mathsf{Sum} \ \mathsf{of} \ \mathsf{Delay} \ \mathsf{of} \ \mathsf{Successfully} \ \mathsf{Delivered} \ \mathsf{Packets}}{\mathsf{Number} \ \mathsf{of} \ \mathsf{Successfully} \ \mathsf{Delivered} \ \mathsf{Packets}}$$

- Fundamental Measure of Performance for Voice. Transactions
- Other Measures
 - Jitter (Voice)
 - RSSI (Wireless Channels)
 - Retransmission Counts (TCP, WiFi)
 - Collision Probability (WiFi)

NetSim Libraries

Application	FTP, HTTP, Email, Voice, Video, CBR, Custom		
Transport	TCP ((Old) Tahoe, (New) Reno, Cubic), UDP		
Network	OSPF, RIP, DSR, AODV, ZRP, OLSR, IPV4 Addressing		
MAC/PHY	GSM, CDMA, LTE, LTE-A, WiFi, Ethernet, WRAN, TDMA, Aloha, CSMA/CD, Queueing and Scheduling (FIFO, WFQ, Priority)		
Miscellaneous	Channel and Propagation Models, Mobility Models		

Simulation Results: Data Files

- Simulation Output Files
 - Metrics.xml, PacketTrace.csv, EventTrace.csv, Animation.txt, Node.pcap

Simulation Results: Data Analysis

Data Analysis

• Results Dashboard, Packet Animator, Pivot Tables, Wireshark

Simulation Results

- Simulation Output
 - Metrics.xml, PacketTrace.csv, EventTrace.csv, Animation.txt, Node.pcap
- Data Analysis
 - Results Dashboard, Packet Animator, Pivot Tables, Wireshark
- NetSim permits Analytics of Multiple Experiments

Simulation Results - Metrics

Network/Link Metrics	Data and Control Packets - Tx, Rx, Errored, Payload and Overheads		
Queue Metrics	Queued, Dequeued, Dropped		
Device Metrics	ARP Table, IP Forwarding Table		
Protocol Metrics	TCP (Segments Transmitted, ACKs Received, Retransmissions), IP related		
Application Metrics	Packets Transmitted and Received, Payload Transmitted and Received, Throughput and Delay		

Simulation Results - Metrics - Results Dashboard

Simulation Results - Metrics - Results Dashboard

Simulation Results - Packet Traces

- Trace of a Packet in the Network
 - Trace is saved as a Spread Sheet

Simulation Results - Packet Traces

- Trace of a Packet in the Network
 - Trace is saved as a Spread Sheet
- Items Listed in Packet Trace
 - Packet ID, Segment ID, Packet Type
 - Source ID, Destination ID, Transmitter ID, Receiver ID
 - IN and OUT Times in the Network Stack
- Data Analysis
 - PivotTables are Effective to Analyze Measurement Data
 - See User Manual for Help
- Measurements and Metrics
 - Throughput, Delay, Jitter
 - Average, Max, Min Measurements

Simulation Results - Event Traces

- Record of All Events in the Network and Stacks
 - Packet IN and OUT Events in the Network Stack
 - Events related to Protocols Schedule, Backoff, Timeouts, etc.
 - Trace is saved as a Spread Sheet

1	Α	В	С	D	E	F	G	Н
1	Event_Id	Event_Type	Event_Time(US)	Device_Type	Device_Id	Interface_Id	Application_Id	Packet_Id
2	4	APPLICATION_OUT	0	ROUTER	3	0	0	0
3	1	TIMER_EVENT	3000000	NODE	1	0	0	0
4	2	TIMER_EVENT	3000000	NODE	2	0	0	0
5	3	TIMER_EVENT	3000000	ROUTER	3	0	0	0
6	7	NETWORK_OUT	3000000	NODE	1	0	0	ICMP_ECHO_REQUEST
7	9	NETWORK_OUT	3000000	NODE	2	0	0	ICMP_ECHO_REQUEST
8	11	MAC_OUT	3000000	NODE	1	1	0	0
9	12	MAC_OUT	3000000	NODE	2	1	0	0
10	13	MAC_OUT	3000000	NODE	1	1	0	0
11	14	MAC_OUT	3000000	NODE	2	1	0	0
12	15	MAC_OUT	3000000.96	NODE	1	1	0	0
13	16	MAC_OUT	3000000.96	NODE	2	1	0	0
14	17	PHYSICAL_OUT	3000000.96	NODE	1	1	0	ICMP_ECHO_REQUEST
15	18	PHYSICAL_OUT	3000000.96	NODE	2	1	0	ICMP_ECHO_REQUEST
16	21	PHYSICAL_OUT	3000006.72	NODE	2	1	0	0
17	22	PHYSICAL_IN	3000008.72	ROUTER	3	2	0	ICMP_ECHO_REQUEST
18	23	MAC_IN	3000008.72	ROUTER	3	2	0	ICMP_ECHO_REQUEST
19	24	NETWORK_IN	3000008.72	ROUTER	3	2	0	ICMP_ECHO_REQUEST
20	25	NETWORK_OUT	3000008.72	ROUTER	3	0	0	ICMP_ECHO_REPLY
21	26	MAC_OUT	3000008.72	ROUTER	3	2	0	0
22	27	MAC_OUT	3000008.72	ROUTER	3	2	0	0

Simulation Results - Event Traces

- Record of All Events in the Network and Stacks
 - Packet IN and OUT Events in the Network Stack
 - Events related to Protocols Schedule, Backoff, Timeouts, etc
 - Trace is saved as a Spread Sheet
- Items Listed in Event Trace
 - Time Stamp, Event ID, Event Type, Device Type and ID, Protocol Name, Packet Details, etc
 - Additional Data for Debugging
- Data Analysis
 - PivotTables are Effective to Analyze Measurement Data
 - See User Manual for Help
- Measurements and Metrics
 - Packet Metrics such as Throughput, Delay, Jitter
 - Protocol Metrics and Device Metrics

Data Analysis with PivotTables*

Data Analysis with Wireshark*

A Comparison with NS-3

	NetSim	NS-3		
Installation	Easy	Easy		
Input	GUI or CLI	Script File		
Output	Trace Files & Results Dashboard	Trace Files Only		
Libraries	Extensive	Extensive		
Animation	Packet Animator	NetAnim		
Support	Essential Documentation & Support Team	Extensive Documentation & Google Groups		
Correctness	Verified Regularly by Support Team	Ensured by NS-3 Users		
Difficulty	Easy for Beginners	Comparable for Complex Networks		

Network R&D with NetSim: RRM for WiFi Networks

- WiFi Standards Focus on Wireless Access and Management of a BSS
 - MAC: RTS/CTS, Backoff, etc
 - PHY: MCS, MIMO, etc
 - Management: Beacons, Authentication, Association, Mobility, etc
- Performance Critically Depends on the Wireless Environment
 - Interference can Limit Channel Access and Decrease Throughput
 - Poor Link Quality can lead to Slow Talker Problem
 - Network-wide Solutions Necessary for Optimal Operation
- Radio Resource Management of WiFi Networks
 - Focus on Management of the Wireless Environment
 - Channel Selection and Transmit Power Control @ APs
 - User Association @ Clients and APs

Transmit Power Control: An Illustration*

Transmit Power Control

Objective: Maximize Network CapacityControl: Transmit Power of Access Points

Simulation Environment

Topology: Linear (50 metres)WiFi Standard: IEEE 802.11ac

• Bandwidth: 20MHz

• Rate Adaptation: Minstrel

ullet Channel: Log Distance Propagation Loss Model with $\eta=3.5$

Max Transmit Power: 23dBmMin Transmit Power: 0dBm

• 2-3 Clients per AP

Application: FTP (Downlink)

Transmit Power Control: An Illustration*

- Aggregate Network Throughput Increases with TPC
- Optimal Transmit Power Decreases with Density
- TPC Minimizes Interference and Enables Spatial Reuse

Network R&D with NetSim: Transmit Power Control

Transmit Power Control

- Effective in Increasing Network Capacity
- Tradeoff between Capacity (Spatial Reuse) and Coverage

Challenges in Design

- A Distributed Algorithm for TPC
- Dynamic and Adaptive Algorithm for Dynamic Wireless Environment
- Support for Heterogeneous Devices and Standards
- Limited Client Support
- Other Network and Non-WiFi Interference

TPC Design with NetSim

- Limited Analytical Insights Available
- Experimentation is Costly
- Network Simulators are Effective Means to Study Performance

Questions!

