

VANET DOS 5G Wi-Fi

EDU Suite

Internet of Things

Vehicular Adhoc Networks

Satellite Comm. Networks

WHAT IS NETSIM® AND HOW IS IT USED?

NetSim is the industry's leading network simulation software for protocol modelling and simulation, network R & D and defence applications.

It is an end-to-end, full stack, packet level network simulator and emulator, providing researchers with a technology development environment for protocol modelling and network R&D. The behaviour and performance of new protocols and devices can be investigated in a virtual network within NetSim at significantly lower cost and in less time than with hardware prototypes.

- Create network scenarios using NetSim's GUI or using XML config files
- Click and drop devices, links, application etc. into the environment using NetSim's GUI
- Set properties with just a click. Layer-wise parameters can be edited

- Run the Discrete Event Simulation (DES) through the GUI or CLI
- · Log packet trace and event trace files
- · Capture packets using Wireshark

- Examine output performance metrics at multiple levels - network, sub network, link, queue, application etc.
- Study a variety of metrics such as throughput, delay, loss, packet error, link utilization etc.
- · Interpret metrics using in-built plots and graphs

- Record PHY layer radio data including path-loss, SINR, Shadow fading, Interference, MCS, CQI and more
- · Record MAC layer resource allocation
- Seamlessly export .csv format files to spreadsheets and databases

- MATLAB®
- SIMULINK®
- SUMO
- WIRESHARK
- Python

- Extend existing algorithms by modifying NetSim's source C code
- Create custom protocols using NetSim's simulation API's
- Debug your code (step-in, step-out, step-over, continue) and watch your variables in sync with simulation

WHAT DOES NETSIM'S USER INTERFACE LOOK LIKE?

EXPLORE THE WIDE RANGE OF PRODUCT CAPABILITIES

Libraries (Toolboxes)	Networks / Protocols	
Component 1 (Base. This is required for all other components to run)	Inter-Networks: Ethernet - Fast & Gigabit, ARP; WLAN - 802.11 a, b, g, n, ac and e Propagation - Pathloss, Shadowing, Fading; IPv4, Firewalls Routing - RIP, OSPF; Queuing - Round Robin, FIFO, Priority; TCP - Old Tahoe, Tahoe, Reno, New Reno, BIC, CUBIC, SACK, Window Scaling; UDP Common Modules: Applications (Traffic Generator): Voice, Video, FTP, Database, HTTP, Email, Interactive Gaming and Custom; Encryption - XOR, TEA, AES, DES; Virtual Network Stack, Simulation Kernel; Command Line Interface, Metrics Engine with Packet Trace and Event Trace; Network Logs, Results window with dynamic plots; Command Line	
	Interpreter External Interfaces: Wireshark and MATLAB interfaces	
Component 2	Legacy & Cellular Networks: Pure Aloha & Slotted Aloha, GSM and CDMA	
Component 3	Advanced Routing and Switching: IGMP, PIM, VLAN, ACL, NAT, Layer 3 Switch	
Component 4	Mobile Adhoc Networks: MANET - DSR, AODV, OLSR, ZRP; Multiple MANETs, Interfacing with Bridge Node	
Component 5	Software Defined Networks: Open flow v1.3 Compatible	
Component 6 (Requires C4)	Internet of things: IoT with RPL protocol Wireless Sensor Networks (WSN) LR-WPAN 802.15.4, Energy model	
Component 7	Cognitive Radio Networks: WRAN IEEE 802.22	
Component 8	Long-Term Evolution Networks: LTE (4G), LTE Advanced (4.5G)	
Component 9 (Requires C4)	Vehicular Adhoc Networks : IEEE 1609 WAVE, Basic Safety Message (BSM) protocol per J2735 DSRC, Interface with SUMO for road traffic simulation	
Component 10 (Requires C3 & C8)	5G Networks : Based on 3GPP 38.xxx Deployment: SA/NSA; Layers: SDAP, RRC, PDCP, RLC, MAC, PHY; MIMO, Beamforming, mmWave, Propagation and Channel Models	
Component 11 (Requires C3)	Satellite Communication Networks: Geo Stationary Satellite. Forward link TDMA in Ku Band and Return link MF-TDMA in Ka band per DVB S2. Markov Loo Fading model	
Component 12 (Requires C2 & C3)	Underwater Acoustic Networks : Features underwater communication using the acoustic PHY and Thorp propagation models. Interfaces with legacy networks for running slotted aloha in MAC layer	
Network Emulator Add On	Network Emulator : Connect real hardware running live applications to NetSim Simulator. Interface with Raspberry Pi	
Advanced 5G Add On (Requires C10)	Advanced 5G: Block Error Rate (BLER), UL and DL Interference, Outer Loop Link Adaptation (OLLA).	

NETSIM 5G LIBRARY

Overview

- End-to-End simulation of 5G networks
- Devices: UE, gNB, 5G Core, Router, Switch, Server
- · Interfaces with NetSim's proprietary TCP/IP stack providing simulation capability across all layers of the stack
- · Application Models FTP, HTTP, Voice, Video, Email, DB, Custom and more
- 5G Core covering AMF, SMF and UPF.
- · SA and NSA (LTE-5G dual connectivity) deployment architectures

Specifications

- MAC Layer based on specification 38.321
 - · MAC Scheduler featuring Round Robin, Proportional Fair, Max Throughput and Strictly fair algorithms
 - · Link Adaptation to change MCS based on CQI
 - HARQ with retransmissions and soft combining
 - · Radio resource allocation log
- PHY Layer
 - Flexible sub-carrier spacing in the NR frame structure using multiple numerologies μ = 0, 1, 2, 3
 - FR1 and FR2, TDD and FDD, Carrier aggregation
 - Radio measurements log: SNR, RSSI, Pathloss, ShadowFading Loss, BeamformingGain, CQI, MCS
 - PHY layer modulations supported BPSK, QPSK, 16QAM, 64QAM, 256QAM
 - MIMO
 - » gNB antenna count supported 1, 2, 4, 8, 16, 32, 64, 128
 - » UE antenna count supported 1, 2, 4, 8, 16
 - · Digital and Analog Beamforming
 - · Interference Models
- RF propagation (Based on 3GPPTR38.900 Channel Model)
 - · Rural Macro, Urban Macro, Urban Micro, Indoor, Mixed and Open Office. LOS/NLOS. Outdoor to Indoor
- · Mobility and Handover

Featured Examples

- · Effect of distance on pathloss for different channel models Rural-Macro, Urban-Macro, Urban-Micro
- · Effect of UE distance on throughput in FR1 and FR2
- Impact of MAC Scheduling algorithms on throughput, in a Multi UE scenario
- 5G Peak Throughput: 3.5 GHz n78 band, 26 GHz n258 band
- Impact of numerology on a RAN with phones, sensors, and cameras
- · 4G vs. 5G: Capacity analysis for video downloads

MACHINE LEARNING (ML) WITH NETSIM

Machine learning algorithms can be interfaced with NetSim to support a vast array of R&D applications, including:

- · Traffic estimation, Load balancing, Throughput prediction
- · Power control, Beamforming, Interference management, Signal strength analysis
- MAC Scheduling, Quality of service (QoS) optimization

ML Algorithms

- Supervised learning: Incorporate Deep Q-Networks (DQN), Deep Neural Networks (DNN), Generative Adversarial Networks (GANs), etc., for pattern recognition and predictive analytics in wireless comm. and traffic management
- Reinforcement learning: Utilize algorithms like Multi-armed Bandit, Q-learning, and Temporal Difference (TD) learning for adaptive decision-making in dynamic network environments.

RL Control Loop using MATLAB interfacing

- · NetSim transmits states and rewards to MATLAB
- ML algorithm in MATLAB processes this information.
- Post-processing, MATLAB communicates the optimal actions back to NetSim, ensuring a continuous loop of learning and adaptation.

NetSim - MATLAB RL interfacing for 5G load balancing

Generate synthetic data for ML

NetSim can generate vast amounts of perfectly labeled data that is representative of a wide variety of scenarios and edge cases. Data and output files include:

- Network Performance Metrics
- · Instantaneous and average throughputs for each link and each application
- · Buffer occupancy vs. time, TCP congestion window vs. time
- Packet trace: 30+ parameters for every packet as it flows through the network. These include arrival times, queuing times, departure times, payload, overhead, errors, collisions, etc
- Radio measurements: SINR, Pathloss, Shadowing, Fast fading, LOS/NLOS states, O2I Loss, MCS, CQI, UE-gNB distances, UE-gNB association.
- · Radio resource allocation: Buffer fill (queue size), scheduling metric, PRB allocation

WHAT ARE SOME RESEARCH AREAS WHERE NETSIM IS USED?

List of R&D projects with code and documentation is available at www.tetcos.com/file-exchange.html

5G Networks

- » Heterogeneous networks
- » MAC Scheduling and resource allocation
- » PHY: MIMO, Interference, Beamforming

Internet Of Things (IoT)

- » IoT security
- » Energy management and sustainable operation
- » 6LoWPAN based IoT design

Wireless Sensor Networks (WSN)

- » Energy efficiency
- » Routing, Clustering and LEACH
- » Localization

Software Defined Networks (SDN)

- » SDN based Wired/Wireless/MANETs/VANETs
- » Performance evaluation
- » SDN based traffic engineering and QoS

Vehicular Adhoc Networks(VANETs)

- » v2v and v2i communication
- » Mobility models and connectivity
- » Clustering and routing

Underwater Acoustic Networks

- » Acoustic PHY propagation
- » Multi-hop routing
- » Localization

Mobile Ad hoc Networks (MANET)

- » Location based, Power aware routing
- » Sinkhole attack
- » Intrusion detection systems

HOW DO I CONNECT REAL DEVICES TO NETSIM FOR EMULATION?

NetSim emulator provides critical insights into application performance by enabling user to run their live application over an equivalent virtual network and see how the application is performing in real time.

NetSim is an IP based, data plane, flow-through network emulator; NetSim emulates the network for the data flowing between the client(s) and server(s)

What is Emulation?

- » NetSim Emulator enables users to connect NetSim simulator to real hardware and interact with live applications
- » Users can test the performance of real applications over a virtual network
- » If you are designing a new network or expanding an existing network then NetSim emulator will enable you to run your live application over an equivalent virtual network and see how the application is performing in real time

Where can it be used?

- » Military radio networks
- » Satellite link analysis
- » Netwok attack simulation
- » R&D in new protocol design

How does it work?

- » Create the desired network in the Emulation server using NetSim $\ensuremath{\mathsf{GUI}}$
- » Route traffic from the PC's/VM's where your application runs, to NetSim emulation server
- » Each live PC/VM corresponds to a node in the simulated network. In the simulated network map the device IP addresses per the real PC/VM
- » Run your application & Measure various parameters such as throughput, delay, loss etc. for your live application using Wireshark

What are the benefits?

- » Can be used to emulate a wide range of technologies
- » Switching, Routing, MANETs, 4G-LTE networks etc.,
- » NetSim Emulator is a cost effective alternative to hardware emulators that have high costs, complicated configuration requirements and limited scale

SIMULATING ATTACKS ON CYBER PHYSICAL SYSTEMS (CPS) USING NETSIM

Electric power grid and CPS

- The electric power grid (EPG) or smart grid is a critical infrastructure at high risk of cyber-attacks.
- At its core are cyber-physical systems (CPS), that integrate communication and computational technologies to interact seamlessly with the physical world.
- Key CPS components like automated control systems, remote terminal units, PLCs, and IEDs are all connected to one another over a communication network.

Why choose NetSim for your cyber-physical testbed?

- Security of CPSs can be improved by using a testbed to replicate power systems operating conditions and evaluate
 grid operation under maliciously constructed scenarios.
- Hardware testbeds are costly, inflexible, hard to scale and demand safety considerations. Software testbeds
 overcome these difficulties and can function as digital twins.
- A software testbed generally comprises of a power system simulator and a network simulator. The former models
 all the power electronics devices, power transmission and distribution while the latter models the communications
 network.

Interfacing with real-time power system simulators

NetSim can interface with the following:

- » OPAL-RT
- » RTDS
- » HYPERSIM
- » PSCAD
- » MATLAB

Simulating network attacks for proactive defense

Given below are some example attacks that can be simulated using NetSim:

- » Denial-of-Service (DoS) Attack
- » Distributed Denial-of-Service (DDoS) Attack
- » Man-in-the-Middle (MitM) Attack
- » Packet Sniffing
- » Network Traffic Manipulation

Extensive protocol support

- IEEE C37.118 protocol (Synchrophasor Protocol)
- Generic Object-Oriented Substation Events (GOOSE), a subset of IEC 61850
- DNP3 (over TCP/IP)
- Modbus (over TCP/IP)
- IEC 60870-5-104 (over TCP/IP)

NETSIM FOR TEACHING/LABS

NetSim features in-built sample experiments to teach networking fundamentals through simulation.

List of Experiments

- I. Introduction to network simulation and NetSim
 - 1. Introduction to NetSim
 - 2. Understand the working of basic networking commands ping, route add/delete/print, ACL
 - 3. Understand the events involved in NetSim discrete event simulation in simulating flow of one packet from a wired node to a wireless node
- II. Network performance
 - 1. Data traffic types and network performance measures
 - 2. Simulating link failure
 - 3. Delay and Little's law
 - 4. Throughput and bottleneck server analysis
- III. Routing & Switching
 - 1. Study the working and routing table formation of interior routing protocols, RIP and OSPF
 - 2. Understand working of ARP and IP forwarding within a LAN and across a router
 - 3. Simulate and study the spanning tree protocol.
 - 4. Understanding VLAN operation in L2 and L3 switches
 - 5. Understanding access and trunk links in VLANs
 - 6. Understanding public IP address & Network Address Translation (NAT)
 - 7. M/D/1 and M/G/1 queues
 - 8. Understand the working of OSPF
- IV. Transmission control protocol (TCP)
 - 1. Introduction to TCP connection management
 - 2. Reliable data transfer with TCP
 - 3. Mathematical modelling of TCP throughput performance
 - 4. TCP congestion control algorithms
 - 5. Understand the working of TCP BIC congestion control algorithm, simulate, and plot the TCP congestion window.
- V. Wi-Fi: IEEE 802.11
 - 1. Wi-Fi: Throughput variation with distance
 - 2. Wi-Fi: UDP download throughput
 - 3. How many downloads can a Wi-Fi access point simultaneously handle?
 - 4. Multi-AP Wi-Fi networks: channel allocation
 - 5. Wi-Fi multimedia extension (IEEE 802.11e)
- VI. Internet of things (IoT) and wireless sensor networks
 - 1. One hop IoT network over IEEE 802.15.4
 - 2. IoT multi-hop sensor-sink path
 - 3. Performance evaluation of a star topology IoT network
 - 4. Study the 802.15.4 Superframe structure and analyze the effect of superframe order on throughput
- VII. Cognitive radio
 - 1. To analyze how the allocation of frequency spectrum to primary and secondary users affects throughput
- VIII. Cellular Networks
 - 1. Study how call blocking probability varies as the load on a GSM network is continuously increased
- IX. 5G NR
 - 1. Understanding the 5G NR PHY
 - 2. MIMO Beamforming in 5G: A start with MISO and SIMO
 - 3. Understanding 5G NR (3GPP) pathloss models
 - 4. Performance of OFDMA SU-MIMO in 5G
 - 5. 5G Numerologies and their impact on end-to-end latencies
 - 6. MIMO Communication: Channel Matrix Asymptotic Analysis
 - 7. Impact of Interference in 5G Networks
 - 8. On the Study of MAC Scheduling algorithms in 5G Communications
 - 9. Study of 5G Handover procedure

HOW DOES NETSIM COMPARE WITH OPEN SOURCE SIMULATORS?

	Open Source Simulators	NetSim™ Standard	
Install	Complicated installation process. Requires knowledge of various compilers and support packages for Python, QT, Doxygen, Mercurial, TCP Dump, and more	Two minute click-through installation	
OS/Compiler Support	Linux gcc / g++	Windows Visual Studio (community Edition)	
Ease of Use	Write hundreds of lines of script code to create network scenarios. Need to know various scripting and programming languages	Easy to use GUI allows users to simply drag and drop devices, links and applications	
Simulation Output	Analyse and write code to extract performance results from multi megabyte files	Results dashboard provides appealing simulation performance reports with tables & graphs	
Data Visualization	Fragmented tools with each requiring users to write programs for visualization	Inbuilt graphing with extensive formatting (axes, colours, zoom, titles etc)	
Technologies	Limited technologies Stand alone	Wide range of technologies including the latest in 5G, IoT, WSN, MANET, VANET, SDN, LTE-Adv Cognitive Radio, 802.11 n / ac and more. Libraries work together	
Lab Experimentation	Unsure of the quality of the build / patch you have used and if the results are even valid at the end	Comes with a pre-built set of 30-experiments covering important networking concepts	
External Interface	Spend many days researching how to link to external software	Inbuilt interfaces to external software like MATLAB®, SUMO and Wireshark	
Easy Debug	Code tens of printf statements to debug your code	Online debug capability and ability to 'watch' all variables.	
Support	No personalized ontime support Users dependent on online resources which require advanced programming knowledge	Professional support via email, helpdesk, remote desktop and phone	

⁺ Per publicly available information at time of print

HOW DO THE DIFFERENT VERSIONS OF NETSIM COMPARE?

NetSim Standard and NetSim Academic are targeted at educational institutions. NetSim Pro is supplied to Defence and Industry. Please visit www.tetcos.com for more information on NetSim Pro.

Technology Coverage	NetSim® Academic	NetSim® Standard
Internetworks	✓	✓
Legacy Networks	✓	✓
SDN	✓	✓
MANETs	✓	✓
Cellular Networks	✓	✓
Wireless Sensor Networks	✓	✓
Internet Of Things	✓	✓
Cognitive Radio Networks	✓	✓
LTE/LTE-A Networks	✓	✓
VANETs	×	✓
5G NR	×	✓
5G Advanced	×	✓
Satellite Communication Networks	×	✓
Underwater Acoustic Networks	×	✓
Performance Reporting Performance metrics available for Network and Sub-network	✓	✓
Packet Trace Available in csv format for easy post processing	✓	✓
Protocol Library Source Codes with Documentation Protocol C source codes with extensive documentation	×	✓
External Interfacing Interfacing with SUMO, MATLAB and Wireshark	×	✓
Integrated Debugging Write and link code to NetSim and debug using Visual Studio	×	✓
Event Trace Logs every event processed by NetSim's discrete event engine	×	✓
Dynamic Metrics Allows users to graph the values of parameter over simulation time	×	✓
Simulation Scale	100 Nodes	500 Nodes
Target Users and Segment	Educational (Lab use)	Educational (Research)
Emulator (Add on) Connect to real hardware running live applications	×	✓

OUR JOURNEY

Our customers benefit from our 17+ years of experience in the field of network simulation.

SUPPORT ECOSYSTEM

File Exchange Knowledgebase/FAQ

GitHub Repo

SELECT LIST OF EDUCATION CUSTOMERS

Education - India

AC College of Technology, Karaikudi

Agra Engg. College, Agra

Aliah University, Kolkata

Aligarh Muslim University, Aligarh

Anna University College of Engg., Chennai

Army Institute of Technology, Pune

Assam University, Silchar

A.U College of Engg. Vizag

B.C.Roy Engg. College, West Bengal Basaveshvar College of Engg., Karnataka

Bhilai Institute of Technology, Chattisgarh

BIT. Mesra. Patna Campus

BITS, Pilani, Goa Campus

BITS, Pilani, Hyderabad Campus

BITS, Pilani, Pilani Campus

BVCOEP, Pune

Central Institute of Technology, Kokrajhar

CIT. Coimbatore

College of Engg. and Tech, Bhubaneswar

College of Engg., Pune DAIICT. Ahmedabad

DCRUST, Murthal

Delhi Technical University, Delhi

Dibrugarh University, Assam

Dr. D.Y Patil Inst of Engg. and Tech, Pune

FGIET. Bariely GNDEC, Ludhiana

Govt College of Technology, Coimbatore

Govt Engineering College, Farmagudi, Goa

Govt Engineering College, Idukki, Kerala Govt

Engineering College, Kannur, Kerala Govt Engineering College, Raipur

Guru Nanak Dev University, Amritsar

Gwalior Engg. College, Gwalior

Haldia Institute of Technology, Kolkata

IFTM University, Moradabad

IGIT. Dhenkanal, Orissa

IIEST, Shibpur

IIIT, Allahabad

IIIT, Bangalore IIIT, Guwahati

IIIT, Gwalior

IIIT. Raipur

IIST, Trivandrum

IIT, Bhubaneswar

IIT. Delhi

IIT Dhanbad

IIT. Goa IIT. Kanpur

IIT, Kharagpur

IIT Patna IIT. Roorkee

Institute of Tech & Management, Gwalior

Jabalpur Engineering College, Jabalpur

Jadavpur University, Kolkata

JNTU College of Engg., Ananthapur

JNTU College of Engg., Hyderabad

JNTU College of Engg., Kakinada

K.K Wagh College of Engineering, Nashik

Kongu Engg.. College, Erode

Kumaon Engineering College, Uttarakhand

M.M.M College of Engineering, Gorakhpur

Malnad College of Engg., Hassan

MIT, Chennai

MIT, Pune

Mizoram University, Aizawl

Motihari College of Engineering, Bihar

MS University, Tirunelveli

Mukesh Patel College of Engg., Mumbai

NEC, Kovilpatti NERIST, Itanagar

NIT, Agartala NIT, Bhopal

NIT, Calicut

NIT Delhi

NIT, Durgapur

NIT. Hamirpur

NIT, Jaipur

NIT, Jalandhar

NIT, Kurukshetra

NIT, Manipur

NIT, Meghalaya

NIT, Nagaland

NIT, Nagpur

NIT, Rourkela

NIT. Sikkim

NIT. Silchar NIT. Surat

NIT Suratkal

NIT Trichy

NIT. Yupia

NITTR, Chandigarh

PEC, Chandigarh

Pondicherry Engg. College, Puducherry

Pondicherry University, Puducherry

PSG College of Technology, Coimbatore

Punjab College of Engineering, Chandigarh

RGPV, Bhopal

Sant Longowal Inst of Technology, Punjab

Sastra University, Thanjavur, TN

Sree Chitra Tirunal Engg. College, Trivandrum

Shivaji University, Kolhapur

Sinhgad College of Engineering, Pune

SMVDU, Katra

SPIT, Mumbai

Thanthai Periyar Govt Inst of Tech, TN

Thapar University, Patiala

TIT. Tripura

UIET, Chandigarh

University of Calcutta, Kolkata VES Institute of Technology Mumbai

VIT, Andhra Pradesh

VIT Chennai

VIT Vellore

VJTI. Mumbai

VNR VJIET, Hyderabad

Walchand College of Engineering, Sangli

Education - International

Al Nahrain University, Iraq

Alberta University, Canada

Allepo University, Syria

Anglia Ruskin University, UK Asia Pacific University, Malaysia

RITS Pilani Duhai

Canterbury Christ Church University, UK

Concordia University, Canada

Education University of HK, Hong Kong

FREA - AIST, Japan Gannon University, USA

GIST, Korea

Greenwich University, UK

KFUPM, Saudi Arabia

Liverpool John Moores University, UK

Ingolstadt University, Germany

INTI, Malaysia

Kent University, UK

KUET, Bangladesh Leeds Beckett Univ, UK

Miguel Hernandez University, Spain IHP Microelectronics, Germany

Zhejiang University, China

Polytechnique Montreal, Canada

Electronics and Telecommunications Research

Institute (ETRI), Korea

Edith Cowan University, Australia Universidad de los Andes-School of Electrical and

Electronics Engineering, Colombia

California State University, Bakersfield (CSUB), USA London South Bank University, UK

Land Forces Academy of Sibiu, Romania Lassonde School of Engg. ,York University, Canada University of Calgary, Canada

Military Technical College, Egypt

National Institute of Telecommunications, Poland

National Taiwan University, Taiwan National University of Singapore, Singapore

North Carolina A&T State University, USA North West University, South Africa

Oslo and Akerhus University, Norway

Pearson Education USA Poznań University of Technology, Poland

Northwestern Polytechnical University, China

Queen's University, Canada Sheffield University, UK

Singapore Institute of Technology, Singapore

Spelman College, USA

Staffordshire University, UK

Sungshin Women's University, South Korea

Taif University, Saudi Arabia The University of Sydney, Australia

Transport & Telecom, Inst. Latvia United Arab Emirates University, UAE

University of Calgary, Canada

University of Castilla-La Mancha, Spain University of Evry, France

University of Jaffna, Srilanka University of Malaysia Pahang, Malaysia

University of Memphis, USA

University of Ottawa, Canada

University of South Australia, Australia University of Sydney, Australia

University of Texas at El Paso, USA University of Udine, Italy University of Wales UK

University Technology Petronas, Malaysia University Teknology Malaysia, Malaysia

UTHM, Malaysia

500+ CUSTOMERS ACROSS 25+ COUNTRIES

University of **South Australia** Spain

Fukushima Renewable

University of Udine Italy

Innovations for High Performance Microelectronics (IHP), Germany

The

Of Sheffield

LINIVERSIDADE

جأمعة السلطان قابوس Sultan Qaboos University

Poland

UNIWERSYTET SZCZECIŃSKI

IIT, Roorkee

+i

Technology Bangalore

Meet our team at:

IEEE International Conference on Communications 9-13 June 2024 // Denver, CO, USA

IEEE Global Communications Conference 8 – 12, December 2024 // Cape Town, South Africa

facebook.com/tetcosnetsim

TETCOS LLP #214, 7th Main, 39th A Cross, Jayanagar 5th Block, Bangalore Pin - 560 041, India.

Tel-fax: +91 80 2663 0624 Tech Support: +91 76760 54321