Introduction to TCP using NetSim

Krishna Bharadwaj, Pavithra Krishnan, Venkatesh Ramaiyan

Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India.

Outline

- About NetSim
- Transport layer protocols
- Transmission control protocol (TCP)
- Features of TCP
 - three way handshake
 - reliable communication
 - congestion control
 - multiplexing and fairness
- Summary
- Suggested exercises
- References

About NetSim

NetSim - network simulator and emulator

- end-to-end, full stack, packet level network simulator and emulator
- enables protocol modeling and simulation
- used by 400+ customers across 25+ countries

Highlights

- technologies: 5G, IoT, SDN, MANETS, VANETS, LTE, Wifi, etc
- 1000+ nodes
- GUI and packet animator
- external interfacing with Matlab, Wireshark and SUMO

Utility

- network R&D and academic projects
- defense applications, tactical communications, public utility networks

About NetSim

Configure network

Visualize simulation

Run simulation

Transport Layer Protocols

- provides communication services to application processes
- key functions are reliability, multiplexing and congestion control
- popular protocols are TCP, UDP, QUIC

User Datagram Protocol

- UDP provides best-effort, connectionless service to applications
- key functions are multiplexing and error detection
- popular applications such as SNMP, DNS, NFS use UDP

Transmission Control Protocol

- TCP provides full-duplex, reliable, connection oriented service
- key functions are multiplexing, flow control and congestion control
- popular applications such as SMTP, Telnet, HTTP, FTP use TCP

Transmission Control Protocol

- TCP converts the data into segments before transmission
- congestion and flow control algorithms paces data transfer

Features of Transmission Control Protocol

- Connection oriented service
 - connection established before data communication
 - three-way handshake using special control packets
- Reliable communication
 - delivers packets without error and in order
 - uses sequence numbers, acknowledgement, timeout and retransmission
- Flow control
- Congestion control
 - performs end-to-end congestion control
 - uses packet loss and delay to infer congestion and pace traffic
- Multiplexing
 - multiplexing at host using port numbers and IP addresses
 - multiplexing in the network at the routers

Basic TCP Experiments

- Three-way handshake
 - study connection establishment and teardown in TCP
 - focus on three-way handshake, TCP control packet and header
- 2 Reliable communication
 - study data communication over a lossy link
 - focus on packet sequence numbers, ACKs and retransmissions
- Congestion control
 - study congestion window evolution with time
 - focus on bandwidth probing, congestion avoidance and throughput
- Multiplexing in the network
 - study network resource sharing with multiple TCP flows
 - focus on throughput and fairness

Three-way Handshake (\approx Ex. 4)

Objective

- study connection establishment and teardown
- focus on three-way handshake, TCP control packet and header

Network setup

- a client and a server connected by a loss-less link
- FTP application uses TCP for file transfer

Three-way Handshake

Three-way Handshake: Experiment Configuration

Link Parameters					
Wired link speed	10 Mbps				
Wired link BER	0				
Wired link propagation delay	25 msecs				
Transport Layer Parameters					
Transport Protocol	TCP				
Congestion Control	New_Reno				
MSS	1460 bytes				
Application Parameters					
Application	FTP				
File Size	14600 bytes				
Miscellaneous					
Simulation Time	20 secs				
Wireshark	Enabled On				

Three-way Handshake: Results

No.	Time	Source	Destination	Protocol	Length	Info	
,	1 0.000000	0.0.0.0	0.0.0.0	IPV4	20		
	2 0.000000	11.1.1.2	11.2.1.2	TCP	44	82 → 36934	[SYN] Seq=0 Win=65535 Len=0 MSS=1460
	3 0.100224	11.2.1.2	11.1.1.2	TCP	44	36934 → 82	[SYN, ACK] Seq=0 Ack=1 Win=4380 Len=0 MSS=1460
	4 0.100224	11.1.1.2	11.2.1.2	TCP	40	82 → 36934	[ACK] Seq=1 Ack=1 Win=4380 Len=0
	5 0.100224	11.1.1.2	11.2.1.2	TCP	1500	82 → 36934	[<none>] Seq=1 Win=4380 Len=1460</none>
	6 0.100224	11.1.1.2	11.2.1.2	TCP	1500	82 → 36934	[<none>] Seq=1461 Win=4380 Len=1460</none>
	7 0.100224	11.1.1.2	11.2.1.2	TCP	1500	[TCP Window	Full] 82 → 36934 [<none>] Seq=2921 Win=4380 Len=1</none>
	8 0.202825	11.2.1.2	11.1.1.2	TCP	40	36934 → 82	[ACK] Seq=1 Ack=1461 Win=4381 Len=0
	9 0.202825	11.1.1.2	11.2.1.2	TCP	1500	82 → 36934	[<none>] Seq=4381 Win=5840 Len=1460</none>
	10 0.202825	11.1.1.2	11.2.1.2	TCP	1500	82 → 36934	[<none>] Seq=5841 Win=5840 Len=1460</none>
	11 0.204047	11.2.1.2	11.1.1.2	TCP	40	36934 → 82	[ACK] Seq=1 Ack=2921 Win=4381 Len=0
	12 0.204047	11.1.1.2	11.2.1.2	TCP	1500	82 → 36934	[<none>] Seq=7301 Win=7300 Len=1460</none>
	13 0.204047	11.1.1.2	11.2.1.2	TCP	1500	82 → 36934	[<none>] Seq=8761 Win=7300 Len=1460</none>
	14 0.205269	11.2.1.2	11.1.1.2	TCP	40	36934 → 82	[ACK] Seq=1 Ack=4381 Win=4381 Len=0
	15 0.205269	11.1.1.2	11.2.1.2	TCP	1500	82 → 36934	[<none>] Seq=10221 Win=8760 Len=1460</none>
	16 0.205269	11.1.1.2	11.2.1.2	TCP	1500	82 → 36934	[<none>] Seq=11681 Win=8760 Len=1460</none>
	17 0.305373	11.2.1.2	11.1.1.2	TCP	40	36934 → 82	[ACK] Seq=1 Ack=5841 Win=4381 Len=0
,	18 0.305373	11.1.1.2	11.2.1.2	TCP	1500	82 - 36934	[<none>] Seq-13141 Win-10220 Len-1460</none>
(19 0.305373	11.1.1.2	11.2.1.2	TCP	40	82 → 36934	[FIN] Seq=14601 Win=10220 Len=0
•	20 0.306594	11.2.1.2	11.1.1.2	TCP	40	36934 → 82	[ACK] Seq=1 Ack=7501 Win=4581 Len=0
	21 0.307816			TCP			[ACK] Seq=1 Ack=8761 Win=4381 Len=0
	22 0.309038	11.2.1.2	11.1.1.2	TCP	40	36934 → 82	[ACK] Seq=1 Ack=10221 Win=4381 Len=0
	23 0.310260			TCP			[ACK] Seq=1 Ack=11681 Win=4381 Len=0
	24 0.311481			TCP			[ACK] Seq=1 Ack=13141 Win=4381 Len=0
	25 0.407920			TCP			[ACK] Seq-1 Ack-14601 Win-4381 Len-0
	26 0.407974			TCP			[FIN, ACK] Seq=1 Ack=14601 Win=4381 Len=0
	27 0.408027			TCP			[FIN] Seq=2 Win=4381 Len=0
	28 0.408027	11.1.1.2	11.2.1.2	TCP	40	82 → 36934	[ACK] Seq=14602 Ack=3 Win=18980 Len=0

Three-way Handshake: Inferences

Connection oriented service

- data communication after three-way handshake
- connection terminated with three-way handshake as well
- TCP header carries information for handshake

NetSim simulator

- handshake observed in animator, PCAP file and packet trace
- PCAP file permits easy review of the TCP header

Reliable Communication

Objective

- study data communication over a lossy link, with TCP
- focus on fragmentation, sequence numbers, ACKs and retransmission

Network setup

- a client and a server connected by a lossy link
- FTP application uses TCP for file transfer

Reliable Communication

Reliable Communication: Experiment Configuration

Link Parameters					
Wired link speed	10 Mbps				
Wired link BER	1e-5				
Wired link propagation delay	25 msecs				
Transport Layer Parameters					
Transport Protocol	TCP				
Congestion Control	New_Reno				
MSS	1460 bytes				
Application Parameters					
Application	FTP				
File Size	14600 bytes				
Miscellaneous					
Simulation Time	20 secs				
Wireshark	Enabled On				

Reliable Communication: Results

	Time	Source	Destination	Protocol	Length	Info
1	0.000000	0.0.0.0	0.0.0.0	IPv4	20	0
2	0.050112	11.1.1.2	11.2.1.2	TCP	44	4 82 → 36934 [SYN] Seq=0 Win=32767 Len=0 MSS=1460
3	0.050112	11.2.1.2	11.1.1.2	TCP	44	4 36934 → 82 [SYN, ACK] Seq=0 Ack=1 Win=4380 Len=0 MSS=1460
4	0.150330	11.1.1.2	11.2.1.2	TCP	40	0 82 → 36934 [ACK] Seq=1 Ack=1 Win=4380 Len=0
5	0.152720	11.1.1.2	11.2.1.2	TCP	1500	0 82 → 36934 [<none>] Seq=1 Win=4380 Len=1460</none>
6	0.152720	11.2.1.2	11.1.1.2	TCP	40	0 36934 → 82 [ACK] Seq=1 Ack=1461 Win=4381 Len=0
7	0.153942	11.1.1.2	11.2.1.2	TCP	1500	0 82 → 36934 [<none>] Seq=1461 Win=4380 Len=1460</none>
8	0.153942	11.2.1.2	11.1.1.2	TCP	40	0 36934 → 82 [ACK] Seq=1 Ack=2921 Win=4381 Len=0
9	0.155163	11.1.1.2	11.2.1.2	TCP	1500	0 82 → 36934 [<none>] Seq=2921 Win=4380 Len=1460</none>
10	0.155163	11.2.1.2	11.1.1.2	TCP	40	8 36934 - 82 [ACK] Seq-1 Ack-4381 Win-4381 Len-0
11	0.256489	11.1.1.2	11.2.1.2	TCP	1500	0 [TCP Previous segment not captured] 82 → 36934 [<none>] Seq=5841 Wir=</none>
	0.256489			TCP	40	0 [TCP Dup ACK 10#1] 36934 → 82 [ACK] Seq=1 Ack=4381 Win=4381 Len=0
13	0.257711	11.1.1.2	11.2.1.2	TCP	1500	8 82 > 36934 [<none>] Seq=7301 Win=7300 Len=1460</none>
				TCP	40	0 [TCP Dup ACK 10#2] 36934 → 82 [ACK] Seq=1 Ack=4381 Win=4381 Len=0
15	0.258932	11.1.1.2	11.2.1.2	TCP	1500	0 82 → 36934 [<none>] Seq=8761 Win=7300 Len=1460</none>
16	0.258932	11.2.1.2	11.1.1.2	TCP	40	0 [TCP Dup ACK 10#3] 36934 → 82 [ACK] Seq=1 Ack=4381 Win=4381 Len=0
17	0.260154	11.1.1.2	11.2.1.2	TCP	1500	0 82 → 36934 [<none>] Seq=10221 Win=8760 Len=1460</none>
18	0.260154	11.2.1.2	11.1.1.2	TCP	40	0 [TCP Dup ACK 10#4] 36934 → 82 [ACK] Seq=1 Ack=4381 Win=4381 Len=0
19	0.261376	11.1.1.2	11.2.1.2	TCP	1500	0 82 → 36934 [<none>] Seq=11681 Win=8760 Len=1460</none>
	0.261376	11.2.1.2	11.1.1.2		40	8 [TCP Dup ACK 18#5] 36934 > 82 [ACK] Seq-1 Ack-4381 Win-4381 Len-8
21	0.361479	11.1.1.2	11.2.1.2	TCP	1500	0 [TCP Out-Of-Order] 82 → 36934 [<none>] Seq=4381 Win=5840 Len=1460</none>
22	0.361479	11.2.1.2	11.1.1.2	TCP	40	0 36934 → 82 [ACK] Seq=1 Ack=13141 Win=4381 Len=0
23	0.464027	11.1.1.2	11.2.1.2	TCP	1500	0 87 → 30334 [<noue>] 2ed=13141 Miu=4380 Feu=1400</noue>
24	0.464027	11.2.1.2		TCP		0 36934 → 82 [ACK] Seq=1 Ack=14601 Win=4381 Len=0
25	0.464080	11.1.1.2	11.2.1.2	TCP	40	0 82 → 36934 [FIN] Seq=14601 Win=4380 Len=0
26	0.464080	11.2.1.2	11.1.1.2	TCP	40	0 36934 → 82 [FIN, ACK] Seq=1 Ack=14601 Win=4381 Len=0
27	0.464080	11.2.1.2	11.1.1.2	TCP	40	0 36934 → 82 [FIN] Seq=2 Win=4381 Len=0
28	0.564345	11.1.1.2	11.2.1.2	TCP	40	0 82 → 36934 [ACK] Seq=14602 Ack=3 Win=5840 Len=0

Reliable Communication: Inference

Reliable communication

- file transmitted as multiple segments, with TCP headers
- sequence numbers help track bytes transmitted and received
- packet loss can occur due to channel errors or congestion
- timeout and duplicate acknowledgements help detect packet loss
- connection terminated after the file is transferred

NetSim simulator

- data transfer observed in animator, PCAP file and packet trace
- PCAP file permits easy review of the TCP flow and header

TCP Congestion Control (\approx Ex. 8, 5)

Objective

- study congestion window evolution with time
- focus on bandwidth probing, congestion avoidance and throughput

Network setup

- a client and a server connected by a lossy link
- FTP application seeks to transfer a very large file using TCP

TCP Congestion Control

TCP Congestion Control: Experiment Configuration

Link Parameters					
Wired link speed	10 Mbps				
Wired link BER	1e-7				
Wired link propagation delay	25 msecs				
Transport Layer Parameters					
Transport Protocol	TCP				
Congestion Control	Old_Tahoe, Tahoe, New_Reno				
MSS	1460				
Application Parameters					
Application	FTP				
File Size	10 ⁸ Bytes				
Miscellaneous					
Simulation Time	20 secs				
Wireshark	Enabled On				

TCP Congestion Control: Old Tahoe

Window Scaling for 11.1.1.1:36934 \rightarrow 11.1.1.2:82

TCP Congestion Control: Old Tahoe

TCP Congestion Control: Tahoe

TCP Congestion Control: New Reno

TCP Congestion Control: New Reno

source: Computer Networking: A top-down approach, Kurose and Ross

TCP Congestion Control: Performance Comparison

Throughput Performance with TCP Reno

- Approximate analysis of throughput
 - loss-less links: throughput = $\frac{\text{cwnd}}{\text{RTT}}$
 - lossy link: throughput = $\frac{1.22 \text{ MSS}}{\text{RTT}\sqrt{p}}$

TCP Congestion Control: Inference

TCP congestion control

- end-to-end congestion control
- responds to delays and duplicate acknowledgements
- affects long-term average throughput and fairness
- recent and popular versions include Cubic, Compound and HTCP

Simulator

congestion window evolution observed with PCAP file and packet trace

Multiplexing and Fairness

- Objective
 - study network resource sharing with multiple TCP flows
 - focus on throughput and fairness
- Network setup
 - ten clients connect to a server over loss-less links
 - FTP application seeks to transfer a very large file using TCP

Multiplexing and Fairness: Experiment Configuration

Link Parameters					
Wired link speed	10 Mbps				
Wired link BER	0				
Wired link propagation delay	25 msecs				
Transport Layer Parameters					
Transport Protocol	TCP				
Congestion Control	New_Reno				
MSS	1460				
Application Parameters					
Application	FTP				
File Size	10 ⁸ bytes				
Miscellaneous					
Simulation Time	20 secs				
Wireshark	Enabled On				

Multiplexing and Fairness: Average Throughput

Multiplexing and Fairness: Short-term Average Throughput

Multiplexing and Fairness: Inference

- Network multiplexing with TCP
 - network resources are shared equally in long-term
 - network sharing is unfair in short-term
 - performance critically depends on link capacity, buffer, algorithm, congestion, etc
 - queue management at routers can help improve performance
- Simulator
 - performance observed with packet trace

Summary

- Transmission control protocol
 - provides end-to-end connection-oriented communication service
 - key functions are reliability, congestion control and multiplexing
 - dynamically adapts to network congestion
 - recent versions include Cubic, Compound, H-TCP
- Recent advances in transport layer protocols
 - QUIC: quick UDP Internet connections
 - computer generated congestion control algorithms

Suggested Exercises

- Bandwidth-delay product (BDP)
 - performance of TCP depends on BDP
 - buffer size at the bottleneck routers must be appropriately set
- Multiple flows
 - TCP vs TCP: performance depends on RTT, rwnd, etc
 - TCP vs UDP: UDP does not support congestion control
- TCP and Wireless
 - TCP perceives packet loss as congestion
 - flows may interact at buffer as well as the wireless channel
- TCP in a network
 - resource sharing in a network
 - performance with ECN, RED, WFQ

References

NetSim

- homepage https://www.tetcos.com/
- videos https://www.youtube.com/user/Tetcos/videos
- facebook https://www.facebook.com/tetcosnetsim/

TCP specification

RFC 793 (protocol), RFC 5681 (congestion control)

Articles

- A protocol for packet network intercommunication, V Cerf and R Kahn, 1974
- Congestion avoidance and control, V Jacobson, 1988

Text

- Computer networking: A top-down approach, J Kurose and K Ross
- TCP/IP Illustrated, Volumes I, II and III, W R Stevens, et al

Questions!

