Learning WiFi using NetSim

Kalpalatha S Venkatesh Ramaiyan, Ashwini Chinta Girish, Surabhi Vyas

> Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India.

Outline

- About NetSim
- Introduction to WiFi
- WiFi in NetSim
- Basic WiFi experiments
 - 1 rate adaptation
 - overheads in wireless communication
 - 3 random access and packet collisions
- Simulation guidelines
- Suggested exercises

About NetSim

- NetSim: A simulation and emulation tool
 - network design and planning
 - protocol and application modeling
- Highlights
 - technology: cellular networks, WLANs, WSNs, IoTs, VANETs, etc
 - 1000+ nodes
 - GUI
 - performance captured via traces and packet animator
 - external interfacing with Matlab, Wireshark and SUMO
 - support for emulation
 - protocol library source codes with documentation

About NetSim

Figure: Configure Network

Figure: Visualize Simulation

Figure: Run Simulation

Figure: Measurements and Metrics

Introduction to WiFi

- Radio technology for WLANs based on IEEE 802.11 standards
 - includes MAC and PHY specifications
 - a, b, g, n, ac, ad, af, ah, ax and e
- Highlights
 - features: 256 QAM, MIMO, 160MHz bands, OFDM, 1+ Gbps
 - operation in 2.4 GHz, 5.8 GHz and 60 GHz unlicensed bands
 - primary channel access mechanism is CSMA/CA
 - support for infrastructure and ad hoc mode of operation
 - support for authentication, roaming, security, etc
 - standards are backward compatible

WiFi in NetSim

- IEEE 802.11 standards supported in NetSim
 - a, b, g, n, ac, e and p
 - 2.4 GHz and 5.8 GHz operation
- Features in NetSim
 - upto 256 QAM
 - upto 8 spatial streams
 - single user and multi user MIMO
 - channel bonding upto 160 MHz
 - packet aggregation
 - infrastructure and ad hoc mode of operation
 - effective list of propagation models and mobility models
- WiFi experiments in NetSim experiment manual
 - 5, 6, 8, 9, 10, 15, 16

- Performance of a WiFi link and system depends on
 - signal quality, interference and communication overheads

- Performance of a WiFi link and system depends on
 - signal quality, interference and communication overheads
- Signal quality
 - function of transmit power, path loss, shadowing, etc
 - poor signal quality leads to packet errors and losses
 - mechanisms in WiFi rate adaptation, dynamic association

- Performance of a WiFi link and system depends on
 - signal quality, interference and communication overheads
- Signal quality
 - function of transmit power, path loss, shadowing, etc
 - poor signal quality leads to packet errors and losses
 - mechanisms in WiFi rate adaptation, dynamic association
- Interference
 - both from WiFi and non-WiFi radios
 - interference leads to poor channel utilization, packet errors and losses
 - mechanisms in WiFi random access, channel selection

- Performance of a WiFi link and system depends on
 - signal quality, interference and communication overheads
- Signal quality
 - function of transmit power, path loss, shadowing, etc
 - poor signal quality leads to packet errors and losses
 - mechanisms in WiFi rate adaptation, dynamic association
- Interference
 - both from WiFi and non-WiFi radios
 - interference leads to poor channel utilization, packet errors and losses
 - mechanisms in WiFi random access, channel selection
- Communication overheads
 - at PHY, MAC and higher layers
 - overheads reduce effective utilization and throughput
 - mechanisms in WiFi packet aggregation, MU-MIMO

- Performance of a WiFi link and system depends on
 - signal quality, interference and communication overheads
- Signal quality
 - function of transmit power, path loss, shadowing, etc
 - poor signal quality leads to packet errors and losses
 - mechanisms in WiFi rate adaptation, dynamic association
- Interference
 - both from WiFi and non-WiFi radios
 - interference leads to poor channel utilization, packet errors and losses
 - mechanisms in WiFi random access, channel selection
- Communication overheads
 - at PHY, MAC and higher layers
 - overheads reduce effective utilization and throughput
 - mechanisms in WiFi packet aggregation, MU-MIMO

Basic WiFi experiments

- Rate adaptation
 - study data rate and throughput with distance and transmit power
 - focus on effect of signal quality (and not interference)
- 2 Communication overheads
 - characterize overheads at PHY, MAC and higher layers
 - study effect of overheads on throughput
- Random access and packet collisions
 - focus on CSMA/CA
 - study impact on throughput and retransmissions

Rate Adaptation (\approx Ex. 10)

- Objective
 - study data rate and throughput with distance and transmit power
 - relate data rate with RSSI and SNR
- Network setup
 - an IEEE 802.11n link between an access point and a client
 - downlink UDP traffic between a server and the client

Supported MCS and Data Rates

• IEEE 802.11n supports a fixed set of data rates

MCS	Modulation	Coding	Data
	Туре	Rate	Rate ¹
0	BPSK	1/2	7.2
1	QPSK	1/2	14.4
2	QPSK	3/4	21.7
3	16-QAM	1/2	28.9
4	16-QAM	3/4	43.3
5	64-QAM	2/3	57.8
6	64-QAM	3/4	65
7	64-QAM	5/6	72.2

¹20 MHz, single spatial stream, 400ns GI

Supported MCS and Data Rates

• IEEE 802.11n supports a fixed set of data rates

MCS	Modulation	Coding	Data
	Туре	Rate	Rate ¹
0	BPSK	1/2	7.2
1	QPSK	1/2	14.4
2	QPSK	3/4	21.7
3	16-QAM	1/2	28.9
4	16-QAM	3/4	43.3
5	64-QAM	2/3	57.8
6	64-QAM	3/4	65
7	64-QAM	5/6	72.2

$$\frac{1}{3.6\times10^{-6}}\frac{\text{symbols}}{\text{second}}\times6\frac{\text{bits}}{\text{symbol}}\times\frac{5}{6}\times52\text{ sub-carriers}=72.2\text{ Mbps}$$

¹20 MHz, single spatial stream, 400ns GI

Kalpalatha S Venkatesh Ramaiyan, Ashwini

Supported MCS and Data Rates

• IEEE 802.11n supports a fixed set of data rates

MCS	Modulation	Coding	Data
	Туре	Rate	Rate ²
0	BPSK	1/2	7.2
1	QPSK	1/2	14.4
2	QPSK	3/4	21.7
3	16-QAM	1/2	28.9
4	16-QAM	3/4	43.3
5	64-QAM	2/3	57.8
6	64-QAM	3/4	65
7	64-QAM	5/6	72.2

RA select MCS based on RSSI, SNR, retransmission count, etc

²20 MHz, single spatial stream, 400ns GI

Rate Adaptation: Experiment Configuration

WiFi Radio		
Standard	802.11n	
Band	2.4 GHz	
Channel	1	
Bandwidth	20 MHz	
Transmit Power	20 dBm and 10 dBm	
Rate Adaptation	False	

Wireless Channel and Link		
Channel Characteristics	Path Loss Only	
Path Loss Model	Log_Distance	
Path Loss Exponent	3.5	
Mobility Model	Constant	
AP - Client Distance	Variable	

Rate Adaptation: Experiment Configuration (Contd...)

Application Properties		
Application	CBR	
Transport Protocol	UDP	
Packet Size	1450 bytes	
Interarrival Time	116 microseconds	
TCP	Disabled	

Miscellaneous		
Wired Link Capacity	1 Gbps	
Wired Link Delay	10 microseconds	
Simulation Time	10 seconds	

- choice of parameters ensures a saturated MAC queue
- packet trace must be enabled before the simulation

Performance Measurements

• Data rate (from Packet Trace)

$$\mathsf{DATA}\ \mathsf{RATE} = \frac{\mathsf{PHY_LAYER_PAYLOAD} * 8}{(\mathsf{PHY_LAYER_END_TIME} - \mathsf{PHY_LAYER_ARRIVAL_TIME} - 40)}$$

Average Throughput (from Packet Trace)

$$\label{eq:average_average} \text{AVERAGE THROUGHPUT} = \frac{\text{APPLICATION_BYTES_RECEIVED} * 8.0}{\text{SIMULATION_TIME}}$$

Data Rate and Throughput with Distance

- data rate and throughput decreases with distance
- data rates correspond to recommend rates of 802.11n

Data Rate with Distance and Transmit Power

- data rate decreases as transmit power decreases
- coverage (range) decreases as transmit power decreases

Data Rate, RSSI and SNR

Rate Adaptation False recommends MCS based on the table below

MCS	Data	RSSI
	Rate	(in dBm)
0	7.2	-82
1	14.4	-79
2	21.7	-77
3	28.9	-74
4	43.3	-70
5	57.8	-66
6	65	-65 -64
7	72.2	-64

RSSI (in dBm) =
$$10\log_{10}(P_t) - 10\eta\log_{10}(d) - K(\eta)$$

Rate Adaptation: Inferences

- Rate adaptation in WiFi
 - data rate and throughput decreases with distance
 - data rate, throughput and coverage decreases with transmit power
 - key insight RSSI determines MCS and data rate
 - data rate may be adapted due to interference as well
 - rate adaptation algorithms is a popular topic of research
- Application throughput is significantly less than PHY data rate
 - wireless communication has overheads
 - throughput suffers due to higher layer overheads as well

Communication Overheads (\approx Ex. 6)

Objective

- characterize overheads at PHY, MAC and higher layers
- predict average throughput of a WiFi link

Network setup

- an IEEE 802.11n link between an access point and a client
- downlink UDP traffic between a server and a client

Basic Access Mechanism in IEEE 802.11 WLANs

- Average time to transmit a packet comprises of
 - DIFS
 - backoff duration
 - data packet transmission time
 - SIFS
 - MAC ACK transmission time

Communication Overheads: NetSim Configuration

Communication Overheads: NetSim Configuration

Timing Information		
SIFS	$10~\mu \mathrm{sec}$	
Slot Time	$20~\mu\mathrm{sec}$	
DIFS	$10~\mu { m sec}$ $20~\mu { m sec}$ ${ m SIFS} + 2~* { m Slot} { m Time} = 50~\mu { m sec}$	
CWmin	15 slots	
Average Backoff	$\frac{CWmin}{2}$ * Slot Time $= 150~\musec$	

Communication Overheads: Experiment Configuration

WiFi Radio		
Standard	802.11n	
Band	2.4 GHz	
Channel	1	
Bandwidth	20 MHz	
Transmit Power	20 dBm	
Rate Adaptation	False	
Wireless Access	Basic Access	

Wireless Channel and Link		
Channel Characteristics Path Loss Only		
Path Loss Model Log_Distance		
Path Loss Exponent 3.5		
Mobility Model Constant		
AP - Client Distance	30m	

Communication Overheads: Experiment Configuration

Application Properties		
Application CBR		
Transport Protocol UDP		
Packet Size	1450 bytes	
Interarrival Time	116 microseconds	
TCP	Disabled	

Miscellaneous		
Wired Link Capacity	1 Gbps	
Wired Link Delay	10 microseconds	
Simulation Time	10 seconds	

- parameters ensures a wireless bottleneck and saturated MAC queue
- packet trace must be enabled before the simulation

Communication Overheads: Packet Transmission Time

MPDU Size =
$$1450 + \text{UDP Header} + \text{IP Header} + \text{MAC Header}$$

= $1450 + 8 + 20 + 40 \text{ bytes}$
= 1518 bytes

Packet Transmission Time
$$=$$
 PHY Overheads $+$ $\frac{\text{MPDU Size}}{\text{Data Rate}}$ $=$ $40 + \frac{1518*8}{72.2}~\mu\text{sec}$ $=$ $40 + 169.2~\mu\text{sec}$ $=$ $209.2~\mu\text{sec}$

ACK Transmission Time
$$=$$
 PHY Overheads $+$ $\frac{\text{ACK Packet Size}}{\text{ACK Data Rate}}$ $=$ $40 + \frac{32*8}{7.2}~\mu\text{sec}$ $=$ $76~\mu\text{sec}$

Communication Overheads: Average Throughput

AVERAGE TIME PER PACKET
$$\approx 50 + 150 + 209.2 + 10 + 76~\mu {
m sec}$$

$$= 495.2~\mu {
m sec}$$

AVERAGE THROUGHPUT
$$\approx \frac{\text{APPLICATION PAYLOAD}}{\text{AVERAGE TIME PER PACKET}}$$

$$= \frac{1450 * 8}{495.2} \text{ Mbps}$$

$$= 23.42 \text{ Mbps}$$

Communication Overheads: Data Rate and Throughput

- throughput significantly less when data rate is high
- communication overheads are insignificant at low data rates

Communication Overheads: Effect of Packet Size

- throughput significantly less when packet size is small
- communication overheads are insignificant when packet sizes are la

Communication Overheads: Inferences

Communication overheads in WiFi

- includes PHY, MAC and higher layer overheads
- overheads are significant at higher data rates and smaller packet sizes
- contention and channel errors can significantly affect performance
- higher layers may have additional overheads as well (e.g., TCP ACK)

Mechanisms to improve performance

- packet aggregation (AMPDU and AMSDU)
- backoff differentiation and bandwidth management
- MU-MIMO in IEEE 802.11ac
- OFDMA in IEEE 802.11ax

Random Access and Packet Collisions (\approx Ex. 5)

- Objective
 - study random access mechanism in WiFi
 - evaluate impact on throughput
- Network setup
 - an IEEE 802.11n BSS with an access point and two clients
 - uplink UDP traffic from the two clients to the server

Random Access Mechanism in IEEE 802.11 WLANs

- Primary channel access mechanism in WiFi is CSMA/CA
- All transmissions are deferred (backoff) for collision avoidance
- Nodes carrier sense before a transmission
- Collisions occur when two nodes transmit simultaneously
- Random backoff duration is increased exponentially with collisions

Random Access: Experiment Configuration

WiFi Radio		
Standard	802.11n	
Band	2.4 GHz	
Channel	1	
Bandwidth	20 MHz	
Transmit Power	20 dBm	
Rate Adaptation	False	
Wireless Access	Basic	

Wireless Channel and Link		
Channel Characteristics	Path Loss Only	
Path Loss Model	Log_Distance	
Path Loss Exponent	4.5	
Mobility Model	Constant	
AP - Client Distance	100m	

Random Access: Experiment Configuration

Application Properties		
Application	CBR	
Transport Protocol	UDP	
Packet Size	1450 bytes	
Interarrival Time	116 microseconds	
TCP	Disabled	
Traffic	Uplink	

Miscellaneous		
Wired Link Capacity	1 Gbps	
Wired Link Delay	10 microseconds	
Simulation Time	10 seconds	

- choice of parameters ensures a saturated MAC queue
- packet trace must be enabled before the simulation

Random Access: Performance Measurements

• Attempt rate (from Packet Trace)

$$\label{eq:attempt} \text{ATTEMPT RATE} = \frac{\text{NUMBER_OF_TRANSMISSIONS}}{\text{SIMULATION_TIME}}$$

Collision probability (from Packet Trace)

$$\label{eq:collision_probability} \begin{aligned} \text{COLLISION PROBABILITY} &= \frac{\text{NUMBER_OF_COLLIDED_TRANSMISSIONS}}{\text{NUMBER_OF_TRANSMISSIONS}} \end{aligned}$$

Average Throughput (from Packet Trace)

$$\label{eq:average_average} \text{AVERAGE THROUGHPUT} = \frac{\text{APPLICATION_BYTES_RECEIVED} * 8.0}{\text{SIMULATION_TIME}}$$

Contention and Random Access

Performance Measures	Single User	Two Users
Attempt Rate (per sec)	1350	1136
Collisions Probability	0	0.65
Average Throughput	15.63 Mbps	4.49 Mbps

Contention and Random Access

Performance Measures	Single User	Two Users
Attempt Rate (per sec)	1350	1136
Collisions Probability	0	0.65
Average Throughput	15.63 Mbps	4.49 Mbps

Random access leads to collisions and packet loss

- collision and retransmissions leads to loss in throughput
- collisions increase channel access delay as well
- collisions may also affect rate adaptation algorithms

Random Access and Packet Collisions: Inferences

CSMA/CA in WiFi

- resolves contention and enables spatial reuse
- random access leads to collisions and loss in throughput
- RTS/CTS can minimize collisions and reduce loss in throughput

Mechanisms to enhance performance

- RTS/CTS channel access
- 802.11e to support QoS and differentiation
- MU-MIMO and OFDMA
- transmit power control, sensitivity and rate adaptation
- bandwidth managers

Simulation Guidelines

- Performance varies with AP-client distance and locations
 - interference can vary even with small changes in location
- Protocols and traffic may affect performance in many ways
 - uplink traffic creates more collisions than downlink traffic
 - TCP ACKs can create interference as well
- Random access and spatial reuse
 - spatial reuse is a function of TPC, receiver sensitivity, etc
 - QoS may not be strict

Suggested Exercises

- Evaluate data rate and throughput as a function of RSSI
- Evaluate performance of Minstrel algorithm as a function of distance
- Evaluate throughput and utilization with TCP
- Study average DI/UI throughput as the number of clients increases
- Demonstrate spatial reuse with CSMA/CA

Questions!

